
The Regretful Agent: Heuristic-Aided Navigation through Progress Estimation

Chih-Yao Ma∗†, Zuxuan Wu‡, Ghassan AlRegib†, Caiming Xiong§, Zsolt Kira†

†Georgia Institute of Technology, ‡University of Maryland, College Park, §Salesforce Research

I know I came from there.  

Where should I go next?

My estimated 

confidence decreased.  

Something went wrong. 

Let’s learn this lesson 

and go back. 

Instruction:	Exit	the	room.	Walk	past	the	display	case	

and	into	the	kitchen.	Stop	by	the	table.	20%

13%

25%

42%

60%

75%

90%

1st step

1st step

2nd

5th
5th step

4th

6th7th

Figure 1: Vision-and-Language Navigation task and our proposed regretful navigation agent. The agent leverages the self-

monitoring mechanism [13] through time to decide when to roll back to a previous location and resume the instruction-

following task. Our code is available at https://github.com/chihyaoma/regretful-agent.

Abstract

As deep learning continues to make progress for chal-

lenging perception tasks, there is increased interest in com-

bining vision, language, and decision-making. Specifically,

the Vision and Language Navigation (VLN) task involves

navigating to a goal purely from language instructions

and visual information without explicit knowledge of the

goal. Recent successful approaches have made in-roads in

achieving good success rates for this task but rely on beam

search, which thoroughly explores a large number of trajec-

tories and is unrealistic for applications such as robotics.

In this paper, inspired by the intuition of viewing the prob-

lem as search on a navigation graph, we propose to use a

progress monitor developed in prior work as a learnable

heuristic for search. We then propose two modules incorpo-

rated into an end-to-end architecture: 1) A learned mech-

anism to perform backtracking, which decides whether to

continue moving forward or roll back to a previous state

(Regret Module) and 2) A mechanism to help the agent de-

cide which direction to go next by showing directions that

are visited and their associated progress estimate (Progress

∗ Work partially done while the author was a research intern at Sales-

force Research.

Marker). Combined, the proposed approach significantly

outperforms current state-of-the-art methods using greedy

action selection, with 5% absolute improvement on the test

server in success rates, and more importantly 8% on suc-

cess rates normalized by the path length.

1. Introduction

Building on the success of deep learning in solving var-

ious computer vision tasks, several new tasks and corre-

sponding benchmarks have been proposed to combine vi-

sual perception and decision-making [2, 22, 7, 12, 17, 23,

5]. One such task is the Vision-and-Language Navigation

task (VLN), where an agent must navigate to a goal purely

from language instructions and visual input without explicit

knowledge of the goal. This task has a number of applica-

tions, including service robotics where it would be prefer-

able if humans interacted naturally with the robot by in-

structing it to perform various tasks.

Recently, there have been several approaches proposed

to solve this task. The dominant approaches frame the nav-

igation task as a sequence to sequence problem [2]. Several

enhancements such as synthetic data augmentation [11],

pragmatic inference [11], and combinations of model-free

and model-based reinforcement learning techniques [19]
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have also been proposed. However, current methods are

separated into two regimes: those that use beam search and

obtain good success rate (with longer trajectory lengths) and

those that use greedy action selection (and hence result in

very low trajectory lengths) but obtain much lower success

rates. In fact, there have recently been new metrics pro-

posed that balance these two objectives [1]. Intuitively, the

agent should perform intelligent action selection (akin to

best-first search), without exhaustively exploring the search

space. For robotics application, for example, the use of

beam search is unrealistic as it would require the robot to

explore a large number of possible trajectories.

In this paper, we view the process of navigation as graph

search across the navigation graph and employ two strate-

gies, encoded within the neural network architecture, to en-

able navigation without the use of beam search. Specif-

ically, we develop: 1) A Regret Module that provides

a mechanism to allow the agent to learn when to back-

track [10, 3] and 2) We propose a Progress Marker mech-

anism that allows the agent to incorporate information from

previous visits and reason about such visits and their asso-

ciated progress estimates towards better action selection.

Specifically, in graph search a heuristic is used to make

meaningful progress towards the goal in a manner that

avoids exhaustive search but is more effective than naı̈ve

greedy search. We therefore build on recent work [13] that

developed a progress monitor which is a learned mechanism

that was used to estimate the progress made towards the

goal (with low values meaning progress has not been made

and high values meaning the agent is closer to the goal). In

that work, however, the focus was on the regularizing effect

of the progress monitor as well as its use in beam search. In-

stead, we use this progress monitor effectively as a learned

heuristic that can be used to determine directions that are

more likely to lead towards the goal during inference.

We use the Progress Marker in two ways. First, we lever-

age the notion of backtracking, which is prevalent in graph

search, by developing a learned rollback mechanism that

decides whether to go back to the previous location or not

(Regret Module). Second, we incorporate a mechanism to

allow the agent to use the estimated progress it computed

when visiting the viewpoints to choose the next action to

perform after it has rolled back (Progress Marker). This al-

lows the agent to know when particular directions have al-

ready been visited and the progress they resulted in, which

can bias it to not re-visit states unless warranted. We do this

by augmenting the visual state vectors with the progress es-

timates so that the agent can reduce the probability of revis-

iting such states (again, in a learned manner).

We demonstrate that these learned mechanisms are supe-

rior to greedy decoding. Our agent is able to achieve state-

of-the-art results among published works both in terms of

success rate (when beam search is not used) and more im-

portantly the SPL [1] metric which incorporates path length,

owing to our short trajectory lengths. In summary, our con-

tributions include: 1) A graph search perspective on the

instruction-based navigation problem, and use of a learned

heuristic in the form of a progress monitor to effectively

explore the navigation graph, 2) an end-to-end trainable Re-

gret Module that can learn to decide when to roll back to

the previous location given the history of textual and visual

grounding observed, 3) a Progress Marker that can enable

effective backtracking and reduce the probability of going

to a visited location accordingly, and 4) state-of-the-art re-

sults on the VLN task.

2. Related Work

Vision and language navigation. There are a number

of benchmarks and environments for investigating the com-

bination of vision, language, and decision-making. This in-

cludes House3D [22], Embodied QA [7], AI2-THOR [12],

navigation based agents [15, 20, 14] (including with com-

munication [9]), and the VLN task that we focus on [2].

For tasks that contain only sparse rewards, reinforcement

learning approaches exist [19, 25, 8], for example focus-

ing on language grounding through guided feature trans-

formation [25] and development of a neural module ap-

proach [8]. Our work, in contrast, focuses on tasks that

contain language instructions that can guide the naviga-

tion process and has applications such as service robotics.

Approaches to this task are dominated by a sequence-to-

sequence formulation, beginning with initial work intro-

ducing the task [2]. Subsequent methods have used a

Speaker-Follower technique to generate synthetic instruc-

tions that are used for data augmentation and pragmatic

inference [11], as well as the combination of supervised-

based and RL-based approaches [19, 18]. Recently, the

Self-Monitoring navigation agent was introduced which

learns to estimate progress made towards the goal using vi-

sual and language co-grounding [13]. Prior work employs

beam-search type techniques, though, optimizing for suc-

cess rate at the expense of trajectory length and reduced

applicability to robotics and other domains. Inspired by

the latter work, we view the progress monitor as a learned

heuristic and combine it with other techniques in graph

search, namely backtracking, to use it for action selection,

which was not a focus of the prior work.

Navigation and learned heuristics. Several works in

vision and robotics have explored the intersection of learn-

ing and planning. In robotics, planning systems must of-

ten explore large search trees for getting from start to goal,

and selection of the next state to expand must be done in-

telligently to reduce computation. Often fixed heuristics

(e.g. distance to goal) are used, but these are static, re-

quire known goal locations, and are used for optimal A*-

style algorithms rather than greedy best-first search, which
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is what can be employed on robots when maps are not avail-

able [16]. Recently, several learning-based approaches have

been developed for such heuristics, including older works

that learn residuals for existing heuristics [24], heuristic

ranking methods that enable refinement of new ones [21] as

well as learning of a heuristic policy in a Markov Decision

Process (MDP) formulation to directly optimize search ef-

fort by taking into account history and contextual informa-

tion [4]. In our work, we similarly learn to estimate a heuris-

tic (progress monitor) and use it for action selection, show-

ing that the resulting estimates can generalize to unseen

environments. We also develop an architecture to explic-

itly learn when to backtrack based on this progress monitor

(with a Progress Marker to reduce the chance of choosing

the same action again after backtracking unless warranted),

which further improves navigation performance.

3. Baseline

Given natural language instructions, our task is to train

an agent to follow these instructions and reach an (unspeci-

fied) goal in the environment (see Figure 1 for an example).

This requires processing both the instructions and the vi-

sual inputs, along with attentional mechanisms to ground

them to the current situation. We adapt the recently intro-

duced Self-Monitoring agent [13] as our baseline, which

consists of two primary components: (1) A visual-textual

co-grounding module that grounds to the completed instruc-

tion, the next instruction, and the subsequent navigable di-

rections represented as visual features. (2) A progress moni-

tor that takes the attention weights of grounded instructions

as input and estimates the agent’s progress towards com-

pleting the instruction. It was shown that such a progress

monitor can regularize the attentional mechanism (via an

additional loss), but the authors did not focus on using the

progress estimates for action selection itself. In the follow-

ing, we briefly introduce the Self-Monitoring agent.

Specifically, a language instruction with L words

is represented via embeddings denoted as X =
{
x1,x2, . . . ,xL

}
, where xl is the feature vector for

the l-th word encoded by a Long Short-Term Memory

(LSTM) language encoder. Following [13, 11], we use a

panoramic view as visual input. At the t-th time step, the

agent perceives a set of images at each viewpoint vt =
{
vt,1,vt,2, ...,vt,K

}
, where K is the maximum number of

navigable directions, and vt,k represents the image feature

of direction k obtained from a pre-trained ResNet-152. It

first obtains visual and textual grounded features, v̂t, and

x̂t, respectively, with hidden states from the last time step

ht−1 using soft-attention (see [13] for details). Conditioned

on the grounded features and historical context, it produces

the hidden context of the current step ht:

ht, ct = LSTM([x̂t, v̂t,at−1],ht−1, ct−1),

where [, ] denotes concatenation and ct−1 denote cell states

from the last time step. To further decide where to go next,

the current hidden states ht are concatenated with grounded

instructions x̂t, yielding a representation that contains his-

torical context and relevant parts of the instructions (for ex-

ample, corresponding to parts that have just been carried out

and those that have to be carried out next), to compute the

correlations with visual features for each viewpoint k (vt,k).

Formally, action selection is calculated as follows:

ot,k = (Wa[ht, x̂t])
⊤g(vt,k) and pt = softmax(ot)

where Wa are the learned parameters and g(·) is a Multi-

Layer Perceptron (MLP).

Furthermore, we also equip the agent with a progress

monitor following [13] to enforce the attention weights of

the textual grounding to align with the progress made to-

ward the goal, further regularizing the grounded instruc-

tions to be relevant. The progress monitor is optimized such

that the agent is required to use the attention distribution

of textual grounding to predict the distance from goal. The

output of progress monitor p
pm
t represents the completeness

of instruction-following estimated by the agent.

h
pm
t = σ(Wh([ht−1, v̂t])⊗ tanh(ct))

p
pm
t = tanh(Wpm([αααt,h

pm
t ]))

where Wh and Wpm are the learnt parameters, ct is the cell

state of the LSTM, ⊗ denotes the element-wise product, αt

is the attention weights of textual grounding, and σ is the

sigmoid function. Please refer to [13] for further details on

the baseline architecture.

4. Regretful Navigation Agent

The progress monitor previously mentioned reflects the

agent’s progress made towards the goal, and consequently

its outputs will decrease or fluctuate if the agent selects an

action leading to deviation from the goal. Conversely it will

increase if it moves closer to the goal by completing the in-

struction. We posit that such a property, while conceptually

simple, provides critical feedback for action selection. To

this end, we leverage the outputs of the progress monitor

to allow the agent to regret and backtrack using a Regret

Module and a Progress Marker (see Figure. 2). In partic-

ular, the Regret Module examines the progress made from

the last step to the current step to decide whether to take a

forward or rollback action. Once the agent regrets and rolls

back to the previous location, the Progress Marker informs

whether location(s) have been visited before and rates the

visited location(s) according to the agent’s confidence in

completing the instruction-following task. Combining the

two proposed methods, we show that the agent is able to

perform a local search on the navigational graph by (1) as-

sessing the current progress, (2) deciding when to roll back,
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Figure 2: Illustration of the proposed regretful navigation

agent. Note that the progress monitor is based on [13].

and (3) selecting the next location after rollback occurs. In

the following, we elaborate these two components in detail.

4.1. Regret Module

The Regret Module takes in the outputs of the progress

monitor at different time steps and decides whether to go

forward or to rollback. In particular, we use the concatena-

tion of hidden state ht and grounded instruction x̂t as our

forward embedding m
f
t , and more importantly we intro-

duce a rollback embedding mr
t to be the projection of the

visual features for the action that leads to the previously vis-

ited location. The two vector representations are as follows:

m
f
t = Wa[ht, x̂t] and mr

t = g(vt,r),

where Wa are the learned parameters, x̂t is the grounded

instruction obtained from the textual grounding module,

and vt,r is the image feature vector representing a direction

that points to the previously visited location.

To decide whether to go forward or rollback, the Re-

gret Module leverages the difference of the progress mon-

itor outputs between the current time step and the previ-

ous time step ∆p
pm
t = p

pm
t − p

pm
t−1

. Intuitively, if the

difference is larger than a certain threshold ∆p
pm
t > σ,

the agent should decide to take a forward action, and vice

versa. Since it is hard to decide an optimal value for σ, we

achieve this by computing attention weights α
fr
t and per-

form a weighted sum on both forward and rollback embed-

dings. If the weight on rollback is larger, the agent is likely

to be biased to take an action that leads to the last visited

location. Formally, the weights can be computed as:

α
fr
t = softmax(Wr(∆p

pm
t ))

m
fr
t = (αfr

t )⊤[mf
t ,m

r
t ],

where Wr are the learnt parameters, [, ] denotes concate-

nation between feature vectors, and m
fr
t represents the

weighted sum of the forward and rollback embeddings.

Note that to ensure the progress monitor remains focused

on estimating the agent’s progress and regularizing the tex-

tual grounding module, we detach the output of the progress

monitor which is fed into the Regret Module and set it as a

leaf in the computational graph.

Action selection. Similar to existing work, the agent

determines which image features from navigable directions

have the highest correlation with the movement vector m
fr
t

by computing the inner-product, and the probability of each

navigable direction is then computed as:

ot,k = (Wfrm
fr
t )⊤g(vt,k) and pt = softmax(ot),

where Wfr are the learned parameters and pt is the prob-

ability distribution over navigable directions at time t. In

practice, once the agent takes a rollback action, we block

the action that leads to oscillation.

4.2. Progress Marker

The Regret Module provides a mechanism for the agent

to decide when to rollback to a previous location or move

forward according to the progress monitor outputs. Once

the agent rolls back, it is required to select the next direction

to go forward. It is thus essential for the agent to (1) know

which directions it has already visited (and rolled back) and

(2) estimate if the visited locations can lead to a path which

completes the given instruction.

Toward this end, we propose the Progress Marker to

mark each visited location with the agent’s confidence in

completing the instruction (see Figure 3). More specifically,

we maintain a set of memory M and store the output of the

progress monitor associated with each visited location; if

the location is not yet visited, the marker will be filled with

a value 1:

vmarker
t,k =

{

p
pm
i , if k leads to a location i ∈ M .

1, otherwise.

where i is a unique viewpoint ID for each location. We

allow the marker on each location to be updated every time

the agent visits it.

The marker value on each navigable direction indicates

the estimated confidence that a location leads to the goal.

We assign a value 1 for unvisited directions to encourage

the agent to explore the environment. The navigating prob-

abilities between unvisited directions depend on the action

probabilities pt since their marker values are the same.

Action selection with Progress Marker. During action

selection, in addition to the movement vector m
fr
t that the

agent can rely on in deciding which direction to go, we

propose to label the marker value to each navigation direc-

tion as indications of whether a direction is likely to lead to

the goal or to unexplored (and potentially better) paths. To
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Figure 3: Concept of the proposed Progress Marker (red

flags). The agent marks each visited location with estimated

progress made towards the goal. The changes on the esti-

mated progress determines whether the agent should roll-

back or forward, and the difference between the current es-

timated progress and the markers on the next navigable di-

rections helps the agent decide which direction to go.

achieve this, we leverage the difference between the current

estimated progress and the marker for each navigable direc-

tion ∆vmarker
t,k = p

pm
t − vmarker

t,k . We then concatenate it

to the visual feature representation for each navigable direc-

tion before action selection.

vmarked
t,k = [g(vt,k),∆vmarker

t,k ].

The difference ∆vmarker
t,k indicates the chances of nav-

igable directions leading to the goal and further inform

the agent which direction to select. In our design, lower

∆vmarker
t,k corresponds to higher chance for action selec-

tion. For instance, in step 4 in Figure 3, the ∆vmarker
t,k for

starting location and the last visited location are 0.08 and

-0.02 respectively, whereas an unvisited location will have

-0.71, which eventually leads to 0.52 estimated progress.

When using Progress Marker, the final action selection

is formulated as:

ot,k = (Wfrm
fr
t )⊤vmarked

t,k and pt = softmax(ot)

In practice, we tiled the difference n times before concate-

nating with the projected image feature vt,k in order to ac-

count for imbalance. The marker value for the stop action

is set to be 0.

4.3. Training and Inference

We train the proposed agent with cross-entropy loss for

action selection and Mean Squared Error (MSE) loss for

progress monitor. In addition to these losses, we also in-

troduce an additional entropy loss to encourage the agent to

explore other actions, such that it is not biased to actions

with already very high confidence. The motivation is that,

after training an agent for a period of time, the agent starts

to overfit and perform fairly well on the training set. As a

result, the agent will not learn to properly roll back during

training since the majority of the training samples do not

require the agent to roll back. Introducing the entropy loss

increases the chance of exploration and making incorrect

actions during training.

Lloss = λ

action selection
︷ ︸︸ ︷

T∑

t=1

ynvt log(pt,k)+(1− λ)

progress monitor
︷ ︸︸ ︷

T∑

t=1

(ypmt − p
pm
t )2

− β

T∑

t=1

K∑

k=1

−pt,klog(pt,k)

︸ ︷︷ ︸

entropy loss

,

where pt,k is the action probability of each navigable direc-

tion, ynvt is the ground-truth navigable direction at step t,

λ = 0.5 is the weight balancing the cross-entropy loss and

MSE loss, and β = 0.01 is the weight for entropy loss.

Following existing approaches [13, 11, 2], we perform

categorical sampling during training for action selection.

During inference, the agent greedily selects the action with

highest action probability.

5. Dataset and Implementations

Room-to-Room dataset. We use the Room-to-Room

(R2R) dataset [2] for evaluating our proposed approach.

The R2R dataset is built upon the Matterport3D dataset [6].

It consists of 10,800 panoramic views from 194,400 RGB-

D images in 90 buildings and has 7,189 paths sampled from

its navigation graphs. Each path has three ground-truth nav-

igation instructions written by humans. The whole dataset

has 90 scenes: 61 for training and validation seen, 11 for

validation unseen, 18 for test unseen.

Evaluation metrics. To compare to existing work, we

show the same evaluation metrics used in those works: (1)

Navigation Error (NE), mean of the shortest path distance

in meters between the agent’s final position and the goal

location. (2) Success Rate (SR), the percentage of final

positions less than 3m away from the goal location. (3)

Oracle Success Rate (OSR), the success rate if the agent

can stop at the closest point to the goal along its trajectory.

However, we note the importance of a recently added met-

ric that emphasizes the trade-off between success rate and

trajectory length: Success rate weighted by (normalized in-

verse) Path Length (SPL) [1], which incorporates trajectory

lengths and is an important consideration for real-world ap-

plications such as robotics.

Implementation Details. For fair comparison with ex-

isting work, we use the pre-trained ResNet-152 on Im-

ageNet to extract image features. Following the Self-

6736



Table 1: Comparison with the state of the arts with greedy decoding for action selections1. *: with data augmentation.

Validation-Seen Validation-Unseen Test (unseen)

Method NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑

Random 9.45 0.16 0.21 - 9.23 0.16 0.22 - 9.77 0.13 0.18 0.12

Student-forcing [2] 6.01 0.39 0.53 - 7.81 0.22 0.28 - 7.85 0.20 0.27 0.18

RPA [19] 5.56 0.43 0.53 - 7.65 0.25 0.32 - 7.53 0.25 0.33 0.23

Speaker-Follower [11]* 3.36 0.66 0.74 - 6.62 0.36 0.45 - 6.62 0.35 0.44 0.28

RCM [18]* 3.37 0.67 0.77 - 5.88 0.43 0.52 - 6.01 0.43 0.51 0.35

Self-Monitoring [13]* 3.22 0.67 0.78 0.58 5.52 0.45 0.56 0.32 5.99 0.43 0.55 0.32

Regretful 3.69 0.65 0.72 0.59 5.36 0.48 0.61 0.37 - - - -

Regretful* 3.23 0.69 0.77 0.63 5.32 0.50 0.59 0.41 5.69 0.48 0.56 0.40

Table 2: Ablation study showing the effect of each proposed components compared to the prior arts. All methods here trained

without data augmentation.

Regret Progress Validation-Seen Validation-Unseen

Method # Module Marker NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑

Speaker-Follower [11] 4.86 0.52 0.63 - 7.07 0.31 0.41 -

Self-Monitoring [13] 3.72 0.63 0.75 0.56 5.98 0.44 0.58 0.30

Regretful

1 X 3.88 0.64 0.70 0.58 5.65 0.47 0.59 0.37

2 X 3.76 0.63 0.73 0.57 5.74 0.44 0.59 0.32

3 X X 3.69 0.65 0.72 0.59 5.36 0.48 0.61 0.37

Monitoring [13] and Speaker-Follower [11] works, the em-

bedded feature vector for each navigable direction is ob-

tained by concatenating an appearance feature with a 4-d

orientation feature [sinφ; cosφ; sinθ; cosθ], where φ and θ

are the heading and elevation angles. Please refer to the

Appendix for further implementation details.

6. Evaluation

6.1. Comparison with Prior Art

We first compare the proposed regretful navigation agent

with the state-of-the-art methods [13, 11, 18]. As shown in

Table 1, our method achieves significant performance im-

provement over the existing approaches. We achieved 37%

SPL and 48% SR on the validation unseen set and out-

performed all existing work. Our best performing model

achieves 41% SPL and 50% SR on validation unseen set

when trained with the synthetic data from the Speaker [11].

We demonstrate absolute 8% SPL improvement and 5% SR

improvement on the test server over the current state-of-the-

art method. We can also see that our regretful navigation

agent without data augmentation has already outperformed

1Note that both Speaker-Follower [11] and Self-Monitoring [13] were

originally designed to optimize the success rate (SR) via beam search, and

concurrently to our work, RCM [18] proposed a new setting allowing the

agent to explore unseen environments prior to the navigation task via Self-

Supervised Imitation Learning (SIL).

the existing work on both SR and SPL metrics.

6.2. Ablation Study

Table 2 shows an ablation study to analyze the effect of

each component. The first thing to note is that our method

is significantly better than the Self-Monitoring agent which

uses greedy decoding, even though it still has a progress

monitor loss (although the progress monitor is not used for

action selection). A second interesting point is that when

the Progress Marker is available with the features of each

navigable direction that have been visited before, but the

Regret Module is not available, performance does not in-

crease significantly (44% SR). Note that we also conducted

an experiment with another condition, where the progress

monitor estimates were attached to the forward embedding,

meaning that the network could use that information to im-

prove action selection. That condition again was only able

to achieve modest gains (45% SR), compared to our Re-

gret Module which was able to achieve 47% SR (and 48%

when the Progress Marker was added). In all, this shows

that the key improvement stems from the design of the Re-

gret Module, allowing the agent to intelligently backtrack

after making mistakes.

6.3. Rollback Analysis

We now further analyze the behavior of the agent to ver-

ify that the source of improvement is indeed from the ability
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Table 3: Sanity check for verifying that the source of performance improvement is from the agent’s ability to roll back.

Blocking Validation-Seen Validation-Unseen

Method Rollback NE ↓ SR ↑ OSR ↑ SPL ↑ NE ↓ SR ↑ OSR ↑ SPL ↑

Self-Monitoring [13]
3.72 0.63 0.75 0.56 5.98 0.44 0.58 0.30

X 3.85 0.64 0.75 0.58 6.02 0.44 0.60 0.34

Regretful
3.69 0.65 0.72 0.59 5.36 0.48 0.61 0.37

X 3.91 0.64 0.68 0.60 5.80 0.46 0.55 0.41

Regretful

Self-Monitoring

Figure 4: Percentage of unsuccessful examples involving

rollback reduced by our proposed regretful agent.

to learn when to roll back.

Does rollback lead to the performance improvement?

Our proposed regretful agent relies on the ability to regret

and roll back to a previous location, further exploring the

unknown environment to increase the success rate. As a

sanity check, we manually block all actions leading to roll-

back for both the state-of-the-art Self-Monitoring agent and

our regretful agent2. The result is shown in Table 3. As can

be seen, blocking rollback for the Self-Monitoring agent

produces mixed results, with worse NE but better metrics

such as OSR. The SR, however, is unchanged. On the other

hand, blocking rollback for our agent significantly reduces

most metrics including NE, SR, and OSR especially on un-

seen environments. This shows that blocking the ability to

learn when to roll back degrades a large source of perfor-

mance increase, and this is especially true for unseen envi-

ronments.

Number of unsuccessful examples reduced. We cal-

culate the total number of unsuccessful examples involves

rollback action for both Self-Monitoring and our proposed

agent (in percentage). As demonstrated in Figure 4, our pro-

posed regretful agent significantly reduces the unsuccessful

examples from around 43% to 38%, which correlates to the

4-5% improvement on SR in Table 1 and 2.

Regretful agent in unfamiliar environments. The key

to the performance increase of an agent focusing on the

2except when there is only one navigable direction to go.

Table 4: Ablation study when trained using only the syn-

thetic or real training data. Oracle Navigation Error (ONE):

the navigation error if the agent can stop at the closest point

to the goal along its trajectory.

Validation-Unseen

Method Synthetic Real ONE ↓ SR ↑ OSR ↑

Self-Monitoring [13]
X 4.09 0.35 0.49

X 3.62 0.44 0.58

Regretful
X 3.47 0.41 0.58

X 3.34 0.48 0.61

rollback ability is not that the agent learns a better textual

or visual grounding, but that the agent learns to search es-

pecially when it is not certain which direction to go. To

demonstrate this, we train both the Self-Monitoring agent

and our proposed regretful agent only on synthetic data and

test them on the unseen validation set (real data). We expect

the regretful agent to outperformed the Self-Monitoring

agent across all metrics since our agent is designed to oper-

ate in an environment where the agent is likely to be un-

certain on action selection. As shown in Table 4, when

trained using only the synthetic data, our method signifi-

cantly outperformed Self-Monitoring agent. Interestingly,

when compared with the Self-Monitoring agent trained with

real data, our agent trained with synthetic data is slightly

better on ONE, same on OSR, and marginally lower on SR.

We achieved slightly better performance on oracle metrics

since stopping at the correct location is not a hard constrain.

This indicates that even though our regretful agent is not yet

learned how to properly stop at the goal (due to training on

synthetic data only), the chance that it passes/reaches the

goal is slightly higher than Self-Monitoring agent trained

with real data. Further, when the regretful agent trained with

real data, the performance improved across all metrics.

6.4. Qualitative Results

Figures 5 show qualitative outputs of our model during

successful navigation in unseen environments. In Figure 5

(a), the agent made a mistake at the first step, and the esti-

mated progress at the second step slightly decreases. The

agent then decides to rollback, after which the progress

monitor significantly increases. Finally, the agent stopped
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Figure 5: Successful regretful agent navigates in unseen environments. (a) The agent made a mistake at the first step, but

it was able to roll back to the previous location since the output of the progress monitor was not significantly increased. It

then follows the rest of the instruction correctly. (b) The agent is able to correctly follow the instruction at the beginning but

made a mistake by walking up the stairs again. The agent realized that the output of the progress monitor is decreased and

the next action take a right is not feasible and decides to rollback rollback at step 4. The agent was then able to follow the

rest of the instruction and stop with estimated progress 0.95. (c) The agent made a mistake by missing the stairs at step 1. It

was however able to decide to rollback at step 2 and moves down stairs as instructed and successfully stops near the bamboo

plant with estimated progress 0.99. Please see Appendix for the full trajectories.

correctly as instructed. Figure 5 (b) shows an example

where the agent correctly goes up the stairs but incorrectly

does it again rather than turning and finding the TV as in-

structed. Note that the progress monitor increases but only

by a small amount; this demonstrates the need for learned

mechanisms that can reason about the textual and visual

grounding and context, as well as the resulting level of

change in progress. In this case the agent then correctly de-

cides to rollback and successfully walked into the TV room.

Similarly, in Figure 5 (c), the agent misses the stairs, result-

ing in a very small progress increase. The agent decides

to rollback as a result. Upon reaching the goal, the agent’s

progress estimate is 99%. Please refer to the Appendix for

the full trajectories and unsuccessful examples.

7. Conclusion

In this paper, we have proposed an end-to-end train-

able regretful navigation agent for the VLN task. We use

a progress monitor as a learned heuristic that can be trained

and employed during inference to greedily select the next

best action (best-first search). We then propose a Regret

Module that is able to learn to decide when to perform back-

tracking depending on the progress made and state of the

agent. Finally, a Progress Marker is used to allow the agent

to reason about previous visits and unvisited directions, so

that the agent can choose a better navigable direction by re-

ducing action probabilities for visited locations with lower

progress estimate. The resulting framework achieved state-

of-the-art SR and SPL compared to existing methods with-

out using beam search on the public leaderboard.
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