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Figure 1. This paper proposes a deep neural architecture, PlaneRCNN, that detects planar regions and reconstructs a piecewise planar

depthmap from a single RGB image. From left to right, an input image, segmented planar regions, estimated depthmap, and reconstructed

planar surfaces.

Abstract

This paper proposes a deep neural architecture, PlaneR-

CNN, that detects and reconstructs piecewise planar sur-

faces from a single RGB image. PlaneRCNN employs a

variant of Mask R-CNN to detect planes with their plane

parameters and segmentation masks. PlaneRCNN then

jointly refines all the segmentation masks with a novel

loss enforcing the consistency with a nearby view during

training. The paper also presents a new benchmark with

more fine-grained plane segmentations in the ground-truth,

in which, PlaneRCNN outperforms existing state-of-the-

art methods with significant margins in the plane detec-

tion, segmentation, and reconstruction metrics. PlaneR-

CNN makes an important step towards robust plane extrac-

tion, which would have an immediate impact on a wide

range of applications including Robotics, Augmented Re-

ality, and Virtual Reality. Code and data are available at

https://research.nvidia.com/publication/2019-06 PlaneRCNN.

1. Introduction

Planar regions in 3D scenes offer important geometric

cues in a variety of 3D perception tasks such as scene un-

derstanding [42], scene reconstruction [3], and robot nav-

igation [18, 56]. Accordingly, piecewise planar scene re-

construction has been a focus of computer vision research

∗The authors contributed to this work when they were at NVIDIA.

for many years, for example, plausible recovery of planar

structures from a single image [16], volumetric piecewise

planar reconstruction from point clouds [3], and Manhattan

depthmap reconstruction from multiple images [11].

A difficult yet fundamental task is the inference of a

piecewise planar structure from a single RGB image, pos-

ing two key challenges. First, 3D plane reconstruction from

a single image is an ill-posed problem, requiring rich scene

priors. Second, planar structures abundant in man-made en-

vironments often lack textures, requiring global image un-

derstanding as opposed to local texture analysis. Recently,

PlaneNet [27] and PlaneRecover [49] made a breakthrough

by introducing the use of Convolutional Neural Networks

(CNNs) and formulating the problem as a plane segmenta-

tion task. While generating promising results, they suffer

from three major limitations: 1) Missing small surfaces; 2)

Requiring the maximum number of planes in a single image

a priori; and 3) Poor generalization across domains (e.g.,

trained for indoors images and tested outdoors).

This paper proposes a novel deep neural architecture,

PlaneRCNN, that addresses these issues and more effec-

tively infers piecewise planar structure from a single RGB

image (Fig. 1). PlaneRCNN consists of three components.

The first component is a plane detection network built

upon Mask R-CNN [14]. Besides an instance mask for each

planar region, we also estimate the plane normal and per-

pixel depth values. With known camera intrinsics, we can

further reconstruct the 3D planes from the detected planar

regions. This detection framework is more flexible and can
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handle an arbitrary number of planar regions in an image.

To the best of our knowledge, this paper is the first to intro-

duce a detection network, common in object recognition, to

the depthmap reconstruction task. The second component

is a segmentation refinement network that jointly optimizes

extracted segmentation masks to more coherently explain

a scene as a whole. The refinement network is designed to

handle an arbitrary number of regions via a simple yet effec-

tive neural module. The third component, the warping-loss

module, enforces the consistency of reconstructions with

another view observing the same scene during training and

improves the plane parameter and depthmap accuracy in the

detection network via end-to-end training.

The paper also presents a new benchmark for the piece-

wise planar depthmap reconstruction task. We collected

100,000 images from ScanNet [6] and generated the corre-

sponding ground-truth by utilizing the associated 3D scans.

The new benchmark offers 14.7 plane instances per image

on the average, in contrast to roughly 6 instances per image

in the existing benchmark [27].

The performance is evaluated via plane detection, seg-

mentation, and reconstruction metrics, in which PlaneR-

CNN outperforms the current state-of-the-art with signif-

icant margins. Especially, PlaneRCNN is able to detect

small planar surfaces and generalize well to new scene

types.

The contributions of the paper are two-fold:

Technical Contribution: The paper proposes a novel neu-

ral architecture PlaneRCNN, where 1) a detection network

extracts an arbitrary number of planar regions; 2) a re-

finement network jointly improves all the segmentation

masks; and 3) a warping loss improves plane-parameter and

depthmap accuracy via end-to-end training.

System Contribution: The paper provides a new bench-

mark for the piecewise planar depthmap reconstruction task

with much more fine-grained annotations than before, in

which PlaneRCNN makes significant improvements over

the current state-of-the-art.

2. Related Work

For 3D plane detection and reconstruction, most tradi-

tional approaches [10, 12, 37, 38, 52] require multiple views

or depth information as input. They generate plane propos-

als by fitting planes to 3D points, then assign a proposal to

each pixel via a global inference. Deng et al. [7] proposed

a learning-based approach to recover planar regions, while

still requiring depth information as input.

Recently, PlaneNet [27] revisited the piecewise planar

depthmap reconstruction problem with an end-to-end learn-

ing framework from a single indoor RGB image. PlaneRe-

cover [49] later proposed an un-supervised learning ap-

proach for outdoor scenes. Both PlaneNet and PlaneRe-

cover formulated the task as a pixel-wise segmentation

problem with a fixed number of planar regions (i.e., 10 in

PlaneNet and 5 in PlaneRecover), which severely limits the

expressiveness of their reconstructions and generalization

capabilities to different scene types. We address these limi-

tations by utilizing a detection network, commonly used for

object recognition.

Detection-based framework has been successfully ap-

plied to many 3D understanding tasks for objects, for ex-

ample, predicting object shapes in the form of bounding

boxes [5, 9, 32], wire-frames [22, 47, 57], or template-based

shape compositions [2, 21, 31, 48]. However, the coarse

representation employed in these methods lack the ability

to accurately model complex and cluttered indoor scenes.

In addition to the detection, joint refinement of segmen-

tation masks is also a key to many applications that require

precise plane parameters or boundaries. In recent semantic

segmentation techniques, fully connected conditional ran-

dom field (CRF) is proven to be effective for localizing

segmentation boundaries [4, 20]. CRFasRNN [55] further

makes it differentiable for end-to-end training. CRF only

utilizes low-level information, and global context is fur-

ther exploited via RNNs [1, 23, 36], more general graph-

ical models [30, 24], or novel neural architectural de-

signs [53, 54, 51]. These segmentation refinement tech-

niques are NOT instance-aware, merely inferring a semantic

label at each pixel and cannot distinguish multiple instances

belonging to the same semantic category.

Instance-aware joint segmentation refinement poses

more challenges. Traditional methods [39, 40, 41, 43, 50]

model the scene as a graph and use graphical model infer-

ence techniques to jointly optimize all instance masks. With

a sequence of heuristics, these methods are often not robust.

To this end, we will propose a segmentation refinement net-

work that jointly optimizes an arbitrary number of segmen-

tation masks on top of a detection network.

3. Approach

PlaneRCNN consists of three main components (See

Fig. 2): a plane detection network, a segmentation refine-

ment network, and a warping loss module. Built upon Mask

R-CNN [14], the plane proposal network (Sec. 3.1) de-

tects planar regions given a single RGB image and predicts

3D plane parameters together with a segmentation mask

for each planar region. The refinement network (Sec. 3.2)

takes all detected planar regions and jointly optimizes their

masks. The warping loss module (Sec. 3.3) enforces the

consistency of reconstructed planes with another view ob-

serving the same scene to further improve the accuracy of

plane parameters and depthmap during training.

3.1. Plane Detection Network

Mask R-CNN was originally designed for semantic seg-

mentation, where images contain instances of varying cat-
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Figure 2. Our framework consists of three building blocks: 1) a plane detection network based on Mask R-CNN [14], 2) a segmentation

refinement network that jointly optimizes extracted segmentation masks, and 3) a warping loss module that enforces the consistency of

reconstructions with a nearby view during training.

egories (e.g., person, car, train, bicycle and more). Our

problem has only two categories ”planar” or ”non-planar”,

defined in a geometric sense. Nonetheless, Mask R-CNN

works surprisingly well in detecting planes in our experi-

ments. It also enables us to handle an arbitrary number of

planes, where existing approaches need the maximum num-

ber of planes in an image a priori (i.e., 10 for PlaneNet [27]

and 5 for PlaneRecover [49]).

We treat each planar region as an object instance and let

Mask R-CNN detect such instances and estimate their seg-

mentation masks. The remaining task is to infer 3D plane

parameters, which consists of the normal n and the offset in-

formation d (See Fig. 3). While CNNs have been success-

ful for depthmap [28] and surface normal [45] estimation,

direct regression of plane offset turns out to be a challenge

(even with the use of CoordConv [29]). Instead of direct re-

gression, we solve it in three steps: (1) predict a normal per

planar instance, (2) estimate a depthmap for an entire im-

age, and (3) use a simple algebraic formula (Eq. 1) to calcu-

late the plane offset (which is differentiable for end-to-end

training). We now explain how we modify Mask-RCNN to

perform these three steps.

Plane normal estimation: Directly attaching a parameter

regression module after the ROI pooling produces reason-

able results, but we borrow the idea of 2D anchor boxes

for bounding box regression [14] to further improve accu-

racy. More precisely, we consider anchor normals and esti-

mate a plane normal in the local camera coordinate frame by

1) picking an anchor normal, 2) regressing the residual 3D

vector, and 3) normalizing the sum to a unit-length vector.

Anchor normals are defined by running the K-means

clustering algorithm on the plane normals in 10, 000 ran-

domly sampled training images. We use k = 7 and the clus-

ter centers become anchor normals, which are up-facing,

down-facing, and horizontal vectors roughly separated by

45◦ in our experiments (See Fig. 3).

We replace the object category prediction in the original

Mask R-CNN with the anchor ID prediction, and append

one separate fully-connected layer to regress the 3D resid-

ual vector for each anchor normal (i.e., 21 = 3 × 7 out-

put values). To generate supervision for each ground-truth

plane normal, we find the closest anchor normal and com-

pute the residual vector. We use the cross-entropy loss for

the anchor normal selection, and the smooth L1 loss for the

residual vector regression as in the bounding box regression

of Mask R-CNN.

Figure 3. A 3D point x on the plane follows the equation nx =

d. We estimate a plane normal n by first picking one of the 7

anchor normals and then regressing the residual 3D vector. Anchor

normals are defined by running the K-means clustering algorithm

on the ground-truth plane normal vectors.

Depthmap estimation: While local image analysis per re-

gion suffices for surface normal prediction, global image

analysis is crucial for depthmap inference. We add a de-

coder after the feature pyramid network (FPN) [25] in Mask

R-CNN to estimate the depthmap D for the entire image

with the same resolution. Details of the decoder network

can be found in the supplementary document.

Plane offset estimation: Given a plane normal n, it is

straightforward to estimate the plane offset d:

d =

∑
i
mi(n

⊺(ziK
−1

xi))∑
i
mi

(1)

where K is the 3 × 3 camera intrinsic matrix, xi is the

ith pixel coordinate in a homogeneous representation, zi is

its predicted depth value, and mi is an indicator variable,
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which becomes 1 if the pixel belongs to the plane. The sum-

mation is over all the pixels in the image. Note that we do

not have a loss on the plane offset parameter, which did not

make differences in the results. However, the plane offset

influences the warping loss module below.

3.2. Segmentation Refinement Network

The plane detection network predicts segmentation

masks independently. The segmentation refinement net-

work jointly optimizes all the masks, where the major chal-

lenge is in the varying number of detected planes. One so-

lution is to assume the maximum number of planes in an

image, concatenate all the masks, and pad zero in the miss-

ing entries. However, this does not scale to large number of

planes, and is prone to missing small planes.

Instead, we propose a simple yet effective module, Con-

vAccu, by combining a U-Net [33] and the idea of non-local

module [46]. ConvAccu processes each plane segmentation

mask represented in the entire image window with a con-

volution layer. We then calculate and concatenate the mean

feature volumes over all the other planes at the same layer

before passing to the next layer (See Fig. 2). As its name

indicates, ConvAccu combines a convolution layer and an

accumulation scheme, which resembles the non-local mod-

ule and can effectively aggregate information from all the

masks.

Refined plane masks are concatenated at the end and

compared against target masks with a cross-entropy loss.

Each of the target mask is generated by finding the ground

truth mask which has the maximum overlap with the pre-

dicted mask. The target mask is set to be empty if the over-

lap is smaller than half of the predicted mask. Note that be-

sides the plane mask, the refinement network also takes the

original image, the union of all the other plane masks, the

depthmap derived from plane detection results, the pixel-

wise depthmap, and a 3D coordinate map for the specific

plane (i.e., a three-channel image representing the corre-

sponding 3D coordinates computed using the plane equa-

tion) as input. We refer to the supplementary document for

the specification of all the network parameters.

3.3. Warping Loss Module

The warping loss module enforces the consistency of

reconstructed 3D planes with a nearby view during train-

ing. Specifically, our training samples come from RGB-D

videos in ScanNet [6], and the nearby view is defined to be

the one 20 frames ahead from the current. The module first

builds a depthmap Dc of the current view by 1) comput-

ing depth values from the plane equations of existing planar

regions and 2) using pixel-wise depth values predicted in-

side the plane detection network for the remaining pixels.

The reconstructed depth Dc is then warped from the current

view to the nearby view Dw which is compared against the

ground-truth depthmap for the nearby view D̂n.

To compute Dw, we warp every pixel in the nearby

view to the current view given camera intrinsics K, rotation

R, translation t, and ground-truth depthmap for the nearby

view D̂n,

(uw, vw) = warp((un, vn)|K,R, t, D̂n) (2)

where (un, vn) is a pixel in the nearby view and (uw, vw)
is the warped pixel in the current view. The details of the

warp function can be found in the supplementary document.

(uw, vw) is then used to retrieve a depth value from Dc via

bilinear interpolation, and unprojected to 3D space based

on the retrieved depth value. The unprojected 3D point is

transformed back to the nearby view, and its depth is as-

signed to Dw at pixel (un, vn). The final warping loss is

defined as,

Losswarp = ||Dw − D̂n|| (3)

The projection, un-projection, and coordinate frame

transformation are all simple algebraic operations, whose

gradients can be passed for training. Note that the warp-

ing loss module and the nearby view is utilized only during

training to boost geometric reconstruction accuracy, and the

system runs on a single image at test time.

4. Benchmark construction

Following steps described in PlaneNet [27], we build

a new benchmark from RGB-D videos in ScanNet [6].

We add the following three modifications to recover more

fine-grained planar regions, yielding 14.7 plane instances

per image on the average, which is more than double the

PlaneNet dataset containing 6.0 plane instances per image.

• First, we keep more small planar regions by reducing the

plane area threshold from 1% of the image size to 0.16%
(i.e., 500 pixels) and not dropping small planes when the

total number is larger than 10.

• Second, PlaneNet merges co-planar planes into a single

region as they share the same plane label. The merging of

two co-planar planes from different objects causes loss of

semantics. We skip the merging process and keep all in-

stance segmentation masks.

• Third, the camera pose quality in ScanNet degrades in

facing 3D tracking failures, which causes misalignment be-

tween image and the projected ground-truth planes. Since

we use camera poses and aligned 3D models to generate

ground-truth planes, we detect such failures by the dis-

crepancy between our ground-truth 3D planes and the raw

depthmap from a sensor. More precisely, we do not use im-

ages if the average depth discrepancy over planar regions

is larger than 0.1m. This simple strategy removes approxi-

mately 10% of the images.
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Figure 4. Plane-wise accuracy against baselines. PlaneRCNN out-

performs all the competing methods except when the depth thresh-

old is very small and MWS-G can fit 3D planes extremely accu-

rately by utilizing the ground-truth depth values.

5. Experimental results

We have implemented our network in PyTorch. We use

pre-trained Mask R-CNN [14] and initialize the segmenta-

tion refinement network with the existing model [15]. We

train the network end-to-end on an NVIDIA V100 GPU for

10 epochs with 100,000 randomly sampled images from

training scenes in ScanNet. We use the same scale factor

for all losses. For the detection network, we scale the image

to 640 × 480 and pad zero values to get a 640 × 640 input

image. For the refinement network, we scale the image to

256 × 192 and align the detected instance masks with the

image based on the predicted bounding boxes.

5.1. Qualitative evaluations

Fig. 6 demonstrates our reconstructions results for Scan-

Net testing scenes. PlaneRCNN is able to recover planar

surfaces even for small objects. We include more examples

in the supplementary document.

Fig. 7 compares PlaneRCNN against two competing

methods, PlaneNet [27] and PlaneRecover [49], on a variety

of scene types from unseen datasets (except the SYNTHIA

dataset is used for training by PlaneRecover). Note that

PlaneRCNN and PlaneNet are trained on the ScanNet which

contains indoor scenes, while PlaneRecover is trained on

the SYNTHIA dataset (i.e., the 7th and 8th rows in the fig-

ure) which consist of synthetic outdoor scenes. The figure

shows that PlaneRCNN is able to reconstruct most planes in

varying scene types from unseen datasets regardless of their

sizes, shapes, and textures. In particular, our results on the

KITTI dataset are surprisingly better than PlaneRecover for

planes close to the camera. In indoor scenes, our results are

consistently better than both PlaneNet and PlaneRecover.

While the detection network is able to robustly extract

planar regions for images from unseen datasets, the gener-

alization for 3D geometries is harder than the generalization

of region masks. In Fig. 5, we show depth visualization for

four examples from unseen datasets.

Figure 5. We show input images and depth reconstruction results

on unseen datasets without fine-tuning. From left to right: we

show one examples from each dataset in the order of KITTI [13],

SYNTHIA [34], Tank and Temple [19], and PhotoPopup [17].

5.2. Plane reconstruction accuracy

Following PlaneNet [27], we evaluate plane detection

accuracy by measuring the plane recall with a fixed In-

tersection over Union (IOU) threshold 0.5 and a varying

depth error threshold (from 0 to 1m with an increment

of 0.05m). The accuracy is measured inside the overlap-

ping regions between the ground-truth and inferred planes.

Besides PlaneNet, we compare against Manhattan World

Stereo (MWS) [10], which is the most competitive tradi-

tional MRF-based approach as demonstrated in prior eval-

uations [27]. MWS requires a 3D point cloud as an in-

put, and we either use the point cloud from the ground-

truth 3D planes (MWS-G) or the point cloud inferred by our

depthmap estimation module in the plane detection network

(MWS). PlaneRecover [49] was originally trained with the

assumption of at most 5 planes in an image. We find it diffi-

cult to train PlaneRecover successfully for cluttered indoor

scenes by simply increasing the threshold. We believe that

PlaneNet, which is explicitly trained on ScanNet, serves as

a stronger competitor for the evaluation.

We randomly sample 100 images from ScanNet testing

scenes for the evaluation. As demonstrated in Fig. 4, Plan-

eRCNN significantly outperforms all other methods, ex-

cept when the depth threshold is small and MWS-G can

fit planes extremely accurately with the ground-truth depth

values. Nonetheless, even with ground-truth depth infor-

mation, MWS-G fails in extracting planar regions robustly,

leading to lower recalls in general. Our results are superior

also qualitatively as shown in Fig. 8.

5.3. Geometric accuracy

We propose a new metric in evaluating the quality of

piecewise planar surface reconstruction by mixing the in-

ferred depthmaps and the ground-truth plane segmentations.

More precisely, we first generate a depthmap from our re-

construction by following the process in the warping loss
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Figure 6. piecewise planar reconstruction results by PlaneRCNN.

From left to right: input image, plane segmentation, depthmap re-

construction, and 3D rendering of our depthmap (rendered from a

new view with -0.4m and 0.3m translation along x-axis and z-axis

respectively and 10
◦

rotation along both x-axis and z-axis).

Figure 7. Plane segmentation results on unseen datasets without

fine-tuning. From left to right: input image, PlaneNet [27] results,

PlaneRecover [49] results, and ours. From top to the bottom, we

show two examples from each dataset in the order of NYUv2 [37],

7-scenes [35], KITTI [13], SYNTHIA [34], Tank and Temple [19],

and PhotoPopup [17].
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Figure 8. Plane segmentation comparisons. From left to right: 1) input image, 2) MWS with inferred depths, 3) MWS with ground-truth

depths, 4) PlaneNet, 5) Ours, and 6) ground-truth.

evaluation (Sec. 3.3). Next, for every ground-truth pla-

nar segment, we convert depth values in the reconstructed

depthmap to 3D points, fit a 3D plane by SVD, and nor-

malize the plane coefficients to make the normal compo-

nent into a unit vector. Finally, we compute the mean

and the area-weighted mean of the parameter differences

to serve as the plane evaluation metrics. Besides the plane

parameter metrics, we also consider depthmap metrics com-

monly used in the literature [8]. We evaluate over the NYU

dataset [37] for a fair comparison. Table 1 shows that, with

more flexible detection network, PlaneRCNN generalizes

much better without fine-tuning. PlaneRCNN also outper-

forms PlaneNet [27] in every metric after fine-tuning using

the ground-truth depths from the NYU dataset.

5.4. Ablation studies

PlaneRCNN adds the following components to the Mask

R-CNN [14] backbone: 1) the pixel-wise depth estima-

tion network; 2) the anchor-based plane normal regression;

3) the warping loss module; and 4) the segmentation re-

finement network. To evaluate the contribution of each

component, we measure performance changes while adding

the components one by one. Following [49], we evalu-

ate the plane segmentation quality by three clustering met-

rics: variation of information (VOI), Rand index (RI), and

segmentation covering (SC). To further assess the geomet-

ric accuracy, we compute the average precision (AP) with

IOU threshold 0.5 and three different depth error thresholds

Table 1. Geometric accuracy comparison over the NYUv2 dataset.

Method PlaneNet [27] Ours

w/o fine-tuning

Rel 0.220 0.164

log10 0.114 0.077

RMSE 0.858 0.644

Param. 0.939 0.776

Param. (weighted) 0.771 0.641

w/ fine-tuning

Rel 0.129 0.124

log10 0.079 0.073

RMSE 0.397 0.395

Param. 0.713 0.642

Param. (weighted) 0.532 0.505

[0.3m, 0.6m, 0.9m]. Larger value means higher quality for

all the metrics except for VOI.

Table 2 shows that all the components have positive con-

tribution to the final performance. Fig. 9 further highlights

the contributions of the warping loss module and the seg-

mentation refinement network qualitatively. The first ex-

ample shows that the segmentation refinement network fills

in gaps between adjacent planar regions, while the second

example shows that the warping loss module improves re-

construction accuracy with the help from the second view.
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Table 2. Ablation studies on the contributions of the four components in PlaneRCNN. Plane segmentation and detection metrics are

calculated over the ScanNet dataset. PlaneNet represents the competing state-of-the-art.

Plane segmentation metrics Plane detection metrics

Method VOI ↓ RI SC AP0.3m AP0.6m AP0.9m

PlaneNet 2.142 0.797 0.692 0.156 0.178 0.182

Ours (basic) 2.113 0.851 0.719 0.269 0.329 0.355

Ours (depth) 2.041 0.856 0.752 0.352 0.376 0.386

Ours (depth + anch.) 2.021 0.855 0.761 0.352 0.378 0.392

Ours (depth + anch. + warp.) 1.990 0.855 0.766 0.365 0.384 0.401

Ours (depth + anch. + warp. + refine.) 1.809 0.880 0.810 0.365 0.386 0.405

Figure 9. Effects of the surface refinement network and the warp-

ing loss module. Top: the segmentation refinement network nar-

rows the gap between adjacent planes. Bottom: the warping loss

helps to correct erroneous plane geometries from the second view.

5.5. Occlusion reasoning

A simple modification allows PlaneRCNN to infer oc-

cluded/invisible surfaces and reconstruct layered depthmap

models. First, ground-truth layered depthmaps are con-

structed as follows. In our original process, we fit planes

to aligned 3D scans to obtain ground-truth 3D planar sur-

faces, then rasterize the planes to an image with a depth

testing. We simply remove the depth testing and generate

a ”complete-mask” for each plane. Second, we add one

more mask prediction module to PlaneRCNN to infer the

complete-mask for each plane instance. Please refer to the

supplementary document for the details of this experiment.

Fig. 10 shows the new view synthesis examples, in which

the modified PlaneRCNN successfully infers occluded sur-

faces, for example, floor surfaces behind tables and chairs.

Note that a depthmap is rendered as a depth mesh model

(i.e., a collection of small triangles) in the figure. The

layered depthmap representation enables new applications

such as artifacts-free view synthesis, better scene comple-

tion, and object removal [26, 44]. This experiment demon-

strates yet another flexibility and potential of the proposed

PlaneRCNN architecture.

Figure 10. New view synthesis results with the layered depthmap

models. A simple modification allows PlaneRCNN to also infer

occluded surfaces and reconstruct layered depthmap models.

6. Conclusion and future work

This paper proposes PlaneRCNN, the first detection-

based neural network for piecewise planar reconstruction

from a single RGB image. PlaneRCNN learns to detect pla-

nar regions, regress plane parameters and instance masks,

globally refine segmentation masks, and utilize a neighbor-

ing view during training for a performance boost. PlaneR-

CNN outperforms competing methods by a large margin

based on our new benchmark with fine-grained plane an-

notations.

An interesting future direction is to process an image se-

quence during inference which requires learning correspon-

dences between plane detections. Another design choice

worth exploring is to estimate pixel-wise normals and depth

within the same module to share features.
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[20] P. Krähenbühl and V. Koltun. Efficient inference in fully

connected crfs with gaussian edge potentials. In Advances

in neural information processing systems, pages 109–117,

2011. 2

[21] A. Kundu, Y. Li, and J. M. Rehg. 3d-rcnn: Instance-level

3d object reconstruction via render-and-compare. In CVPR,

2018. 2

[22] C. Li, M. Z. Zia, Q.-H. Tran, X. Yu, G. D. Hager, and

M. Chandraker. Deep supervision with shape concepts

for occlusion-aware 3d object parsing. arXiv preprint

arXiv:1612.02699, 2016. 2

[23] X. Liang, X. Shen, D. Xiang, J. Feng, L. Lin, and S. Yan.

Semantic object parsing with local-global long short-term

memory. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 3185–3193,

2016. 2

[24] G. Lin, C. Shen, A. Van Den Hengel, and I. Reid. Effi-

cient piecewise training of deep structured models for se-

mantic segmentation. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages

3194–3203, 2016. 2

[25] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and

S. J. Belongie. Feature pyramid networks for object detec-

tion. In CVPR, volume 1, page 4, 2017. 3

[26] C. Liu, P. Kohli, and Y. Furukawa. Layered scene decompo-

sition via the occlusion-crf. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

165–173, 2016. 8

[27] C. Liu, J. Yang, D. Ceylan, E. Yumer, and Y. Furukawa.

Planenet: Piece-wise planar reconstruction from a single rgb

image. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2579–2588, 2018. 1,

2, 3, 4, 5, 6, 7

[28] F. Liu, C. Shen, G. Lin, and I. D. Reid. Learning depth from

single monocular images using deep convolutional neural

fields. IEEE Trans. Pattern Anal. Mach. Intell., 38(10):2024–

2039, 2016. 3

4458



[29] R. Liu, J. Lehman, P. Molino, F. P. Such, E. Frank,

A. Sergeev, and J. Yosinski. An intriguing failing of convo-

lutional neural networks and the coordconv solution. arXiv

preprint arXiv:1807.03247, 2018. 3

[30] Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang. Semantic im-

age segmentation via deep parsing network. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1377–1385, 2015. 2

[31] R. Mottaghi, Y. Xiang, and S. Savarese. A coarse-to-fine

model for 3d pose estimation and sub-category recognition.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 418–426, 2015. 2

[32] A. Mousavian, D. Anguelov, J. Flynn, and J. Košecká. 3d
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