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Abstract

Variational dropout (VD) is a generalization of Gaus-

sian dropout, which aims at inferring the posterior of net-

work weights based on a log-uniform prior on them to learn

these weights as well as dropout rate simultaneously. The

log-uniform prior not only interprets the regularization ca-

pacity of Gaussian dropout in network training, but also

underpins the inference of such posterior. However, the

log-uniform prior is an improper prior (i.e., its integral is

infinite), which causes the inference of posterior to be ill-

posed, thus restricting the regularization performance of

VD. To address this problem, we present a new general-

ization of Gaussian dropout, termed variational Bayesian

dropout (VBD), which turns to exploit a hierarchical pri-

or on the network weights and infer a new joint posterior.

Specifically, we implement the hierarchical prior as a zero-

mean Gaussian distribution with variance sampled from a

uniform hyper-prior. Then, we incorporate such a prior in-

to inferring the joint posterior over network weights and the

variance in the hierarchical prior, with which both the net-

work training and dropout rate estimation can be cast into

a joint optimization problem. More importantly, the hierar-

chical prior is a proper prior which enables the inference

of posterior to be well-posed. In addition, we further show

that the proposed VBD can be seamlessly applied to net-

work compression. Experiments on classification and net-

work compression demonstrate the superior performance of

the proposed VBD in regularizing network training.

1. Introduction

Deep neural networks have gained great success in vari-

ous artificial intelligence research areas, e.g., computer vi-

sion [12, 8], natural language processing [4], etc. Never-

theless, due to the limited samples with annotation in prac-

tice, training deep neural networks with extensive parame-

ters often suffers from over-fitting problem [35]. Dropout

proves to be a practical technique to alleviate this prob-

lem, which stochastically regularizes network weights by
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Figure 1: Variational dropout v.s. the proposed variational

Bayesian dropout.

randomly enforcing multiplicative noise on input features

during training [13]. Over the past several years, various

dropout methods have been proposed [13, 29, 33]. Among

them, Gaussian dropout [33] provides a general framework,

which introduces the distribution of network weights into

model training and thus can well approximate the conven-

tional dropout with different types of noise, such as binary

noise [13] or Gaussian noise [29]. While these methods

have shown promising regularization performance in vari-

ous deep network architectures [20, 28, 16, 18, 9], the rea-

son behind such success is not clear, and their performance

heavily depends on a predefined dropout rate, for which tra-

ditional grid-search based methods is a prohibitive opera-

tion for large network models.

Variational dropout (VD) [19] is a generalization of

Gaussian dropout, which focuses on inferring the posteri-

or of network weights based on a log-uniform prior. By

doing this, VD can address these two aspects of the prob-

lems mentioned above. 1) Bayesian Interpretation. It has

been proved [19] that VD can be consistent with Gaus-

sian dropout for a fixed dropout rate by enforcing the log-

uniform prior on network weights. This implies that incor-

porating Gaussian dropout into network training amounts to

variational inference on the network weights, where these

weights are regularized by the Kullback-Leibler (KL) di-

vergence between the variational posterior, i.e., the distri-

bution of network weights introduced by Gaussian dropout,

and the log-uniform prior. In other words, the log-uniform

prior endows Gaussian dropout with the regularization ca-

pacity. 2) Adaptive dropout rate. Based on the log-uniform

prior, VD [19] can simultaneously learn network weights

as well as dropout rate via inferring the posterior on these
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weights. To sum up, the log-uniform prior as the footstone

of VD underpins these two advantages above. However, re-

cent theoretical progress in [14, 15, 26] demonstrates that

the log-uniform prior is an improper prior (i.e., its integral

is infinite), which causes inferring the posterior of network

weights to be ill-posed. Such ill-posed inference can degen-

erate variational inference on these weights into penalized

maximum likelihood estimation [14]. Thus, the interpreta-

tion of the regularization capacity of Gaussian dropout is

not in a full Bayesian way. And more importantly, the reg-

ularization capacity of VD is still limited.

To address this problem, we propose a variational

Bayesian dropout (VBD) framework, which is a new gen-

eralization of Gaussian dropout. A visual comparison be-

tween the proposed VBD and VD can be seen in Figure 1.

In VBD, we assume network weights to come from a two-

level hierarchical prior. Instead of only inferring the poste-

rior over network weights, we propose to infer the joint pos-

terior over both network weights and their hyper-parameters

defined in their first-level prior. Through implementing the

hierarchical prior as a zero-mean Gaussian distribution with

variance sampled from a uniform distribution, we can the-

oretically prove that the proposed VBD can be consisten-

t with Gaussian dropout [33] for a fixed dropout rate as

VD. Thus, VBD also can interpret the regularization ca-

pacity of Gaussian dropout. In contrast to the improper

log-uniform prior, the proposed hierarchical prior is a prop-

er prior, which enables the inference of posterior in VBD

well-posed. This not only leads to a full Bayesian justi-

fication for Gaussian dropout, but also improves the regu-

larization capacity obviously. In addition, we further find

that the proposed VBD can be seamlessly applied to neu-

ral network compression as [25, 26]. Experimental results

on classification as well as network compression tasks show

the effectiveness of VBD in handling over-fitting.

2. Related work

Dropout. Dropout plays an important role in improv-

ing the generalization capacity of deep neural networks. At

first, dropout is employed to randomly drop input features

with Bernoulli distribution during training to prevent feature

co-adaptation [13]. This amounts to training an exponential

number of different networks with shared parameters. In

the test phase, the prediction is determined by averaging the

outputs of all these different networks. The idea of dropout

is then generalized by multiplying the input features with

random noise drawn from other distributions, e.g., Gaus-

sian [29]. While these early methods have shown effective-

ness in some cases, repeatedly dropping a random subset

of input features makes training a network much slower.

To address this problem, Gaussian dropout [33] proposes

to sample the output features from a Gaussian distribution

instead of input features in dropout training and shows vir-

tually identical regularization performance but faster con-

vergence. This is inspired by the observation that enforcing

multiplicative noise on input features, whatever the noise

is generated from a Bernoulli distribution or a Gaussian,

making use of the central limit theorem, makes the corre-

sponding outputs to be approximately Gaussian [33]. How-

ever, these conventional dropout methods fail to clarify the

intrinsic principle for their regularization capacity. In ad-

dition, their performance depends a lot on the pre-defined

dropout rate. In contrast, the proposed VBD can provide a

Bayesian interpretation for dropout as well as automatically

estimating the dropout rate.

Variational Dropout. VD is a generalization of Gaus-

sian dropout, which can interpret the regularization capacity

of dropout as well as automatically estimating the dropout

rate via inferring the posterior of network weights. For ex-

ample, literature in [19] proves that training network with

variational dropout framework implicitly imposes the log-

uniform prior on weights for preventing over-fitting. S-

ince the dropout rate can be automatically determined, some

works of literature [25, 26] further apply VD to compress

neural networks. However, the log-uniform prior is an im-

proper prior which causes the inference of posterior over

network weights in VD to be ill-posed [15, 26], thus limit-

ing its performance in preventing over-fitting. In this study,

the proposed VBD imposes a proper hierarchical prior on

network weights, which induces a well-posed Bayesian in-

ference over network weights and thus improves the regu-

larization capacity.

Concrete Dropout and Adversarial Dropout. In addi-

tion, recent works have proposed another two dropout meth-

ods, e.g., concrete dropout [6] and adversarial dropout [27].

They are different from the proposed VBD. Specifical-

ly, concrete dropout provides Bayesian generalization for

dropout with Bernoulli distribution [13], while the pro-

posed VBD provides Bayesian generalization for Gaussian

dropout [33]. Besides, adversarial dropout [27] proposes to

handle over-fitting by training the network in an adversarial

way. In contrast, the proposed method focuses on introduc-

ing hierarchical prior on network weights to regularize the

network training.

3. Preliminaries

Consider a supervised learning problem on a dataset

𝒟 = {(x𝑖,y𝑖)}
𝑁
𝑖=1 of observation-label pairs. We train a

fully connected neural network with 𝐿 hidden layers. For

each layer, we have:

B = A𝜃, (1)

where A denotes the 𝑀 × 𝐾 matrix of input features for

current minibatch, 𝜃 is the 𝐾 × 𝐷 weight matrix, B is the

𝑀 ×𝐷 output matrix before activation function.
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3.1. Gaussian Dropout

To prevent over-fitting, dropout applies multiplicative

noise on the input of each layer of neural networks during

training as follows:

B = (A ∘ 𝜉)𝜃, (2)

where 𝜉 is the 𝑀 × 𝐾 noisy matrix, and ∘ denotes the

element-wise (Hadamard) product. In conventional dropout

methods, the elements of the noise 𝜉 are either sampled

from a Bernoulli distribution with probability 1−𝑝 of being

1, with the dropout rate 𝑝 [13], or sampled from a Gaussian

distribution with mean 1 and variance 𝛼 = 𝑝/(1 − 𝑝) [29].

Regardless which strategy of the above two is used, accord-

ing to the central limit theorem and equation Eq. (2), one

can directly produce 𝐵𝑚,𝑑 by sampling from the following

Gaussian distribution:

𝑞(𝐵𝑚,𝑑∣A) = 𝒩 (𝐵𝑚,𝑑∣𝜇𝑚,𝑑, 𝛿
2
𝑚,𝑑), (3)

where mean 𝜇𝑚,𝑑 =
∑𝐾

𝑘=1
𝐴𝑚,𝑘𝜃𝑘,𝑑 and variance 𝛿2𝑚,𝑑 =

𝛼
∑𝐾

𝑘=1
𝐴2

𝑚,𝑘𝜃
2

𝑘,𝑑. Here 𝐴𝑚,𝑘 denotes an element in A.

This means 𝑞(W) can be factorized as follows:

𝑞(W) =
𝐾∏

𝑘=1

𝐷∏

𝑑=1

𝑞(𝑊𝑘,𝑑) =
𝐾∏

𝑘=1

𝐷∏

𝑑=1

𝒩 (𝑊𝑘,𝑑∣𝜃𝑘,𝑑, 𝛼𝜃
2
𝑘,𝑑),

(4)

where each element 𝑊𝑘,𝑑 in W can be sampled from

𝑞(W𝑘,𝑑) in Eq. (4). Finally, the objective function for net-

work training with Gaussian dropout becomes:

max
𝜃

𝐿𝒟(𝜃) ≃ max
𝜃

𝑁∑

𝑖=1

𝔼𝑞(W)log 𝑝(y𝑖∣x𝑖,W). (5)

The viewpoint in Eq. (5) provides a opportunity to bridge

the gap between Bayesian inference and dropout, if we use

Eq. (4) as an approximate posterior distribution for a net-

work model with a special prior on the weights. The chal-

lenge in this gap is what is the special prior.

3.2. Variational Dropout

VD uses 𝑞(W) in Eq. (4) as a variational posterior to

approximate the true posterior 𝑝(W∣𝒟) in terms of minimal

KL divergence,

min
𝜃,𝛼

𝐷𝐾𝐿(𝑞(W)∣∣𝑝(W∣𝒟)). (6)

Here 𝐷𝐾𝐿(⋅) denotes the KL divergence. Given W

from a prior 𝑝(W), according to the Bayesian rule, i.e.,

𝑝(W∣𝒟) ∝ 𝑝(𝒟∣W)𝑝(W), minimizing the KL divergence

in Eq. (6) is equivalent to maximizing the variational lower

bound of the marginal likelihood of data as:

max
𝜃,𝛼

𝐿𝒟(𝜃, 𝛼)−𝐷𝐾𝐿(𝑞(W)∣∣𝑝(W)), (7)

where 𝐿𝒟(𝜃, 𝛼) with fixed parameter 𝛼 is the same as one

in Eq. (5) and known as the expected log-likelihood term.

Firstly, in VD, the dropout rate 𝛼 can be automatically

determined by data characteristics. Secondly, VD can pro-

vide a Bayesian interpretation for the success of dropout

in preventing over-fitting. To clarify this, VD requires that

the optimization of 𝜃 in Eq. (7) is consistent with that in

Gaussian dropout in Eq. (5), i.e., maximizing the expect-

ed log-likelihood. To this end, the prior 𝑝(W) has to be

such that 𝐷𝐾𝐿(𝑞(W)∣∣𝑝(W)) in Eq. (7) does not depend

on weight parameters 𝜃. With such a requirement, we have

the following proposition.

Proposition 1 ([19]). The only prior in VD, which enables

𝐷𝐾𝐿(𝑞(W)∣∣𝑝(W)) not depending on weight parameters

𝜃, is the log-uniform prior:

𝑝(∣𝑊𝑘,𝑑∣) =
𝑐

∣𝑊𝑘,𝑑∣
⇔ 𝑝(log(∣𝑊𝑘,𝑑∣)) = 𝑐. (8)

The above discussion demonstrates that training net-

work with VD implicitly imposes the log-uniform prior on

weights. With such a prior, the KL term in Eq. (7) is able

to regularize the number of significant digits stored for the

weights W in the floating-point format, thus being able

to mitigate over-fitting at some extent. However, the log-

uniform prior is an improper prior, which reaches ill-posed

variational inference, e.g., the KL divergence between the

variational posterior in Eq. (4) and the log uniform prior

in Eq. (8) is infinite. Although leveraging truncated tech-

niques relieves this problem at some extent [19, 26], patho-

logical behaviour still remains [14], e.g., the resultant infi-

nite KL divergence theoretically degenerate VD into a max-

imum likelihood estimation that fails to avoid over-fitting.

More details for the theoretical justification can be found

in [15, 26, 14]. Therefore, the performance of VD in pre-

venting over-fitting need to be further improved.

In this section, we will introduce the details of the pro-

posed VBD. In the following, we first introduce the pro-

posed VBD framework. Then, we show a specifically

designed hierarchical prior in VBD framework and prove

that VBD with this prior can be consistent with Gaussian

dropout for a fixed dropout rate.

3.3. Variational Bayesian Dropout

In contrast to a one-level prior in VD, we turn to propose

a two-level hierarchical prior 𝑝(W, 𝛾) = 𝑝(W∣𝛾)𝑝(𝛾).
This brings two aspects of advantages. Firstly, two kind-

s of very simple distributions in hierarchical structure can

produce a much more complicated distribution, e.g., a hi-

erarchical sparse prior [36], a zero-mean Gaussian distri-

bution with variance depicted by Gamma distribution [37],

and the super-Gaussian scale mixture model [22]. Thus the

two-level structure increase the possible solution spaces for

the proper and feasible prior to interpret Gaussian dropout.
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Secondly, the hierarchical structure enables the two-level

prior separable in the involved Bayesian inference and thus

is possible to simplify the Bayesian inference or makes the

intractable inference tractable, which will be further clari-

fied in the following subsections.

Similar to VD, the proposed VBD aims at optimizing a

variational posterior to approximate the true posterior [17,

23]. Unlike that VD only considers the posterior of network

weights, we propose to model the joint posterior of both the

network weights (e.g., W) and the hyper-parameters (e.g.,

𝛾) in their prior as illustrated in Figure 1. We thus arrive the

objective of Bayesian inference in the proposed VBD:

min
𝜃,𝛼,𝛾

𝐷𝐾𝐿(𝑞(W, 𝛾)∣∣𝑝(W, 𝛾∣𝒟)), (9)

where 𝑞(W, 𝛾) denotes a corresponding variational join-

t posterior for 𝑝(W, 𝛾∣𝒟). Note that when the hyper-

parameter 𝛾 is fixed, the proposed VBD will reduce to VD.

Thus, the proposed VBD is a more general version of VD.

According to variational Bayesian inference technique [17],

we use the variational posterior 𝑞(W, 𝛾) = 𝑞(W)𝑞(𝛾) to

approximate the true posterior 𝑝(W, 𝛾∣𝒟), and then the ob-

jective in Eq. (9) can be reformulated as the variational low-

er bound of the marginal likelihood of data as:

max
𝛼,𝜃,𝛾

𝐿𝒟(𝛼, 𝜃)−𝐷𝐾𝐿(𝑞(W)∣∣𝑝(W∣𝛾))−𝐷𝐾𝐿(𝑞(𝛾)∣∣𝑝(𝛾)),

(10)

where 𝐿𝒟 is the expected log-likelihood term in Eq. (7).

Derivations can be found in supplementary material. For

the proposed VBD, the key is to exploit a proper hierarchi-

cal prior 𝑝(W, 𝛾) for supporting Gaussian dropout. In the

following, we will provide such prior and discuss its advan-

tages.

3.4. The Proposed Hierarchical Prior

Inspired by the hierarchical prior in sparse Bayesian

learning [30], we assume the network weights W come

from a zero-mean Gaussian distribution. Then, a uniform

hyper-prior is imposed on the variance of the Gaussian dis-

tribution to adjust the shape of the ultimate prior. When

each element 𝑊𝑘,𝑑 in W is independent identically dis-

tributed, the proposed two-level hierarchical prior 𝑝(W, 𝛾)
is formulated as:

𝑝(W∣𝛾) =
𝐾∏

𝑘=1

𝐷∏

𝑑=1

𝑝(𝑊𝑘,𝑑∣𝛾𝑘,𝑑) =
𝐾∏

𝑘=1

𝐷∏

𝑑=1

𝒩 (𝑊𝑘,𝑑∣0, 𝛾𝑘,𝑑),

𝑝(𝛾) =

𝐾∏

𝑘=1

𝐷∏

𝑑=1

𝑝(𝛾𝑘,𝑑) =

𝐾∏

𝑘=1

𝐷∏

𝑑=1

𝒰(𝛾𝑘,𝑑∣𝑎, 𝑏),

(11)

where 𝒰(𝛾𝑘,𝑑∣𝑎, 𝑏) denotes an uniform distribution with

range [𝑎, 𝑏]. By imbedding this prior into the proposed VB-

D framework in Eq. (10), we give the following theoretical

result.

Proposition 2. With the prior 𝑝(𝛾) in Eq. (11), we em-

ploy mean-field variational approximation, viz., 𝑞(𝛾) =∏𝐾
𝑘=1

∏𝐷
𝑑=1 𝑞(𝛾𝑘,𝑑), and assume that 𝑞(𝛾𝑘,𝑑) comes from

a delta distribution. Then the proposed VBD framework in

Eq. (10) reduces to

max
𝛼,𝜃,𝛾

𝐿𝒟(𝛼, 𝜃)−𝐷𝐾𝐿(𝑞(W)∣∣𝑝(W∣𝛾)). (12)

Given the prior in Eq. (11) and the variational posteri-

or 𝑞(𝛾𝑘,𝑑), 𝐷𝐾𝐿(𝑞(𝛾)∣∣𝑝(𝛾)) in Eq. (10) will collapse to a

constant and thus can be neglected in optimization. Sim-

ilar trick can be found in [2, 1]. Specifically, to simplify

the representation, we assume 𝛾𝑘,𝑑 as a one-dimensional s-

calar. As defined in Eq. (11), we have 𝑝(𝛾𝑘,𝑑) = 1/(𝑏− 𝑎).
Note that the delta distribution 𝑞(𝛾𝑘,𝑑) either lies in or out of

[𝑎, 𝑏], e.g., 𝛿(𝛾𝑘,𝑑 − 𝛾′
𝑘,𝑑) and 𝛾′

𝑘,𝑑 lies in or out of [𝑎, 𝑏]. If

𝑞(𝛾𝑘,𝑑) is out of [𝑎, 𝑏], there is 𝐷𝐾𝐿(𝑞(𝛾𝑘,𝑑)∣∣𝑝(𝛾𝑘,𝑑)) =
+∞. To avoid this case, [𝑎, 𝑏] is generally regarded as

a large enough interval [2, 1]. As a result, we arrive

𝐷𝐾𝐿(𝑞(𝛾𝑘,𝑑)∣∣𝑝(𝛾𝑘,𝑑)) = log(𝑏 − 𝑎), which is indepen-

dent to the unknown variables 𝛼, 𝜃 and 𝛾 and thus can be

neglected. Therefore, we do not need to set specific values

for the hyper-parameters 𝑎 and 𝑏 in practice. The detailed

proof can be found in supplementary material.

According to [19], the key property of the log-uniform

prior is to enable the KL divergence 𝐷𝐾𝐿(𝑞(W)∣∣𝑝(W))
in Eq. (7) not depending on weight parameters 𝜃 as men-

tioned in Proposition 1. With this property, learning 𝜃 in

VD will be consistent with that in conventional Gaussian

dropout for a fixed dropout rate 𝛼. In the following, we will

demonstrate that the proposed hierarchical prior Eq. (11) al-

so shows a similar property in VBD framework Eq. (12). To

this end, we give the following theoretical result.

Proposition 3. Given the objective Eq. (12), together with

the prior Eq. (11) and the variational posterior Eq. (4),

𝐷𝐾𝐿(𝑞(W)∣∣𝑝(W∣𝛾)) =
∑𝐾

𝑘=1

∑𝐷
𝑑=1 0.5 log(1 + 𝛼−1),

which does not depend on weight parameters 𝜃.

Proof. Since the variational posterior in Eq. (4) and the

prior 𝑝(W∣𝛾) in Eq. (11) are fully factorized, the KL-

divergence 𝐷𝐾𝐿(𝑞(W)∣∣𝑝(W∣𝛾)) in (12) can be decom-

posed into a sum as:

𝐾∑

𝑘=1

𝐷∑

𝑑=1

𝐷𝐾𝐿(𝑞(𝑊𝑘,𝑑)∣∣𝑝(𝑊𝑘,𝑑∣𝛾𝑘,𝑑)). (13)

Since both the prior 𝑞(𝑊𝑘,𝑑) and the posterior 𝑝(𝑊𝑘,𝑑∣𝛾𝑘,𝑑)
follow Gaussian distributions, the KL divergence

𝐷𝐾𝐿(𝑞(𝑊𝑘,𝑑)∣∣𝑝(𝑊𝑘,𝑑∣𝛾)) in Eq. (13) can be calcu-

lated as:

𝐷𝐾𝐿(𝑞(𝑊𝑘,𝑑)∣∣𝑝(𝑊𝑘,𝑑∣𝛾)) =

0.5 log(
𝛾𝑘,𝑑
𝛼𝜃2𝑘,𝑑

) +
𝛼𝜃2𝑘,𝑑 + 𝜃2𝑘,𝑑

2𝛾𝑘,𝑑
− 0.5.

(14)
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By introducing Eq. (14) into Eq. (12), we arrive:

max
𝛼,𝜃,𝛾

𝐿𝒟(𝛼, 𝜃)−

𝐾∑

𝑘=1

𝐷∑

𝑑=1

0.5 log(
𝛾𝑘,𝑑

𝛼𝜃2𝑘,𝑑
) +

𝛼𝜃2𝑘,𝑑 + 𝜃2𝑘,𝑑

2𝛾𝑘,𝑑
. (15)

To find the optimal 𝛾𝑘,𝑑, referred to as 𝛾∗
𝑘,𝑑, by setting the

partial differential of Eq. (15) with respect to 𝛾𝑘,𝑑 to zero,

we have:

𝛾∗
𝑘,𝑑 = 𝛼𝜃2𝑘,𝑑 + 𝜃2𝑘,𝑑. (16)

Replacing 𝛾𝑘,𝑑 in Eq. (14) by Eq. (16) completes the proof.

In summary, with Propositions 2 and 3, the final objec-

tive for the proposed VBD with the hierarchical prior can

be given as:

max
𝛼,𝜃

𝐿𝒟(𝛼, 𝜃)−
𝐾∑

𝑘=1

𝐷∑

𝑑=1

0.5 log(1 + 𝛼−1). (17)

Built on this loss function, we can see that: 1) The pro-

posed hierarchical prior also meets the requirement such

that 𝐷𝐾𝐿(𝑞(W)∣∣𝑝(W∣𝛾)) does not depend on weight pa-

rameters 𝜃. In other words, the proposed VBD with the

hierarchical prior is consistent with Gaussian dropout when

𝛼 is fixed. Hence, the proposed VBD can give Bayesian

interpretation for Gaussian dropout. 2) The dropout rate pa-

rameter 𝛼 also can be automatically learned as VD.

Note that we apply a uniform prior on 𝛾 to be able to

update 𝛾. If 𝛾 was treated as the variance hyper-parameter

of the Gaussian prior, we could not update it in the proposed

framework. This is because the prior could not see any data.

Then, if we cannot update 𝛾, we cannot produce Eq. (16),

which means that we could not produce Propositions 3. To

allow 𝛾 to be updated, we impose a uniform prior on it and

utilize delta variational posterior leading to Propositions 2.

This is also why many variational approximation methods

(e.g., [2, 1]) employ priors on hyper-parameters.

More importantly, the improper log-uniform prior in tra-

ditional VD induces ill-posed Bayesian inference, since

it leads to infinite 𝐷𝐾𝐿(𝑞(W)∣∣𝑝(W)) as mentioned in

[14, 15, 26]. By contrast, the proposed hierarchical pri-

or in VBD gives well-posed Bayesian inference, since it

produces reasonable and tractable 𝐷𝐾𝐿(𝑞(W)∣∣𝑝(W∣𝛾))
as shown in Proposition 3. Hence, the proposed hierar-

chical prior in VBD shows obvious superiority over the

log-uniform prior in VD, and we argue that the proposed

VBD framework with the hierarchical prior provides a full

Bayesian interpretation for the success of Gaussian dropout

in preventing over-fitting.

According to the discussion above, we can conclude as

follows. 1) The proposed VBD is a more general VBD.

VD focuses on incorporating one-level priors, while VBD

can contain two-level priors as shown in Figure 1. 2) VD

claims that the improper log-uniform prior interprets Gaus-

sian dropout, which fails to give full Bayesian interpretation

for Gaussian dropout and suffers limited regularization ca-

pacity, while VBD proposes a proper prior to handle those

drawbacks. In the following, we will show that these two

main differences further lead to the apparent advantage of

VBD in network compression compared with VD.

4. Extension to Neural Network Compression

Since VD can adaptively learn the dropout rate 𝑝 (or 𝛼)

from training dataset, it can be utilized for neural network-

s compression [25, 26]. Inspired by this, in this section we

turn to exploit the ability to apply the proposed VBD to neu-

ral networks compression under the frameworks proposed

in [25, 26]. In addition, we will also discuss the advantage

of the proposed framework on networks compression.

4.1. Compressing Weights

We first extend the proposed VBD to compressing

weights under the framework in [25]. Further details about

the framework can be found in that paper. To this end,

the proposed hierarchical prior Eq. (11) is used to model

weights in a neural network. For convenience, we replace

the original 𝛼 in Eq. (4) to learn specific 𝛼 for each weight,

in which Proposition 3 holds. The distribution Eq. (4) as a

variational posterior, 𝒩 (𝜃𝑘,𝑑, 𝛼𝑘,𝑑𝜃
2
𝑘,𝑑), is used to approxi-

mate the true posterior. In this way, to learn 𝜃𝑘,𝑑 and 𝛼𝑘,𝑑,

the objective function in Eq. (17) is rewritten as:

max
𝛼,𝜃

𝐿𝒟(𝛼, 𝜃)−
𝐾∑

𝑘=1

𝐷∑

𝑑=1

0.5 log(1 + 𝛼−1
𝑘,𝑑). (18)

Furthermore, since the natural gradient of 𝜃𝑘,𝑑 faces with

high variance, we follow the re-parameterization trick in

[25], viz, 𝜎2
𝑘,𝑑 = 𝛼𝑘,𝑑𝜃

2
𝑘,𝑑.

The difference between the proposed method

and the method in [25] is on the regular-

ization term −𝐷𝐾𝐿(𝑞(W)∣∣𝑝(W)). It is e-

quivalent to
∑𝐾

𝑘=1

∑𝐷
𝑑=1 −0.5 log(1 + 𝛼−1

𝑘,𝑑)
in the proposed VBD, while it is∑𝐾

𝑘=1

∑𝐷

𝑑=1
𝑘1𝑆(𝑘2 + 𝑘3 log(𝛼𝑘,𝑑))− 0.5 log(1 + 𝛼−1

𝑘,𝑑)

in the method proposed in [25], where 𝑘1, 𝑘2 and 𝑘3 are

constant, and 𝑆(⋅) denotes the sigmoid function. The

term −0.5 log(1 + 𝛼−1
𝑘,𝑑) in the latter is heuristically

designed in [25] to model the behaviour that the negative

KL-divergence goes to a constant as log 𝛼𝑘,𝑑 goes to

minus infinity. In contrast, the term −0.5 log(1 + 𝛼−1
𝑘,𝑑)

in the proposed VBD is naturally derived from Bayesian

inference as mentioned above. Further discussion on this

term will be given in section 4.3.
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4.2. Structured Compressing

Although the method in [25] can be employed to com-

press weights in a neural network, it fails to accelerate neu-

ral networks in the testing phase, since resultant compres-

sion is unstructured. Recently, structured Bayesian pruning

in [26] employs VD to remove neurons and/or convolution-

al channels in convolutional neural networks for structured

compression, resulting in satisfactory performance. Similar

to VD, the proposed VBD also can be employed for struc-

tured pruning by constructing a dropout-like layer under the

framework in [26].

Specifically, we construct a single dropout-like layer

with an input matrix 𝑓(B) as follows:

B′ = 𝑓(B) ∘W′, (19)

where W′ denotes the dropout noise and 𝑓(⋅) denotes the

activation function. The output of this layer B′ is of the

same size as the input B, and would serve as an input

matrix for the following layer. Similar to that in the pre-

vious section, we enforce the proposed hierarchical pri-

or Eq. (11) on W′, and imposes the variational posteri-

or, 𝒩 (𝜃𝑚,𝑑, 𝛼𝑚,𝑑𝜃
2
𝑚,𝑑) (For convenience, we re-utilize the

same symbol 𝛼𝑚,𝑑 and 𝜃𝑚,𝑑 that is originally used to mod-

el weights in the previous section, however, they are served

to W′ in this section). Again, the objective function E-

q. (18) is used for learning 𝜃𝑚,𝑑 and 𝛼𝑚,𝑑, and the re-

parameterization [25] is adopted.

4.3. Analysis

In these two kinds of compression schemes above, ef-

fective compression depends on high dropout rate, e.g.,

𝛼𝑘,𝑑 → ∞ or 𝛼−1
𝑘,𝑑 → 0, which corresponds to a bina-

ry dropout rate that approaches 𝑝 = 1. This effectively

means that the corresponding weight or neuron is always ig-

nored and can be removed [25]. In this subsection, we will

show that the proposed variational Bayesian dropout explic-

itly imposes a sparse regularization for optimizing 𝛼−1
𝑘,𝑑, and

thus is able to effectively compress the deep neural network-

s. To this end, we firstly rewrite the objective Eq. (18) as:

min
𝛼,𝜃

𝐾∑

𝑘=1

𝐷∑

𝑑=1

0.5 log(1 + 𝛼−1
𝑘,𝑑)− 𝐿𝒟(𝛼, 𝜃). (20)

The expected log-likelihood term 𝐿𝒟 can be viewed as the

data fit-term for 𝛼−1
𝑘,𝑑 and the remainder derived from KL

divergence works as the regularization term. For such a reg-

ularization term, we have the following theoretical results.

Proposition 4. The regularization term 0.5 log(1 + 𝛼−1
𝑘,𝑑)

in Eq. (20) is a concave, non-decreasing function on the

domain [0,+∞), with respect to 𝛼−1
𝑘,𝑑.

According to [3], introducing such a regularization term

0.5 log(1 +𝛼−1
𝑘,𝑑) into the objective is beneficial to promote

the sparsity of the solution. Therefore, with optimizing

𝛼−1
𝑘,𝑑, we can obtain sparse 𝛼−1

𝑘,𝑑. Note that this regulariza-

tion term coincides with that in [5] which is motivated by

information bottleneck principle. In contrast, the regular-

ization term in this study stems from variational Bayesian

inference. Besides, this sparsity-promoting regularization

comes from a result of the particular variational approxima-

tion, which is different from previous methods with sparse

priors to compress network, e.g., [24, 7].

5. Experiments

In this section, we conduct experiments on classification

task to demonstrate the effectiveness of the proposed vari-

ational Bayesian dropout in preventing over-fitting. Then,

we further evaluate its performance in neural network com-

pression including weight compression and structured com-

pression. Note that neural network compression can also

imply the ability of preventing over-fitting in term of the

final test error.

5.1. Classification

MNIST Dataset Following the settings in [19], we first

take the hand-written digit classification task on MNIST

dataset as a standard benchmark to evaluate the perfor-

mance of dropout methods in preventing over-fitting. On

this task, we compare the proposed variational Bayesian

dropout with other five existing dropout methods, name-

ly no dropout, standard dropout with Bernoulli noise [13],

dropout with Gaussian noise [29], Gaussian dropout [33]

and VD [19], and concrete dropout [6] which is able to learn

adaptive dropout rate. We follow the network architecture

in [29], which adopt a fully connected neural network con-

sisting of 3 hidden layers with different number of units and

rectified linear units. For experimental setting, all networks

are trained for 50 epochs. More details about the network

architecture can be found in supplementary material.

The number of units 100 340 580 820 1060

No Dropout 1.80 1.77 1.78 1.78 1.71

Dropout, Bernoulli 1.69 1.68 1.67 1.67 1.63

Dropout, Gaussian 1.70 1.66 1.68 1.69 1.62

Gaussian Dropout 1.66 1.64 1.71 1.65 1.64

Concrete Dropout 2.39 1.61 1.55 1.54 1.51

VD 1.69 1.62 1.67 1.62 1.63

Ours 1.56 1.53 1.53 1.52 1.45

Table 1: Test error (%) on the MNIST dataset.

Table 1 shows the test error for all methods with various

choices of the number of units per layer. We observe that

although VD can adaptively learn dropout rate during train-

ing, it only obtains slightly better performance compared

with conventional dropout methods with fixed dropout rate,
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including dropout with Bernoulli noise and dropout with

Gaussian noise. This is because the Bayesian inference in

VD with the improper log-uniform prior is ill-posed, which

hence ultimately restricts the capacity in preventing over-

fitting as discussed before. Conversely, the proposed VBD

with adaptive dropout rate gains impressive performance,

which is better than that of the standard dropout as well as

VD. This profits from that the proposed hierarchical prior

is a proper prior and thus it can appropriately regularize the

network weights in the Bayesian inference. Besides, the

proposed VBD is superior to concrete dropout.

CIFAR-10 Dataset We further compare the proposed

method with dropout with Bernoulli noise [13], dropout

with Gaussian noise [29], VD [19], concrete dropout [6]

on CIFAR-10 dataset. We also compare with adversarial

dropout recently proposed in [27]. In this case, we follow

the network architecture with different 𝑠𝑐𝑎𝑙𝑒 in [19] for ex-

perimental setting, all networks are trained for 100 epochs.

More details for the network architecture can be found in

supplementary material.

𝑠𝑐𝑎𝑙𝑒 1 1.5 2

No Dropout 48.34 48.13 47.56

Dropout, Bernoulli 45.55 43.38 42.69

Dropout, Gaussian 46.52 43.50 42.79

Adversarial Dropout 45.50 42.35 42.50

Concrete Dropout 43.47 42.68 42.19

VD 44.12 42.99 42.60

Ours 39.50 38.88 38.52

Table 2: Test error (%) on the CIFAR-10 dataset.

Figure 2 shows the test error for the all methods with

different 𝑠𝑐𝑎𝑙𝑒. We can see that concrete dropout only per-

forms on par with traditional dropout methods and VD. In

addition, we found that due to its negative effect of the im-

proper log-uniform prior, VD only provides comparable re-

sults to those methods with fixed dropout rate. In contrast,

profiting from the proper hierarchical prior, the proposed

variational Bayesian dropout performs impressively well in

preventing over-fitting. For example, when 𝑠𝑐𝑎𝑙𝑒 = 2,

compared with no dropout method, the proposed method

reduces the test error by 9.04%. The improvement is even

up to 4.08% when compared with VD.

SVHN Dataset In this case, we follow the network ar-

chitecture with 𝑠𝑐𝑎𝑙𝑒 = 1 used in experiments on CIFAR-

10 Dataset, and all networks are trained for 100 epochs Ta-

ble 3 shows the results of test error (%) in SVHN dataset.

Since traditional methods for setting dropout rate, such as

Grid-search based methods, are computationally expensive.

We set the dropout rate to be 0.5 for all layers of the net-

work in our experiments for simplicity. Under this simple

setting, traditional dropouts, e.g., Dropout with Bernoulli

Methods Error (%)

No dropout 22.01

Dropout, Bernoulli 20.31

Dropout, Gaussian 20.22

Concrete Dropout 18.95

Adversarial Dropout 18.66

VD 19.74

Ours 17.46

Table 3: Test error on the SVHN dataset.

noise and Dropout with Gaussian noise, are slightly superi-

or to no dropout. Again, due to the improper log-uniform

prior, VD only provides comparable results to tradition-

al dropout with fixed dropout rate. Conversely, compared

with these fixed dropout rate based methods, the proposed

method with adaptive dropout rate gets the best test error,

17.46%.

5.2. Network compression

Compressing Weights In this part, we turn to evaluate

the effectiveness of the proposed method in weight com-

pression in neural networks for classification on the MNIST

dataset. Here we adopt two kinds of basic neural networks,

the fully-connected LeNet-300-100 [21] and a convolution-

al LeNet-5-Caffe 1. We compare the proposed method with

four network compression methods, including Pruning [11],

Dynamic Network Surgery (DNS) [10], Soft Weight Shar-

ing (SWS) [32] and VD [25]. In the experiments, we strictly

follow the settings in [25].

Table 4 shows the results of compressing weights in

LeNet-300-100. Compared with traditional VD, with the

similar sparsity
∣W∣

∣W∕=0∣
= 66, the proposed method gets

1.67% test error that is better than the result of tradition-

al VD 1.94%. Further, although traditional VD has better

results in compression ratio
∣W∣

∣W∕=0∣
= 68, compared with

Pruning, DNS and SWS, it also reports higher test error

1.94% due to its limited ability to avoid over-fitting. On the

contrary, since the proposed VBD provides a real Bayesian

interpretation for dropout, it can effectively prevent over-

fitting and gains the better test error 1.76% as well as higher

compression ratio
∣W∣

∣W∕=0∣
= 81.

Table 4 also shows the results of compressing weights

in LeNet-5-Caffe. We can see that compared with Pruning,

DNS and SWS, traditional VD reports better compression

ratio
∣W∣

∣W∕=0∣
= 280 and test error 0.75%. Further, compared

with the all methods, the proposed method obtains the best

compression ratio
∣W∣

∣W∕=0∣
, without the loss of test error.

Structured Compressing We here test the performances

of the proposed method on structured compressing for neu-

1https://github.com/BVLC/caffe/tree/master/examples/mnist

77130



LeNet-300-100 LeNet-5-Caffe

Methods Error % Sparsity per Layer %
∣W∣

∣W∕=0∣
Error % Sparsity per Layer %

∣W∣
∣W∕=0∣

Original 1.64 1 0.8 1

Pruning 1.59 92.0-91.0-74.0 12 0.77 34-88-92.0-81 12

DNS 1.99 98.2-98.2-94.5 56 0.91 86-97-99.3-96 111

SWS 1.94 23 0.97 200

VD 1.94 98.9-97.2-62.0 68 0.75 67-98-99.8-95 280

Ours (low test error) 1.67 98.7-97.4-87.4 66 0.74 69-98-99.7-95 198

Ours (high sparsity) 1.76 98.9-98.1-90.9 81 0.81 65-98-99.8-97 290

Table 4: Compressing weights in LeNet-300-100 and LeNet-5-Caffe. ∣W∣ and ∣W ∕=0∣ denote the number of weights, the

number of weights with nonzero value, respectively. The sparsity per layer is computed by the rate between the number of

weights with zero value and the number of weights in each layer.

ral networks. The used architecture of neural networks is a

fully-connected LeNet-500-300 and a convolutional LeNet-

5-Caffe. We compare VD [25], SSL [34] and SBP [26].

Table 5: Compressing neurons.

Models Methods Error % Neurons per Layer

LeNet-500-300

Original 1.54 784 - 500 - 300 - 10

VD 1.57 537 - 217 - 130 - 10

SSL 1.49 434 - 174 - 78 - 10

SBP 1.55 245 - 160 - 55 - 10

Ours 1.35 179 - 160 - 60 - 10

LeNet-5-Caffe

Original 0.80 20 - 50 - 800 - 500

VD 0.75 17 - 32 - 329 - 75

SSL 1.00 3 - 12 - 800 - 500

SBP 0.86 3 - 18 - 284 - 283

Ours 0.66 16 - 34 - 123 - 62

Table 5 shows the results of compressing neurons in

LeNet-500-300. As discussed in [31, 14], VD based S-

BP corresponds to maximum likelihood estimation, which

leads to overly pruning neurons, and hence SBP gets the

higher test error 1.55%. The proposed method not only

prunes the most neurons but also gains the lowest test er-

ror. By contrast, due to the improper log-uniform prior, VD

produces the highest test error and only slightly compresses

neurons.

Table 5 also shows the results of neurons compression in

LeNet-5-Caffe for all methods. We find that the proposed

method gains the lowest test error as well as the least neu-

rons, e.g., the test error of the proposed method is even up

to 0.66%. In addition, in LeNet-5-Caffe, the first two layers

are convolutional layers, and the following two layers are

fully-connected layers. Differing from SSL and SBP that

mainly focus on pruning neurons in convolutional layers,

the result shows that the proposed method prefers to prun-

ing neurons in the fully-connected layers. This means that

the proposed method emphasizes feature extraction.

6. Conclusion

In this study, we propose a new generalization (i.e., VB-

D) for Gaussian dropout to address the drawback of VD

brought by the improper log-uniform prior, e.g., the ill-

posed inference of posterior over network weights. To-

wards this goal, we exploit a hierarchical prior to the net-

work weights and propose to infer the joint posterior over

both these weights and the hyper-parameters defined in their

first-level prior. Through implementing the hierarchical pri-

or as a zero-mean Gaussian distribution with variance sam-

pled from a uniform hyper-prior, the proposed VDB can

cast the network training and the dropout rate estimation

into a joint optimization problem. In VBD, the hierarchi-

cal prior is a proper prior which enables the inference of

posterior to be well-posed, thus not only leading to a ful-

l Bayesian justification for Gaussian dropout but also im-

proving regularization capacity. In addition, we also show

that the proposed VBD can be seamlessly applied to net-

work compression. In the experiments on both classifica-

tion and network compression tasks, the proposed VBD

shows superior performance in terms of regularizing net-

work training.

VBD is a general dropout framework, which exploits a

promising direction for dropout, i.e., investigating hierar-

chical priors of network weights. The Gaussian-uniform

prior in this study is one feasible choice, but no means the

only option. In the future, more effort will be made to ex-

ploit other possible choices to regularize the training pro-

cess of deep neural networks better.
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