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Abstract

Image deblurring aims to restore the latent sharp im-

ages from the corresponding blurred ones. In this paper,

we present an unsupervised method for domain-specific,

single-image deblurring based on disentangled represen-

tations. The disentanglement is achieved by splitting the

content and blur features in a blurred image using content

encoders and blur encoders. We enforce a KL divergence

loss to regularize the distribution range of extracted blur

attributes such that little content information is contained.

Meanwhile, to handle the unpaired training data, a blurring

branch and the cycle-consistency loss are added to guaran-

tee that the content structures of the deblurred results match

the original images. We also add an adversarial loss on de-

blurred results to generate visually realistic images and a

perceptual loss to further mitigate the artifacts. We per-

form extensive experiments on the tasks of face and text de-

blurring using both synthetic datasets and real images, and

achieve improved results compared to recent state-of-the-

art deblurring methods.

1. Introduction

Image blur is an important factor that adversely affects

the quality of images and thus significantly degrades the

performances of many computer vision applications, such

as object detection [15] and face recognition [22, 21]. To

address this problem, blind image deblurring methods aim

to restore the latent sharp image from a blurred image. Con-

ventional approaches often formulate the image deblurring

task as a blur kernel estimation problem. Since this prob-

lem is highly ill-posed, many priors have been proposed

to model images and kernels [29, 41, 13]. However, most

of these priors only perform well on generic natural im-

ages, but cannot generalize to specific image domains, like

face [36], text [9] and low-illumination images [10]. There-

fore, some priors (e.g. L0-regularized intensity and gradient

prior [28], face exemplars [27]) have been developed to han-

dle these domain-specific image deblurring problems. But

still these methods can only handle certain types of blur and

(a) Blurred (b) Madam et al. [25] (c) Ours

(d) Blurred (e) CycleGAN [44] (f) Ours

Figure 1. Real-world blurred face and text results of the proposed

method compared with other state-of-the-art unpaired deblurring

methods. The deblurred image of (b) is from [25]. For (e), we

apply our trained model using the publicly available code of [44].

often require longer inference time.

Recently, some learning-based approaches have been

proposed for blind image deblurring [15, 26, 36]. CNN-

based models can tackle more complex blur types and

the inference is fast due to GPU acceleration. Mean-

while, the Generative Adversarial Networks (GAN) have

been found to be effective in generating more realistic im-

ages. Nonetheless, most of these methods need paired train-

ing data, which is expensive to collect in practice. Al-

though numerous blur generation methods have been devel-

oped [15, 38, 4], they are not capable of learning all types

of blur variants in the wild. Moreover, strong supervision

may cause algorithms to overfit training data and thus can-

not generalize well to real images.

More recently, Nimisha et al. [25] proposed an unsu-

pervised image deblurring method based on GANs where

they add reblur loss and multi-scale gradient loss on the

model. Although they achieved good performance on the

synthetic datasets, their results on some real blurred images

are not satisfactory (Fig. 1(b)). Another solution might be
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Figure 2. Overview of the deblurring framework.The data flow of the top blurring branch (bottom deblurring branch) is represented by

blue (orange) arrows. Ec

B and E
c

S are content encoders for blurred and sharp images; Eb is the blur encoder; GB and GS are blurred image

and sharp image generators. Two GAN losses are added to distinguish bs from blur images, and to distinguish sb from sharp images. The

KL divergence loss is added to the output of Eb. Cycle-consistency loss is added to s and ŝ, b and b̂. Perceptual loss is added to b and sb.

directly using some existing unsupervised methods (Cycle-

GAN [44], DualGAN [42]) to learn the mappings between

sharp and blurred image domains. However, these generic

approaches often encode other factors (e.g., color, texture)

rather than blur information into the generators, and thus do

not produce good deblurred images (Fig. 1(e)).

In this paper, we propose an unsupervised domain-

specific image deblurring method based on disentangled

representations. More specifically, we disentangle the con-

tent and blur features from blurred images to accurately en-

code blur information into the deblurring framework. As

shown in Fig. 2, the content encoders extract content fea-

tures from unpaired sharp and blurred images, and the blur

encoder captures blur information. We share the weights

of the last layer of these two content encoders so that the

content encoders can project the content features of both

domains onto a common space. However, this structure by

itself does not guarantee that the blur encoder captures blur

features — it may encode content or other features as well.

Inspired by [2], we add a KL divergence loss to regularize

the distribution of blur features to suppress the contained

content information. Then, the deblurring generator GS and

the blurring generator GB take corresponding content fea-

tures conditioned on blur attributes to generate deblurred

and blurred images. Similar to CycleGAN [44], we also

use the adversarial loss and the cycle-consistency loss as

regularizers to assist the generator networks to yield more

realistic images, and also preserve the content of the origi-

nal image. To further remove the unpleasant artifacts intro-

duced by the deblurring generator GS , we add the percep-

tual loss to the proposed approach. Some sample deblurred

images are shown in Fig. 1.

We conduct extensive experiments on face and text de-

blurring and achieve competitive performance compared

with other state-of-the-art deblurring methods. We also

evaluate the proposed method on face verification and op-

tical character recognition (OCR) tasks to demonstrate the

effectiveness of our algorithm on recovering semantic infor-

mation.

2. Related Works

2.1. Single Image Blind Deblurring

Generic methods Single image blind deblurring is a

highly ill-posed problem. Over the past decade, various nat-

ural image and kernel priors have been developed to regu-

larize the solution space of the latent sharp images, includ-

ing heavy-tailed gradient prior [35], sparse kernel prior [7],

l0 gradient prior [41], normalized sparsity prior [14], and

dark channels [29]. However, these priors are estimated

from limited observations, and are not accurate enough.

As a result, the deblurred images are often under-deblurred

(images are still blurred) or over-deblurred (images contain

many artifacts).

On the other hand, due to the recent immense success

of deep networks and GANs, several CNN-based methods

have been proposed for image deblurring. Sun et al. [38]

and Schuler et al. [33] use CNN to predict the motion blur

kernels. Chakrabarti et al. [4] predict the Fourier coeffi-

cients of the deconvolution filters by a neural network and

perform deblurring in frequency domains. These methods

combine the advantage of CNN and conventional maximum

a posteriori probability (MAP)-based algorithms. Differ-

ently, Nah et al. [26] train a multi-scale CNN in an end-

to-end manner to directly deblur images without explicitly

estimating the blur kernel. Similarly, Kupyn et al. [15] use
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WGAN and perceptual loss and achieve state-of-the-art per-

formance on natural image deblurring.

Domain specific methods Although the above men-

tioned methods perform well for natural image deblurring,

it is difficult to generalize them to some specific image do-

mains, such as face and text images. Pan et al. [28] propose

the L0-regularized prior on image intensity and gradients

for text image deblurring. Hradis et al. [9] train an end-to-

end CNN specific for text image deblurring. Pan et al. [27]

utilize exemplar faces in a reference set to guide the blur

kernel estimation. Shen et al. [36] use the face parsing la-

bels as global semantic priors and local structure regulariza-

tion to improve face deblurring performance.

2.2. Disentangled Representation

There has been many recent efforts on learning disen-

tangled representations. Tran et al. [40] propose DR-GAN

to disentangle the pose and identity components for pose-

invariant face recognition. Bao et al. [2] explicitly dis-

entangle identity features and attributes to learn an open-

set face synthesizing model. Liu et al. [19] construct an

identity distill and dispelling auto encoder to disentangle

identity with other attributes. BicycleGAN [45] combines

cVAE-GAN and cLR-GAN to model the distribution of

possible outputs in image-to-image translation. Recently,

some unsupervised methods decouple images into domain-

invariant content features and domain-specific attribute vec-

tors, which produce diverse image-to-image translation out-

puts [17, 1, 11].

3. Proposed Method

The proposed approach consists of four parts: 1) content

encoders Ec
B and Ec

S for blurred and sharp image domains;

2) blur encoder Eb; 3) blurred and sharp image generators

GB and GS ; 4) blurred and sharp image discriminators DB

and DS . Given a training sample b ∈ B in the blurred im-

age domain and s ∈ S in the sharp image domain, the con-

tent encoders Ec
B and Ec

S extract content information from

corresponding samples and Eb estimates the blur informa-

tion from b. GS then takes Ec
B(b) and Eb(b) to generate

a sharp image sb while GB takes Ec
S(s) and Eb(b) to gen-

erate a blurred image bs. The discriminators DB and DS

distinguish between the real and generated examples. The

end-to-end architecture is illustrated in Fig. 2.

In the following subsections, we first introduce the

method to disentangle content and blur components in Sec-

tion 3.1. Then, we discuss the loss functions used in our

approach. In Section 3.5, we describe the testing procedure

of the proposed framework. Finally, the implementation de-

tails are discussed in Section 3.6.

3.1. Disentanglement of Content and Blur

Since the ground truth sharp images are not available

in the unpaired setting, it is not trivial to disentangle the

content information from a blurred image. However, since

sharp images only contain content components without any

blur information, the content encoder Ec
S should be a good

content extractor. We enforce the last layer of Ec
B and Ec

S to

share weights so as to guide Ec
B to learn how to effectively

extract content information from blurred images.

On the other hand, the blur encoder Eb should only en-

code blur information. To achieve this goal, we propose two

methods to help Eb suppress as much content information

as possible. First, we feed Eb(b) together with Ec
S(s) into

GB to generate bs. Since bs is a blurred version of s and it

will not contain content information of b, this structure dis-

courages Eb(b) to encode content information of b. Second,

we add a KL divergence loss to regularize the distribution

of the blur features zb = Eb(b) to be close to the normal

distribution p(z) ∼ N(0, 1). As shown in [2], this will fur-

ther suppress the content information contained in zb. The

KL divergence loss is defined as follows:

KL(q(zb)||p(z)) = −

∫
q(zb) log

p(z)

q(zb)
dz (1)

As proved in [13], minimizing the KL divergence is equiv-

alent to minimizing the following loss:

LKL =
1

2

N∑
i=1

(µ2
i + σ2

i − log(σ2
i )− 1) (2)

where µ and σ are the mean and standard deviation of zb
and N is the dimension of zb. Similar to [13], zb is sampled

as zb = µ + z ◦ σ, where p(z) ∼ N(0, 1) and ◦ represents

element-wise multiplication.

3.2. Adversarial Loss

In order to make the generated images look more realis-

tic, we apply the adversarial loss on both domains. For the

sharp image domain, we define the adversarial loss as:

LDS
= Es∼p(s)[logDS(s)]

+ Eb∼p(b)[log(1−DS(GS(E
c
B(b), zb)))]

(3)

where DS tries to maximize the objective function to distin-

guish between deblurred images and real sharp images. In

contrast, GS aims to minimize the loss to make deblurred

images look similar to real samples in domain S. Similarly,

we define the adversarial loss in blurred image domain as

LDB
:

LDB
= Eb∼p(b)[logDB(b)]

+ Es∼p(s)[log(1−DB(GB(E
c
S(s), zb)))]

(4)
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3.3. CycleConsistency Loss

After competing with discriminator DS in the minimax

game, GS should be able to generate visually realistic sharp

images. However, since no pairwise supervision is pro-

vided, the deblurred image may not retain the content in-

formation in the original blurred image. Inspired by Cy-

cleGAN [44], we introduce the cycle-consistency loss to

guarantee that the deblurred image sb can be reblurred to

reconstruct the original blurred sample, and bs can be trans-

lated back to the original sharp image domain. The cycle-

consistency loss further limits the space of the generated

samples and preserve the content of original images. More

specifically, we perform the forward translation as:

sb = GS(E
c
B(b), E

b(b)), bs = GB(E
c
S(s), E

b(b)) (5)

and the backward translation as:

b̂ = GB(E
c
S(sb), E

b(bs)), ŝ = GS(E
c
B(bs), E

b(bs)) (6)

We define the cycle-consistency loss on both domains as:

Lcc = Es∼p(s)[‖s− ŝ‖1] + Eb∼p(b)[||b− b̂||1] (7)

3.4. Perceptual Loss

From our preliminary experiments, we find that the gen-

erated deblurred samples often contain many unpleasant ar-

tifacts. Motivated by the observations from [39, 5] that fea-

tures extracted from pre-trained deep networks contain rich

semantic information, and their distances can act as percep-

tual similarity judgments, we add a perceptual loss between

the deblurred images and the corresponding original blurred

images:

Lp = ‖φl(sb)− φl(b)‖
2
2 (8)

where φl(x) is the features of the l-th layer of the pre-

trained CNN. In our experiments, we use the conv3,3 layer

of VGG-19 network [37] pre-trained on ImageNet [6].

There are two main reasons why we use the blurred im-

age b instead of the sharp one s as the reference image in

the perceptual loss. First, we make an assumption that the

content information of b can be extracted by the pre-trained

CNN. As shown in Section 4.2, the experimental results

confirm this point. Second, since s and b are unpaired, ap-

plying the perceptual loss between s and sb will force sb
to encode irrelevant content information from s. However,

we also notice that the perceptual loss is sensitive to blur

as shown in [43]. We thus carefully balance the weight of

the perceptual loss and other losses to prevent sb from stay-

ing too close to b. The sensitivity evaluation of varying this

weight is shown in the supplementary materials.

It is worth mentioning that the perceptual loss is not

added to bs and s. This is because we do not find obvious

artifacts in bs during training. Moreover, for text image de-

blurring, since we observe that the perceptual loss does not

help but sometimes hurt the performance, we do not include

it for this task. One possible reason is that the pixel inten-

sity distribution of text images is very different from natural

images, which leads to the model pre-trained on ImageNet

to be ineffective for text images.

The full objective function is a weighted sum of all the

losses from (2) to (8):

L = λadvLadv + λKLLKL + λccLcc + λpLp (9)

where Ladv = LDS
+LDB

. We empirically set the weights

of each loss to balance their importance.

3.5. Testing

At test time, the blurring branch is removed. Given a

test blurred image bt, E
c
B and Eb extract the content and

blur features. Then GS takes the outputs and generates the

deblurred image sbt :

sbt = GS(E
c
B(bt), E

b(bt)) (10)

3.6. Implementation Details

Architecture and training details. For the network ar-

chitectures, we follow the similar structures as the one used

in [17]. The content encoder is composed of three strided

convolution layers and four residual blocks. The blur en-

coder contains four strided convolution layers and a fully

connected layer. For the generator, the architecture is sym-

metric to the content encoder with four residual blocks fol-

lowed by three transposed convolution layers. The discrim-

inator applies a multi-scale structure where feature maps at

each scale go through five convolution layers and then are

fed into sigmoid outputs. The end-to-end design is imple-

mented in PyTorch [31]. During training, we use Adam

solver [12] to perform two steps of update on discrimina-

tors, and then one step on encoders and generators. The

learning rate is initially set to 0.0002 for the first 40 epochs,

then we use exponential decay over the next 40 epochs. In

all the experiments, we randomly crop 128 × 128 patches

with batch size of 16 for training. For hyper-parameters, we

experimentally set: λadv = 1, λKL = 0.01, λcc = 10 and

λp = 0.1.

Motion blur generation. We follow the procedure in

DeblurGAN [15] to generate motion blur kernels to blur

face images. A random trajectory is generated as described

in [3]. Then the kernels are generated by applying sub-pixel

interpolation to the trajectory vector. For parameters, we

use the same values as in [15] except that we set the proba-

bility of impulsive shake as 0.005, the probability of Gaus-

sian shake uniformly distributed in (0.5, 1.0), and the max

length of the movement as 10.
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(a) (b) (c) (d) (e) (f) (g)

Figure 3. Ablation study. (a) shows the blurred image and (g) is the sharp image. (b) only contains deblurring branch (bottom branch of

Fig. 2), (c) adds blurring branch (bottom branch of Fig. 2), (d) adds disentanglement (Eb), (e) adds the KL divergence loss, and (f) adds

perceptual loss.

(a) Blurred (b) [28] (c) [29] (d) [36] (e) [27] (f) [41] (g) [14] (h) [15] (i) [26] (j) [44] (k) Ours (l) Sharp

Figure 4. Visual performance comparison with state-of-the-art methods on CelebA dataset. Best viewed in color and by zooming in.

Method PSNR SSIM dV GG

Only deblurring branch 18.83 0.56 82.9

Add blurring branch 19.84 0.59 65.5

Add disentanglement 19.58 0.57 69.8

Add KL divergence loss 20.29 0.61 60.6

Add perceptual loss 20.81 0.65 57.6

Table 1. Ablation study on the effectiveness of different compo-

nents. dV GG represents the distance of feature from VGG-Face,

lower is better.

4. Experimental Results

We evaluate the proposed approach on three datasets:

CelebA dataset [20], BMVC Text dataset [9], and CFP

dataset [34].

4.1. Datasets and Metrics

CelebA dataset: This dataset consists of more than

202,000 face images. Most of the faces are of good qual-

ity and at near-frontal poses. We randomly split the whole

dataset into three mutually exclusive subsets: sharp training

set (100K images), blurred training set (100K images) and

test set (2137 images). For the blurred training set, we use

the method in Section 3.6 to blur the images. The faces are

detected and aligned using the method proposed in [32].

BMVC text dataset: This dataset is composed of

66,000 text images with size 300 × 300 for training and

94 images with size 512 × 512 for OCR testing. Similar

to CelebA, we evenly split the training sets as sharp and

blurred set. Since the dataset already contains the blurred

text images, we directly use them instead of generating new

ones.

CFP dataset: This dataset consists of 7,000 still images

from 500 subjects and for each subject, it has ten images in

frontal pose and four images in profile pose. The datasets

are divided into ten splits and two protocols: frontal-to-

frontal (FF) and frontal-to-profile (FP). We used the same

method as described above to blur the images. The faces

are detected and aligned similarly as the CelebA dataset.

For CelebA and BMVC Text datasets, we use standard

debluring metrics (PSNR, SSIM) for evaluation. We also

use feature distance (i.e., the L2 distance of the outputs

from some deep networks) between the deblurred image

and the ground truth image as a measure of semantic simi-

larity because we find this to be a better perceptual metric

than PSNR and SSIM [43]. For the CelebA dataset, we use

the outputs of pool5 layer from VGG-Face [30] and for

the text dataset, we use the outputs of pool5 layer from

a VGG-19 network. For text deblurring, another meaning-

ful metric is the OCR recognition rate for the deblurred text.

We follow the same protocol as in [9] to report the character

error rate (CER) for OCR evaluation.

To study the influence of motion blur on face recognition

and test the performance of different deblurring algorithms,

we perform face verification on the CFP dataset. Both

frontal-to-frontal and frontal-to-profile protocol are evalu-

ated. The frontal-to-profile protocol can further be used to

examine the robustness of the deblurring methods on pose.

In order to test the generalization capability of the pro-

posed method, we also try our approach on natural images.
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(a) Blurred (b) [28] (c) [29] (d) [36] (e) [27] (f) [41] (g) [14] (h) [15] (i) [26] (j) [44] (k) Ours

Figure 5. Visual comparisons with state-of-the-art methods on real blurred face images. Best viewed in color and by zooming in.

Method PSNR SSIM dV GG

Pan et al. [28] 17.34 0.52 96.6

Pan et al. [29] 17.59 0.54 85.6

Shen et al. [36] 21.50 0.69 57.9

Pan et al. [27] 15.16 0.38 166.6

Xu et al. [41] 16.84 0.47 102.0

Krishnan et al. [14] 18.51 0.56 89.4

Kupyn et al. [15] 18.86 0.54 116.5

Nah et al. [26] 18.26 0.57 75.6

Zhu et al. [44] 19.40 0.56 103.2

Ours 20.81 0.65 57.6

Table 2. Quantitative performance comparison with state-of-the-

art methods on CelebA dataset. dV GG represents the distance of

feature from VGG-Face, lower is better.

More details are presented in the supplementary materials.

4.2. Ablation Study

In this section, we perform an ablation study to analyze

the effectiveness of each component or loss in the proposed

framework. Both quantitative and qualitative results on

CelebA dataset are reported for the following five variants

of our methods where each component is gradually added:

1) only including deblurring branch (i.e., removing the top

cycle in Fig. 2 and the blur encoder Eb); 2) adding blur-

ring branch (adding the top cycle of Fig. 2); 3) adding con-

tent and blur disentanglement; 4) adding the KL divergence

loss; 5) adding the perceptual loss.

We present the PSNR, SSIM and VGG-Face distance

(dV GG) for each variant in Table 1 and the visual com-

parisons are shown in Fig. 3. From Table 1, we can see

that adding the blurring branch significantly improves the

deblurring performance, especially for the perceptual dis-

tance. As shown in Fig. 3 (c) many artifacts are removed

from face and colors are preserved well compared to (b).

This confirms the findings in CycleGAN [44] that only one

Methods F2F Accuracy F2P Accuracy

Blurred 0.920±0.014 0.848±0.013

Sharp 0.988±0.005 0.949±0.014

Pan et al. [28] 0.930±0.013 0.853±0.010

Pan et al. [29] 0.935±0.015 0.872±0.015

Shen et al. [36] 0.959±0.008 0.821±0.022

Pan et al. [27] 0.916±0.011 0.825±0.016

Xu et al. [41] 0.944±0.012 0.865±0.013

Krishnan et al. [14] 0.941±0.012 0.857±0.014

Kupyn et al. [15] 0.948±0.012 0.872±0.007

Nah et al. [26] 0.960±0.007 0.885±0.016

Zhu et al. [44] 0.941±0.012 0.864±0.015

Ours 0.948±0.006 0.872±0.015

Table 3. Face verification results on the CFP dataset. F2F, F2P

represent frontal-to-frontal and frontal-to-profile protocols.

direction cycle-consistency loss is not enough to recover

good images. However, we find that adding a disentangle-

ment component does not help but rather hurt the perfor-

mance ( Fig. 3 (d)). This demonstrates that the blurring en-

coder Eb will induce some noise and confuse the generator

GS if the KL divergence loss is not enforced. In contrast,

when the KL divergence loss is added to Eb (Fig. 3 (e)),

content and blur information can be better disentangled and

we observe some improvements on both PSNR and percep-

tual similarities. Finally, the perceptual loss can improve the

perceptual reality of the face notably. By comparing Fig. 3

(e) and (f), we find that the artifacts on cheek and forehead

are further removed. Furthermore, the mouth region of (f)

is more realistic than (e).

4.3. Face Results

Compared methods: We compare the proposed method

with some state-of-the-art deblurring methods [28, 29, 36,

27, 41, 14, 26, 44, 15]. We directly use the pre-trained mod-

els provided by authors except for CycleGAN [44], where
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(a) Blurred (b) [28] (c) [29] (d) [26] (e) [44] (f) [9] (g) Ours (h) Sharp

Figure 6. Visual results compared with state-of-the-art methods on BMVC Text dataset. Best viewed by zooming in.

(a) Blurred (b) [28] (c) [29] (d) [26] (e) [44] (f) [9] (g) Ours

Figure 7. Visual results compared with state-of-the-art methods on real blurred text images. Best viewed by zooming in.

we retrain the model by using the same training set as our

method. Both CNN-based models [36, 26, 44, 15] and

conventional MAP-based methods are included [28, 29, 27,

41, 14]. Among these approaches, two are specific for face

deblurring [27, 36] while others are generic deblurring al-

gorithm. The kernel size for [28, 29] is set to 9. We

found that the face deblurring method [36] is very sensi-

tive to face alignment, we follow the sample image pro-

vided by the author to align the faces before running their

algorithm. Meanwhile, CycleGAN is the only unsupervised

CNN-based method we compare with.

CelebA dataset results. The quantitative results for

CelebA dataset are shown in Table 2 and the visual compar-

isons are illustrated in Fig. 4. Our approach shows superior

performance to other unsupervised algorithms on both con-

ventional metrics and VGG-Face distance. Furthermore, we

achieve comparable results with state-of-the-art supervised

face deblurring method [36]. From Fig. 4 we can see that

conventional methods often over-deblur or under-deblur the

blurred images. Among them, Krishnan et al. [14] perform

the best in PSNR and SSIM and Pan et al. [29] perform the

best in perceptual distance. For CNN-based methods, Shen

et al. [36] include a face parsing branch and achieve the best

performance among the compared methods. The results for

DeblurGAN [15] contain some ringing artifacts and Cycle-

GAN [44] cannot recover the mouth part of both images that

well. Nah et al. [26] shows better visual results than other

CNN-based generic methods but still contains some blur in

local structures.

Face verification results. The face verification re-

sults for the CFP dataset are reported in Table 3. We

train a 27-layer ResNet [22] on the curated MS-Celeb1M

dataset [8, 18] with 3.7 millions face images and extract fea-

tures of the deblurred faces for each method. Cosine simi-

larities of test pairs are used as similarity scores for face ver-

ification. We follow the protocols used in [23, 24] and the

verification accuracy for both frontal-to-frontal and frontal-

to-profile protocols are reported. As shown in Table 3, the

proposed method improves the baseline results of blurred

images and outperforms CycleGAN [44] on both proto-

cols. Moreover, we achieve comparable performance com-

pared to other state-of-the-art supervised deblurring meth-

ods. Shen et al. [36] perform very well for frontal-to-frontal

protocol, yet provide the worst performance on frontal-to-

profile protocol, which shows that the face parsing network

in their method is sensitive to poses. In contrast, the pro-
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Method PSNR SSIM dV GG CER

Pan et al. [28] 21.18 0.92 19.7 42.3

Pan et al. [29] 21.84 0.93 15.7 35.3

Nah et al. [26] 22.27 0.92 31.9 50.6

Hradis et al. [9] 30.6 0.98 1.6 7.2

Zhu et al. [44] 19.57 0.89 18.8 53.0

Ours 22.56 0.95 2.2 10.1

Table 4. Quantitative performance comparison with state-of-the-

art methods on BMVC Text dataset. dV GG represents the distance

of feature from VGG net, lower is better. CER is the OCR charac-

ter error rate, lower is better.

posed method works for both frontal and profile face im-

ages even though we do not explicitly train on faces with

extreme poses.

Real blurred images results We also evaluate the pro-

posed method on some real-world images from the datasets

of Lai et al. [16], and the results are shown in Fig. 5. Simi-

lar to what we have observed for CelebA, our method shows

competitive performance compared to other state-of-the-art

approaches. Conventional methods [28, 29, 27, 41, 14] still

tend to under-deblur or over-deblur images, especially on

local regions such as eyes and mouths. On the other hand,

the generic CNN-based method [15] does not perform very

well on face deblurring. CycleGAN [44] fails to recover

sharp faces but only changes the background color of im-

ages (e.g., third row of Fig. 5(j)). Nah et al. [26] pro-

duce good results on the first two faces, but generate some

artifacts in the third image. Deep semantic face deblur-

ring [36] generate better results than other compared meth-

ods. Nonetheless, due to the existence of face parsing, they

tend to sharpen some facial parts (eye, nose and mouth)

but over-smooth the ears and the background. In contrast,

our method can not only recover sharp faces, but also re-

store sharp textures in the background (e.g., third row of

Fig. 5(k)).

4.4. Text results

BMVC Text dataset results. Similar to face experi-

ments, we train a CycleGAN model using the same training

set as our method. The kernel size for [28, 29] is set to 12.

The quantitative results for BMVC Text dataset are shown

in Table 4 and some sample images are presented in Fig. 6.

We can see that conventional methods [28, 29] and generic

deblurring approaches [26] do not perform well on text de-

blurring. The visual quality is poor and the OCR error rate

is very high. The results for CycleGAN [44] contain some

unexplainable blue background. Although it removes the

blur in images, it fails to recover recognizable text. In con-

trast, our method achieves good visual quality and its per-

formance is comparable to the state-of-the-art supervised

text deblurring method [9] on semantic metrics (i.e., per-

ceptual distance and OCR error rate). Interestingly, we find

the PNSR performance for our approach is worse than the

method [9] by large margins. We carefully examine our vi-

sual results and find that the proposed method sometimes

changes the font of the text while deblurring. For exam-

ple, as shown in the first row of Fig. 6(g), the font of our

deblurred text becomes lighter and thinner compared to the

original sharp text image (Fig. 6(h)). The main reason for

this phenomenon is that our method does not utilize paired

training data so that the deblurring generator cannot pre-

serve some local details of text images.

Real blurred text images results We also evaluate our

deblurring method on real blurred text images provided

by Hradis et al. [9]. Due to space limitation, 200 × 200
patches are randomly cropped, and some visual results are

illustrated in Fig. 7. Similar to the results of BMVC Text

dataset, we find that conventional methods [28, 29] fail to

deblur the given text images. Nah et al. [26], in contrast,

generate a reasonable deblurred result for the first image

but cannot handle the second one. CycleGAN [44] again

produces blue artifacts and cannot recover meaningful text

information. Hradiset al. [9] and our approach both gener-

ate satisfactory results. Although we mis-recognize some

characters (e.g., in the second images, ”i.e., BING” is re-

covered as ”Le.,BING”), we still correctly recover most of

the blurred images.

5. Conclusions

In this paper, we propose an unsupervised method for

domain-specific single image deblurring. We disentangle

the content and blur features in a blurred image and add the

KL divergence loss to discourage the blur features to en-

code content information. In order to preserve the content

structure of the original images, we add a blurring branch

and cycle-consistency loss to the framework. The percep-

tual loss helps the blurred image remove unrealistic arti-

facts. Ablation study on each component shows the effec-

tiveness of different modules. We conduct extensive experi-

ments on face and text deblurring. Both quantitative and vi-

sual results show promising performance compared to other

state-of-the-art approaches.
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