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Abstract

This work studies the low-rank tensor completion prob-

lem, which aims to exactly recover a low-rank tensor from

partially observed entries. Our model is inspired by the re-

cently proposed tensor-tensor product (t-product) [9] based

on any invertible linear transforms. When the linear trans-

forms satisfy certain conditions, we deduce the new tensor

tubal rank, tensor spectral norm, and tensor nuclear nor-

m. Equipped with the tensor nuclear norm, we then solve

the tensor completion problem by solving a convex program

and provide the theoretical bound for the exact recovery un-

der certain tensor incoherence conditions. The achieved

sampling complexity is order-wise optimal. Our model and

result greatly extend existing results in the low-rank matrix

[5] and tensor completion [16]. Numerical experiments

verify our results and the application on image recovery

demonstrates the superiority of our method.

1. Introduction

With the availability of cheap memory and the advances

in modern computer technology, it is now possible to col-

lect, store and process more data for science and engineer-

ing applications than ever before. The real data are usu-

ally multidimensional in nature: the information is stored

in multiway arrays, known as tensors [26], whose entries

are indexed by several continuous or discrete variables. For

example, a color image is a 3-way object with column, row

and color modes; a greyscale video is indexed by two spatial

variables and one temporal variable. There are many appli-

cations which involve the tensor representation and opera-

tion, including signal processing [6], computer vision [27],

data mining [23], and many others. A common approach in

these applications is to manipulate the tensor data by tak-

ing the advantage of its multi-dimensional structure. Col-

lapsing the multiway data to matrices usually leads to infor-

mation loss and would cause performance degradation. It

is observed that the real tensor data are often of extreme-

ly high-dimension. But the tensor of interest is frequently

low-rank, or approximately so [11], and hence has a much

lower-dimensional structure. This motivates the low-rank

tensor estimation and recovery problem which is gaining

significant attention in many different areas, both theoreti-

cally and practically: e.g., estimating latent variable graph-

ical models [1], classifying audio [20], image and video

completion [13, 16], to name a few.

In this paper, we focus on the low-rank tensor comple-

tion problem, which aims to exactly recover a low-rank ten-

sor from an incomplete observation. Such a problem can

be regarded as an extension of the low-rank matrix comple-

tion problem [3, 5], which has been applied to image de-

noising [18] and multi-label image classification [2]. It is

shown that under certain incoherence conditions, the rank

r matrix M ∈ R
n×n with O(nr log2 n) observations, can

be recovered with high probability by solving the following

convex model [5]

min
X

‖X‖∗, s.t. PΩ(X) = PΩ(M), (1)

where PΩ(X) denotes the projection of X on the observed

set Ω, and ‖X‖∗ is the nuclear norm of X , defined as

the sum of its singular values. The nuclear norm is the

convex envelope of the matrix rank within a certain set.

This leads to the order-wise optimal sampling complexity

O(nr log2 n) for (1), compared with the degrees of freedom

O(nr) for a rank r matrix [5].

It is expected to extend the low-rank matrix completion

model and analysis to the tensor case. There have been

several tensor recovery models proposed based on different

tensor rank definitions and convex surrogates. But they have

some limitations in real applications. The CP rank [11], de-

fined as the smallest number of rank one tensor decompo-

sition, is NP-hard to compute. Its convex envelope is not

clear. This makes the low CP rank tensor recovery chal-

lenging. To avoid this issue, the tractable Tucker rank [11]

and its convex relaxation are more widely used. The Sum

of Nuclear Norms (SNN) [13] is used as a convex surrogate
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and applied for Low-Rank Tensor Completion (LRTC) [21]

min
X

k
∑

i=1

λi‖X{i}‖∗, s.t. PΩ(X ) = PΩ(M), (2)

where X{i} is the mode-i matricization of X [11], PΩ(X )
denotes the projection of X on the observed set Ω, and

λi > 0. The effectiveness of this approach for image pro-

cessing has been well studied in [13, 7, 25, 24]. Howev-

er, SNN is not the tightest convex relaxation of the Tucker

rank [22]. In theory, the above model can be substantial-

ly suboptimal [21] as the required number of measurements

is much higher than the degrees of freedom of tensor with

Tucker rank (r, r, · · · , r). This is different from the low-

rank matrix completion model using the nuclear norm min-

imization which owns the optimal recovery rate [5].

More recently, based on the tensor-tensor product (t-

product) and tensor SVD (t-SVD) [10], a new tensor nucle-

ar norm is proposed and applied in tensor completion [16]

and tensor robust PCA [14, 15]. The main advantage of

the t-product induced tensor nuclear norm based models is

that they own the same tight recovery bound as the matrix

cases [16]. In [9], the authors observe that the t-product

is based on a convolution-like operation, which can be im-

plemented using the Discrete Fourier Transform (DFT). In

order to properly motivate this transform based approach,

a more general tensor-tensor product definition is proposed

based on any invertible linear transforms. The transform

based t-product also owns a matrix-algebra based interpre-

tation in the spirit of [8]. Such a new transform based t-

product is of great interest in practice as it allows to use

different linear transforms for different real data formatted

as tensors. In this work, we focus on the important low-rank

tensor recovery problem based on the transform induced

t-product. Specifically, we are interested in the following

questions:

• How to define a new tensor rank and tensor nuclear

norm induced by the linear transform based t-product?

• Is there any restriction on the choice of the invertible

linear transform?

• With a new linear transform based tensor nuclear nor-

m, is there any corresponding recovery guarantee for

low-rank tensor completion?

The main contributions of this work are to solve the

above problems. We show that if the linear transform satis-

fies certain condition, then a new tensor nuclear norm can be

defined induced by the transform based t-product. We can

further define the same tensor tubal rank as in [10] based

on the t-SVD. Finally, we study the low tubal rank tensor

recovery problem and solve it by the transform based tensor

nuclear norm minimization which is convex. In theory, we

prove that under certain tensor incoherence conditions, the

underlying low tubal rank tensor can be exactly recovered

with high probability by convex optimization. Our model

and result are much more general than [16], since we have

much more general choices of the invertible linear trans-

forms. Our proof of the main result is much more challeng-

ing since the transform based t-product has no equivalent

formulation in the original domain. This is quite different

from the t-product [10] which is defined based on the block

circulant matrix structure in the original domain. Such a

structure is important in the proofs in existing works, e.g.,

[16].

The rest of this paper is structured as follows. Section 2

gives some notations and presents the new tensor nuclear

norm induced by the transform based t-product. Section 3

solves the low-rank tensor completion problem by minimiz-

ing the proposed tensor nuclear norm and provides the exact

recovery guarantee in theory. Numerical experiments con-

ducted on both synthesis and real world data are presented

in Section 4. We finally conclude this work in Section 5.

2. A New Tensor Nuclear Norm Induced by

Transforms based T-product

In this section, we introduce some notations and defini-

tions used in this paper. Some of these are from [10, 15].

2.1. Notations

We denote scalars by lowercase letters, e.g., a, vector

by boldface lowercase letters, e.g., a, matrices by boldface

capital letters, e.g., A, and tensors by boldface Euler scrip-

t letters, e.g., A. For a 3-way tensor A ∈ R
n1×n2×n3 ,

we denote its (i, j, k)-th entry as Aijk or aijk and use

the Matlab notation A(i, :, :), A(:, i, :) and A(:, :, i) to de-

note respectively the i-th horizontal, lateral and frontal s-

lice [11]. More often, the frontal slice A(:, :, i) is denot-

ed compactly as A
(i). The tube is denoted as A(i, j, :).

The inner product between A and B in R
n1×n2 is defined

as 〈A,B〉 = Tr(A⊤
B), where A

⊤ denotes the trans-

pose of A and Tr(·) denotes the matrix trace. The in-

ner product between A and B in R
n1×n2×n3 is defined as

〈A,B〉 = ∑n3

i=1

〈

A
(i),B(i)

〉

. We denote In as the n × n

sized identity matrix.

Some norms of vector, matrix and tensor are used. We

denote the ℓ1-norm as ‖A‖1 =
∑

ijk |aijk|, the infinity

norm as ‖A‖∞ = maxijk |aijk| and the Frobenius norm

as ‖A‖F =
√

∑

ijk a
2
ijk, respectively. The above norm-

s reduce to the vector or matrix norms if A is a vector or

a matrix. For v ∈ R
n, the ℓ2-norm is ‖v‖2 =

√

∑

i v
2
i .

The spectral norm of a matrix A is denoted as ‖A‖ =
maxi σi(A), where σi(A)’s are the singular values of A.

The matrix nuclear norm is ‖A‖∗ =
∑

i σi(A).
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2.2. Transform based Tproduct Induced Tensor
Nuclear Norm

The work [10] gives the first definition of tensor-tensor

product. For A ∈ R
n1×n2×n3 , we define the block circu-

lant matrix bcirc(A) ∈ R
n1n3×n2n3 of A as

bcirc(A) =











A
(1)

A
(n3) · · · A

(2)

A
(2)

A
(1) · · · A

(3)

...
...

. . .
...

A
(n3) A

(n3−1) · · · A
(1)











.

We also need the following two operators

unfold(A) =











A
(1)

A
(2)

...

A
(n3)











, fold(unfold(A)) = A,

where the unfold operator maps A to a matrix of size

n1n3 × n2 and fold is its inverse operator. Let A ∈
R

n1×n2×n3 and B ∈ R
n2×l×n3 . Then the t-product C =

A ∗B is defined to be a tensor of size n1 × l × n3,

C = A ∗B = fold(bcirc(A) · unfold(B)). (3)

The block circulant matrix can be block diagonalized using

Discrete Fourier Transform (DFT) matrix F n3
, i.e.,

(F n3
⊗ In1

) · bcirc(A) · (F−1
n3

⊗ In2
) = Ā, (4)

where ⊗ denotes the Kronecker product, and Ā is a block

diagonal matrix with the i-th block Ā(i) being the i-th
frontal slices of Ā obtained by performing DFT of A a-

long the 3-rd dimension, i.e., Ā = fft(A, [ ], 3) by using

the Matlab command fft. We denote

D = A⊙B (5)

as the frontal-slice-wise product (Definition 2.1 in [9]), i.e.,

D
(i) = A

(i)
B

(i), i = 1, · · · , n3. (6)

Then the block diagonalized property in (4) implies that

C̄ = Ā ⊙ B̄. So the t-product in (3) is equivalent to the

matrix-matrix product in the transform domain using DFT.

In [9], the authors propose a more general definition of

t-product based on any invertible linear transform L. In this

work, we consider the linear transform L : Rn1×n2×n3 →
R

n1×n2×n3 which gives Ā in terms of transforms applied

to each tube fiber A(i, j, :). Or we have

Ā = L(A) = A×3 L, (7)

Algorithm 1 Transform L based t-product [9]

Input: A ∈ R
n1×n2×n3 , B ∈ R

n2×l×n3 , and L :
R

n1×n2×n3 → R
n1×n2×n3 .

Output: C = A ∗L B ∈ R
n1×l×n3 .

1. Compute Ā = L(A) and B̄ = L(B).

2. Compute each frontal slice of C̄ by

C̄(i) = Ā(i)B̄
(i)

, i = 1, · · · , n3

3. Compute C = L−1(C̄).

where ×3 denotes the mode-3 product (Definition 2.5

in [9]), and L ∈ R
n3×n3 can be arbitrary invertible matrix1.

Similarly, we have the inverse mapping

L−1(A) = A×3 L
−1. (8)

Then the transform L based t-product is defined as follows.

Definition 2.1. (T-product) [9] Let L be any invertible

linear transform in (7), and A ∈ R
n1×n2×n3 and B ∈

R
n2×l×n3 . Then the transform L based t-product, denoted

as C = A∗LB, is defined such that L(C) = L(A)⊙L(B).

We denote Ā ∈ R
n1n3×n2n3 as a block diagonal matrix

with its i-th block on the diagonal as the i-th frontal slice

Ā(i) of Ā = L(A), i.e.,

Ā = bdiag(Ā) =











Ā(1)

Ā(2)

. . .

Ā(n3)











,

where bdiag is an operator which maps tensor Ā to the

block diagonal matrix Ā. Then L(C) = L(A) ⊙ L(B) is

equivalent to C̄ = ĀB̄. This implies that the transform L
based t-product is equivalent to the matrix-matrix product

in the transform domain. Algorithm 1 gives the way for

computing t-product.

The t-product enjoys many similar properties to the

matrix-matrix product. For example, the t-product is as-

sociative, i.e., A ∗L (B ∗L C) = (A ∗L B) ∗L C.

Definition 2.2. (Tensor transpose) [9] Let L be any invert-

ible linear transform in (7), and A ∈ R
n1×n2×n3 . Then

the tensor transpose, denoted as A⊤, satisfies L(A⊤)(i) =
(L(A)(i))⊤, i = 1, · · · , n3.

Definition 2.3. (Identity tensor) [9] Let L be any invertible

linear transform in (7). Let I ∈ R
n×n×n3 so that each

frontal slice of L(I) = Ī is a n × n sized identity matrix.

Then I = L−1(Ī) is called the identity tensor.

1We restrict L to be a real matrix for the sake of discussions. But our

results still hold with simple extensions if necessary for complex L [9].
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Figure 1: An illustration of the t-SVD of an n1 ×n2 ×n3 tensor.

Algorithm 2 T-SVD based on t-product ∗L [9]

Input: A ∈ R
n1×n2×n3 and invertible linear transform L.

Output: T-SVD components U , S and V of A.

1. Compute Ā = L(A).

2. Compute each frontal slice of Ū , S̄ and V̄ from Ā by

for i = 1, · · · , n3 do

[Ū (i), S̄(i), V̄ (i)] = SVD(Ā(i));

end for

3. Compute U = L−1(Ū), S = L−1(S̄), and V =
L−1(V̄).

It is clear that A ∗L I = A and I ∗L A = A given the

appropriate dimensions. The tensor Ī = L(I) is a tensor

with each frontal slice being the identity matrix.

Definition 2.4. (Orthogonal tensor) [9] Let L be any in-

vertible linear transform in (7). A tensor Q ∈ R
n×n×n3 is

orthogonal if it satisfies Q⊤ ∗L Q = Q ∗L Q⊤ = I .

Definition 2.5. (F-diagonal Tensor) [10] A tensor is called

f-diagonal if each of its frontal slices is a diagonal matrix.

Theorem 2.1. (T-SVD) [9] Let L be any invertible linear

transform in (7), and A ∈ R
n1×n2×n3 . Then it can be

factorized as

A = U ∗L S ∗L V⊤, (9)

where U ∈ R
n1×n1×n3 , V ∈ R

n2×n2×n3 are orthogonal,

and S ∈ R
n1×n2×n3 is an f-diagonal tensor.

Figure 1 gives an intuitive illustration of the t-SVD fac-

torization. Also, t-SVD can be computed by performing

matrix SVD in the transform domain. See Algorithm 2.

For any invertible linear transform L, we have L(0) =
L−1(0) = 0. So both S and S̄ are f-diagonal tensors. We

can use their number of nonzero singular tubes to define the

tensor tubal rank as in [15].

Definition 2.6. (Tensor tubal rank) Let L be any invertible

linear transform in (7). For A ∈ R
n1×n2×n3 , the tensor

tubal rank, denoted as rankt(A), is defined as the number

of nonzero singular tubes of S, where S is from the t-SVD

of A = U ∗L S ∗L V⊤. We can write

rankt(A) =#{i,S(i, i, :) 6= 0}.

For A ∈ R
n1×n2×n3 with tubal rank r, we also have

the skinny t-SVD, i.e., A = U ∗L S ∗L V⊤, where U ∈
R

n1×r×n3 , S ∈ R
r×r×n3 , and V ∈ R

n2×r×n3 , in which

U⊤∗LU = I and V⊤∗LV = I . We use the skinny t-SVD

throughout this paper. The tensor tubal rank is nonconvex.

In Section 3, we will study the low tubal rank tensor com-

pletion problem by convex surrogate function minimization.

At the following, we show how to define the convex tensor

nuclear norm induced by the t-product ∗L. We can first de-

fine the tensor spectral norm as in [15].

Definition 2.7. (Tensor spectral norm) Let L be any in-

vertible linear transform in (7), and A ∈ R
n1×n2×n3 . The

tensor spectral norm of A is defined as ‖A‖ := ‖Ā‖.

The tensor nuclear norm can be defined as the dual nor-

m of the tensor spectral norm. To this end, we need the

following assumption on L given in (7), i.e.,

L
⊤
L = LL

⊤ = ℓIn3
, (10)

where ℓ > 0 is a constant. Using (10), we have the follow-

ing important properties,

〈A,B〉 = 1

ℓ

〈

Ā, B̄
〉

, (11)

‖A‖F =
1√
ℓ
‖Ā‖F . (12)

For any B ∈ R
n1×n2×n3 and B̃ ∈ R

n1n3×n2n3 , we have

‖A‖∗ := sup
‖B‖≤1

〈A,B〉 (13)

= sup
‖B̄‖≤1

1

ℓ
〈Ā, B̄〉 (14)

≤1

ℓ
sup

‖B̃‖≤1

〈Ā, B̃〉 (15)

=
1

ℓ
‖Ā‖∗, (16)

where (14) uses (11), (15) is due to the fact that B̄ is a block

diagonal matrix in R
n1n3×n2n3 while B̃ is an arbitrary ma-

trix in R
n1n3×n2n3 , and (16) uses the fact that the matrix

nuclear norm is the dual norm of the matrix spectral norm.

On the other hand, let A = U ∗L S ∗L V⊤ be the t-SVD of

A and B = U ∗L V⊤. We have

‖A‖∗ =〈U ∗L S ∗L V⊤,U ∗L V⊤〉
=〈U⊤ ∗L U ∗L S,V⊤ ∗L V〉
=〈S,I〉

=
1

ℓ
〈S̄, Ī〉

=
1

ℓ
Tr(S̄)

=
1

ℓ
‖Ā‖∗. (17)
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Combining (13)-(16) and (17), we then have the following

definition of tensor nuclear norm.

Definition 2.8. (Tensor nuclear norm) Let L be any in-

vertible linear transform in (7) and it satisfies (10), and

A ∈ R
n1×n2×n3 . The tensor nuclear norm of A is defined

as ‖A‖∗ := 1
ℓ
‖Ā‖∗.

If we define the tensor average rank as ranka(A) =
1
ℓ
rank(Ā), then it can be proved that the above tensor nu-

clear norm is the convex envelope of the tensor average rank

within the domain {A|‖A‖ ≤ 1} [15].

3. Tensor Completion with Exact Recovery

Guarantee

In this section, we consider the low rank tubal tensor

completion problem using the linear transform based tensor

nuclear norm minimization. Let L be any invertible linear

transform in (7) and it satisfies (10). Let M ∈ R
n1×n2×n3

be an unknown tensor and it has tubal rank rankt(A) = r.

Assume that the entries of M are observed independently

with probability p. The set of the index of the observed

entries is denoted as Ω. In this setting, we denote that

Ω ∼ Ber(p). So, the problem of tensor completion is to

recover the underlying low tubal rank tensor M from the

observations {Mij , (i, j, k) ∈ Ω}. In this work, we solve

the tensor completion problem by the following convex pro-

gram based on the proposed tensor nuclear norm

min
X

‖X‖∗, s.t. PΩ(X ) = PΩ(M). (18)

The above model is convex and thus the optimal solution is

computable. Now, the question is, how can we exactly re-

cover M by solving (18)? It is observed that the recovery

is almost impossible for a low-rank matrix which is equal to

zero in nearly all of rows or columns [3]. Thus the incoher-

ence conditions are introduced to avoid such pathological

situations. For tensor completion, we suffer from the same

issue. To avoid the case that M is too sparse, we need the

following standard tensor incoherence conditions

max
i=1,··· ,n1

‖U⊤ ∗L e̊i‖F ≤
√

µr

n1ℓ
, (19)

max
j=1,··· ,n2

‖V⊤ ∗L e̊j‖F ≤
√

µr

n2ℓ
, (20)

where µ > 0, and e̊i is a tensor basis defined below.

Definition 3.1. (Standard tensor basis) Let L be any in-

vertible linear transform in (7) and it satisfies (10). We de-

note e̊i as the tensor column basis, which is a tensor of size

n×1×n3 with the (i, 1, 1)-th entry of L(̊ei) equaling 1 and

the rest equaling 0. Naturally its transpose e̊⊤i is called row

basis. The other standard tensor basis is called tube basis

ėk, which is a tensor of size 1× 1× n3 with the (1, 1, k)-th
entry of L(ėk) equaling 1 and the rest equaling 0.

At the following, we denote n(1) = max(n1, n2) and

n(2) = min(n1, n2). Then ℓ ≤ µ ≤ n(2)ℓ

r
.

Theorem 3.1. Let L be any invertible linear transform in

(7) and it satisfies (10), and M ∈ R
n1×n2×n3 with tubal

rank rankt(M) = r. Let M = U ∗LS∗LV⊤ be the skinny

t-SVD of M. Suppose that the indices Ω ∼ Ber(p) and the

tensor incoherence conditions (19)-(20) hold. There exist

universal constants c0, c1, c2 > 0 such that if

p ≥ c0µr log
2(n(1)ℓ)

n(2)ℓ
, (21)

then M is the unique solution to (18) with probability at

least 1− c1(n1 + n2)
−c2 .

In theory, Theorem 3.1 shows that the optimal solution

X̂ to the convex program (18) exactly recovers the under-

lying low tubal rank tensor M. In particular, to recover a

tensor M ∈ R
n1×n2×n3 with high probability, the sam-

pling complexity is O(rn(1)n3 log
2(n(1)ℓ)). Such a bound

is tight compared with O(rn(1)n3), which is the degree

of freedom of the underlying tensor M with tubal rank

r. Note that the above result further generalizes the exist-

ing low-rank tensor and low-rank matrix completion results.

For example, when the discrete Fourier transform matrix is

used as the invertible linear transform L, the t-product ∗L
reduces to the t-product in [10], and thus the proposed ten-

sor nuclear norm in Definition 2.8 reduces to the one in [14].

Then the result in Theorem 3.1 is equivalent to the recovery

guarantee in [16]. Furthermore, if M is a matrix, Theorem

3.1 reduces to the recovery guarantee in [5].

Problem (18) can be solved by the standard Alternat-

ing Direction Method of Multipliers (ADMM) [12]. We

omit the details of ADMM, but give the detail for solv-

ing the following key subproblem in ADMM, i.e., for any

Y ∈ R
n1×n2×n3 ,

min
X

τ‖X‖∗ +
1

2
‖X −Y‖2F . (22)

Let Y = U ∗L S ∗L V⊤ be the tensor-SVD of Y . For any

τ > 0, we define the Tensor Singular Value Thresholding

(T-SVT) operator as follows

Dτ (Y) = U ∗L Sτ ∗L V⊤, (23)

where

Sτ = L−1((L(S)− τ)+), (24)

where t+ denotes the positive part of t, i.e., t+ = max(t, 0).
This operator simply applies a soft-thresholding rule to

L(S), effectively shrinking these towards zero. The T-SVT

operator is the proximity operator associated with the pro-

posed tensor nuclear norm.
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Table 1: Exact tensor completion on random data. The Discrete

Cosine Transform (DCT) is used as the linear transform L.

X 0 ∈ R
n×n×n, r = rankt(X 0), m = pn3, dr = r(2n− r)n

n r m

dr
p rankt(X̂ )

‖X̂−X‖F
‖X‖F

50 3 4 0.47 3 3.5e−6
50 5 3 0.57 5 3.1e−6
50 8 2 0.59 8 4.2e−6
50 10 2 0.72 10 3.1e−6
100 5 4 0.39 5 1.1e−5
100 10 3 0.57 10 9.9e−6
100 15 2 0.56 15 6.8e−6
100 20 2 0.72 20 3.8e−6
200 5 4 0.20 5 6.2e−5
200 10 3 0.29 10 4.8e−5
200 20 2 0.38 20 4.7e−5
200 30 2 0.56 30 1.9e−5

Theorem 3.2. Let L be any invertible linear transform

in (7) and it satisfies (10). For any τ > 0 and Y ∈
R

n1×n2×n3 , the tensor singular value thresholding oper-

ator (23) obeys

Dτ (Y) = argmin
X

τ‖X‖∗ +
1

2
‖X −Y‖2F . (25)

The main cost of ADMM for solving (18) is to compute

Dτ (Y) for solving (25). For any general linear transfor-

m L in (7), it is easy to see that the per-iteration cost is

O(n1n2n
2
3 + n(1)n

2
(2)n3). For some specific linear trans-

forms, e.g., DFT, the per-iteration cost can be further re-

duced. The cost can be further reduced by taking the low-

rank structure priori of M as the matrix case in [12].

4. Experiments

In this section, we conduct numerical experiments to cor-

roborate our main results. We first investigate the ability

of the convex program (18) to recover tensors with various

tubal ranks and sampling rates. We then apply it for image

recovery and compare the performance with existing low-

rank matrix and low-rank tensor completion models2.

4.1. Exact Recovery on Random Data

We conduct two experiments to demonstrate the prac-

tical applicability of the tensor nuclear norm heuristic for

recovering low-rank tensors. We first verify the correct re-

covery guarantee in Theorem 3.1. Note that Theorem 3.1

holds for any invertible linear transform L with L in (7) sat-

isfying (10). We consider two cases of L: (1) Discrete Co-

sine Transform (DCT) [9]; (2) Random Orthogonal Matrix

(ROM)3. In both cases, (10) holds with ℓ = 1. We simply

consider tensors of size n×n×n, with n = [50, 100, 200].
We generate a tubal rank r tensor by M = P ∗L Q, where

2Codes of our method: http://github.com/canyilu.
3Codes: https://www.mathworks.com/matlabcentral/

fileexchange/11783-randorthmat.

Table 2: Exact tensor completion on random data. A Random

Orthogonal Matrix (ROM) is used as the linear transform L.

X 0 ∈ R
n×n×n, r = rankt(X 0), m = pn3, dr = r(2n− r)n

n r m

dr
p rankt(X̂ )

‖X̂−X‖F
‖X‖F

50 3 4 0.47 3 3.6e−6
50 5 3 0.57 5 3.0e−6
50 8 2 0.59 8 4.4e−6
50 10 2 0.72 10 1.3e−6
100 5 4 0.39 5 1.5e−5
100 10 3 0.57 10 9.7e−6
100 15 2 0.56 15 7.0e−6
100 20 2 0.72 20 3.9e−6
200 5 4 0.20 5 5.8e−5
200 10 3 0.29 10 4.6e−5
200 20 2 0.38 20 4.7e−5
200 30 2 0.56 30 2.0e−5

the entries of P ∈ R
n×r×n and Q ∈ R

r×n×n are inde-

pendently sampled from an N (0, 1/n) distribution. Then

we sample m = pn3 elements uniformly from M to for-

m the known entries. A useful quantity for reference is

dr = r(2n− r)n. With PΩ(M), we solve (18) and obtain

the solution X̂ . Then we report the tubal rank of X̂ and the

relative errors ‖X̂ −M‖F /‖M‖F . Table 1 and 2 respec-

tively give the recovery results for the two different choices

of the linear transforms L. It can be seen that the convex

program (18) gives the correct rank estimation of M in all

cases and the relative errors are small. Thus, these result-

s well verify the correct recovery guarantee as claimed in

Theorem 3.1 for convex program (18).

Theorem 3.1 shows the perfect recovery for incoherent

tensor based on rankt(M) and the sampling rate p. Now

we examine the recovery phenomenon with varying tubal

rank of M and varying sampling rate p. We generate M ∈
R

n×n×n, where n = 50, in the same way as the above ex-

periment. Then we sample m = pn3 elements uniformly to

form the known entries. We set p = [0.01 : 0.01 : 0.99],
and r = [1, 2, . . . , 38]. For each (r, p) pair, we simulate

10 test instances and declare a trial to be successful if the

recovered X̂ satisfies ‖X̂ −M‖F /‖M‖F ≤ 10−3. Fig-

ure 2 plots the fraction of correct recovery for each pair

(blue = 0% and yellow = 100%) for different choices of

the linear transform L. It can be seen that the recovery phe-

nomenons in both cases are very similar. Both have a large

region in which the recovery is correct. This verifies our

main result in Theorem 3.1 that the recovery guarantee is

invariant to different choices of the linear transforms when

property (10) holds. Our results are also consistent with the

phenomenons in existing low-rank matrix completion [3, 5]

and low-rank tensor completion [16].

4.2. Tensor Completion for Image Recovery

We consider the application of tensor completion for im-

age recovery. The motivation is that the real color images
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Figure 2: Phase transitions for tensor completion. Fraction of

correct recoveries across 10 trials, as a function of sampling rate

p (x-axis) and tubal rank rankt(M) (y-axis). Left: discrete co-

sine transform is used as the linear transform L. Right: random

orthogonal matrix is used as the linear transform L.

can be well approximated by low-rank matrices on the three

channels independently. If we treat a color image as a three

way tensor, then it can be well approximated by low rank

tensors. There have many works which use such observa-

tions, e.g., [13, 28, 14, 15, 7], for image recovery.

Note that the t-product induced tensor nuclear norm is

orientation dependent. The recovery performance may be

different for different tensors constructed from a color im-

age. For a color image with size h× w, we can construct a

tensor M ∈ R
h×3×w, where the lateral slices correspond

to the three channels4. We randomly set m = 3phw entries

to be observed, where we use p = 0.3 in this experiment.

We consider four methods for image recovery and compare

their performance: (1) LRMC [3]: low-rank matrix com-

pletion applied on each channel of images separably; (2)

LRTC [13]: low-rank tensor completion model in (2); (3)

TNN [16]: tensor nuclear norm (TNN) based tensor com-

pletion model (a special case of our model (18) by using the

discrete Fourier transform as the linear transform L); (4)

TNN-DCT: our TNN minimization model (18) by using the

Discrete Cosine Transform (DCT)5 as the linear transform

L; (5) TNN-ROM: our TNN minimization model (18) by

using the Random Orthogonal Matrix (ROM) as the linear

transform L. The Peak Signal-to-Noise Ratio (PSNR) [16]

is used to evaluate the recovery performance.

Figure 4 shows the recovered images obtained by dif-

ferent methods on some sample images. Figure 3 further

shows the comparison on the PSNR values and running time

on the tested images. From these results, it can be seen that

our TNN-DCT achieves the best performance in most cas-

es, while TNN-ROM achieves the worst performance. In

particular, TNN-DCT has better recovery performance than

4It is observed in [16] that this way of tensor construction achieves the

best performance in practice.
5DCT is another interesting invertible linear transform discussed in the

original work of the new t-product definition in [9].
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Figure 3: Comparison of the PSNR values and running time

(seconds) obtained by LRMC, LRTC, TNN, TNN-DCT and

TNN-ROM on the tested images in Figure 4.

TNN on the edges of images as shown in Figure 4. This

implies that the discrete Fourier transform used in [10] may

not be the best in image analysis, though the reason is not

very clear now. However, if the random orthogonal matrix

is used as the linear transform L, the results are very bad. It

may not be a good choice in image analysis. In a summary,

we observe that the choice of the linear transform L is cru-

cial in practice, though the best linear transform is currently

not clear. For the efficiency, Figure 3 shows that our new

methods is comparable with RPCA and the existing TNN

method.

5. Conclusions

Inspired by the recent invertible linear transforms based

t-product [9] which generalizes the existing discrete Fouri-

er transform based t-product [10], we give more general

definitions of tensor tubal rank and tensor nuclear norm.

We show that when the invertible linear transforms satis-

fy certain conditions, the tensor completion problem can be

solved by the proposed convex tensor nuclear norm mini-

mization. In theory, we give the order optimal bound for

the guarantee of exact recovery. It is interesting that the

main result holds for a broad choices of the invertible lin-

ear transforms. This greatly generalizes the existing result

for low tubal rank tensor recovery. Numerical experiments

verified our theory and the application on image recovery

demonstrates the effectiveness of our model.

There have some interesting future works. First, as the t-

product ∗L and our tensor nuclear norm depend on the used

linear transform, it is interesting to learn the linear transfor-

m from the data in different tasks. It is expected to improve

the learning performance by optimizing the linear transfor-
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(a) orignal image (b) observed image (c) LRMC (d) LRTC (e) TNN (f) TNN-DCT

Figure 4: Performance comparison for image recovery on some sample images. (a) Original image; (b) observed image; (c)-(f) recovered

images by LRMC, LRTC, TNN and TNN-DCT, respectively. Best viewed in ×2 sized color pdf file.

m for different types of data. Second, beyond the tensor

completion problem studied in this work, it is interesting

to use the tensor nuclear norm for some other tasks, e.g.,

tensor robust PCA [14] and low-rank representation model-

s [17]. Also, it is always of great interest to apply our new

method for different applications, e.g., motion segmentation

and background modeling [4].
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