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Abstract

In interactive instance segmentation, users give feedback

to iteratively refine segmentation masks. The user-provided

clicks are transformed into guidance maps which provide

the network with necessary cues on the whereabouts of the

object of interest. Guidance maps used in current systems

are purely distance-based and are either too localized or

non-informative. We propose a novel transformation of

user clicks to generate content-aware guidance maps that

leverage the hierarchical structural information present in

an image. Using our guidance maps, even the most basic

FCNs are able to outperform existing approaches that re-

quire state-of-the-art segmentation networks pre-trained on

large scale segmentation datasets. We demonstrate the ef-

fectiveness of our proposed transformation strategy through

comprehensive experimentation in which we significantly

raise state-of-the-art on four standard interactive segmen-

tation benchmarks.

1. Introduction

Interactive object selection and segmentation allows

users to interactively select objects of interest down to

the pixel level by providing inputs such as clicks, scrib-

bles, or bounding boxes. The segmented results are use-

ful for downstream applications such as image/video edit-

ing [6, 30], image-based medical diagnosis [50, 51], human-

machine collaborative annotation [2], etc. GrabCut [45] is a

pioneering example of interactive segmentation which seg-

ments objects from a user-provided bounding box by iter-

atively updating a colour-based Gaussian mixture model.

Other methods include Graph Cuts [7], Random Walk [18]

and GeoS [13] though more recent methods [32, 35, 36, 52,

53] approach the problem with deep learning architectures

such as convolutional neural networks (CNNs).

In standard, non-interactive instance segmentation [4,

15, 21, 22, 23], the RGB image is given as input and seg-

mentation masks for each object instance are predicted. In

an interactive setting, however, the input consists of the

Figure 1. Existing interactive instance segmentation [26, 31, 32,

53] techniques do not utilize any image information when gener-

ating guidance maps (second column). In contrast, our proposed

technique exploits image structures such as superpixels and ob-

ject proposals, allowing us to generate more informative guidance

maps (first column, bottom row).

RGB image as well as ‘guidance’ maps based on user-

provided supervision. The guidance map helps to select the

specific instance to segment; when working in an iterative

setting, it can also help correct errors from previous seg-

mentations [6, 32, 35, 53].

User feedback is typically given as clicks [26, 31, 32, 35,

36, 53] or bounding boxes [52] and are then transformed

into guidance signals fed as inputs into the CNN. By work-

ing with high-level representations encoded in pre-trained

CNNs, the number of user interactions required to gen-

erate quality segments have been greatly reduced. How-

ever, there is still a large incongruence between the im-

age encoding versus the guidance signal, as user interac-

tions are transformed into simplistic primitives such as Eu-

clidean [53, 31, 26] or Gaussian distance maps [6, 35, 36],

the latter being the preferred choice in more recent works

due to their ability to localize user clicks [35]. Examples of

such guidance maps can be found in Fig. 1 second column,

first row and second row respectively.
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Our observation is that current guidance signals disre-

gard even the most basic image consistencies present in the

scene, such as colour, local contours, and textures. This

of course also precludes even more sophisticated structures

such as object hypotheses, all of which can be determined

in an unsupervised way. As such, we are motivated to max-

imize the information which can be harnessed from user-

provided clicks and generate more meaningful guidance

maps for interactive instance segmentation.

To that end, we propose a simple yet effective transfor-

mation of user clicks which enables us to leverage a hierar-

chy of image information, starting from low-level cues such

as appearance and texture, based on superpixels, to more

high-level information such as class-independent object hy-

potheses (see Fig. 3). Ours is the first work to investigate

the impact of guidance map generation for interactive seg-

mentation. Our findings suggest that current Gaussian- and

Euclidean distance based maps are too simple and do not

fully leverage structures present in the image. A second

and common drawback of current distance-based guidance

maps is that they fail to account for the scale of the object

during interaction. Object scale has a direct impact on the

network performance when it comes to classification [41] or

segmentation [40]. Gaussian- and Euclidean distance maps

are primarily used for localizing the user clicks and do not

account for the object scale. Our algorithm roughly esti-

mates the object scale based on the user-provided clicks and

refines the guidance maps accordingly.

Our approach is extremely flexible in that the gener-

ated guidance map can be paired with any method which

accepts guidance as a new input channel [53, 32, 35, 6].

We demonstrate via experimentation that providing content-

aware guidance by leveraging the structured information in

an image leads to a significant improvement in performance

when compared to the existing state-of-the-art, all the while

using a simple, off-the-shelf, CNN architecture. The key

contributions of our work are as follows :

• We propose a novel transformation of user-provided

clicks which generates guidance maps by leveraging

hierarchical information present in a scene.

• We propose a framework which can account for the

scale of an object and generate the guidance map ac-

cordingly in a click-based user feedback scheme.

• We perform a systematic study of the impact of guid-

ance maps on the interactive segmentation perfor-

mance when generated based on features at different

levels of the image hierarchy.

• We achieve state-of-the-art performance on four seg-

mentation benchmarks; our proposed method signifi-

cantly reduces the amount of user interaction required

for accurate segmentation and uses the fewest number

of average clicks per instance.

2. Related Works

Segmenting objects interactively using clicks, scribbles,

or bounding boxes has always been a problem of interest

in computer vision research, as it can solve some quality

problems faced by fully-automated segmentation methods.

Early variants of interactive image segmentation methods,

such as the parametric active contour model [27] and intel-

ligent scissors [39] mainly considered boundary properties

when performing segmentation; as a result they tend to fare

poorly on weak edges. More recent methods are based on

graph cuts [7, 45, 49, 30], geodesics [5, 13], and or a combi-

nation of the two [19, 44]. However, all these algorithms try

to estimate the foreground/background distributions from

low-level features such as color and texture, which are un-

fortunately insufficient in several instances, e.g. in images

with similar foreground and background appearances, intri-

cate textures, and poor illumination.

As with many other areas of computer vision, deep

learning-based methods have become popular also in inter-

active segmentation in the past few years. In the initial work

of [53], user-provided clicks are converted to Euclidean

distance transform maps which are concatenated with the

color channels and fed as input to a FCN [34]. Clicks are

then added iteratively based on the errors of the previous

prediction. On arrival of each new click, the Euclidean

distance transform maps are updated and inference is per-

formed. The process is repeated until a satisfactory result

is obtained. Subsequent works have focused primarily on

making extensions with newer CNN architectures [35, 6]

and iterative training procedures [35, 32]. In the majority of

these works, user guidance has been provided in the form of

point clicks [53, 35, 32, 36, 31] which are then transformed

into a Euclidean-based distance map [53, 31]. One obser-

vation made in [6, 35, 36] was that encoding the clicks as

Gaussians led to some performance improvement because it

localizes the clicks better [35] and can encode both positive

and negative click in a single channel [6]. In [9], the authors

explore the use of superpixels to generate the guidance map.

However, in contrast to [9] which uses superpixels to

maintain computational efficiency w.r.t. to their graph op-

timization, our guidance maps uses superpixels to leverage

the local similarities contained within it. This is a general

principle that we carry across image structures of varying

levels for encoding user inputs. For the most part, there has

been little attention paid to how user inputs should be incor-

porated as guidance; the main focus in interactive segmenta-

tion has been dedicated towards the training procedure and

network architectures.

3. Proposed Approach

We follow previous interactive frameworks [53, 32, 35,

6] in which a user can provide both ‘positive’ and ‘negative’
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Figure 2. Outline. Given an input image and user interactions, we transform the positive and negative clicks (denoted by the green and

red dots respectively) into three separate channels (2 channel superpixel-based and 1 object proposal-based guidance map), which are

concatenated (denoted as ⊕) with the 3-channel image input and is fed to our network. Additionally, we concatenate the euclidean distance

transform of the predicted mask from the previous iteration as our final non-color channel. The solid green line indicates our estimate of

the object scale based on the initial pair of positive and negative click. The output is the ground truth map of the selected object.

clicks to indicate foreground and background/other objects

respectively (as shown in Fig. 2). We denote the set of click

positions as {p0,p1} with subscripts 0 and 1 for positive

and negative clicks respectively. To date, guidance maps

have been generated by as a function of the distance be-

tween each pixel of the image grid to the point of interac-

tion. More formally, for each pixel position p on the image

grid, the pair of distance-based guidance maps for positive

and negative clicks can be computed as

Gd
0
(p) = min

c∈{p0}
d(p, c) and Gd

1
(p) = min

c∈{p1}
d(p, c). (1)

In the case of Euclidean guidance maps [53], the function

d(·, ·) is simply the Euclidean distance.

However, such guidance is image-agnostic and assumes

that each pixel in the scene is independent. Our proposed

approach eschews this assumption and proposes the gen-

eration of multiple guidance maps which align with both

low-level and high-level image structures present in the

scene. We represent low-level structures with superpixels

and high-level ones with region-based object proposals and

describe how we generate guidance maps from these struc-

tures in Sections 3.1 and 3.2.

3.1. Superpixel­based guidance map

We first consider a form of guidance based on non-

overlapping regions; in our implementation, we use su-

perpixels. Superpixels group together locally similarly

coloured pixels while respecting object boundaries [1] and

were the standard working unit of pre-CNN-based segmen-

tation algorithms [42, 17]. Previous works have shown that

most, if not all, pixels in a superpixel belong to the same

category [17, 42, 25]. Based on this observation, we propa-

gate user-provided clicks which are marked on single pixels

to the entire superpixel. We then assign guidance values

to each of the other superpixels in the scene based on the

minimum Euclidean distance from the centroid of each su-

perpixel to the centroid of a user-selected superpixel. One

can think of the guidance as a discretized version of Eq. 1

based on low-level image structures.

More formally, let {S} represent the set of superpixels

from an image and fSP (p) be a function which maps each

pixel location p in the image to the corresponding super-

pixel in {S}. We further define a positive and negative su-

perpixel set based on the positive and negative clicks, i.e.

{s0 = fSP (p0)} and {s1 = fSP (p1)} respectively. Simi-

lar to the distance-based guidance maps in Eq. 1, we gener-

ate a pair of guidance maps. However, rather than treating

each pixel individually, we propagate the distances between

superpixel centers to all pixels within each superpixel, i.e.

Gsp
t (p) = min

s∈{st}
dc (s, fSP (p)) , where t = {0, 1}, (2)

and dc(si, sj) is the Euclidean distance between the centers

sci and scj of superpixels si and sj respectively, where sci =
(
∑

i xi/|si|,
∑

i yi/|si|) where |si| denotes the number of

pixels within si. For consistency across training images, the

guidance maps values are scaled between [0, 255]. When

the user provides no clicks, all pixel values are set to 255.

Examples guidance maps are shown in the second and third

column of Fig. 3 respectively.

3.2. Object­based guidance map

Superpixels can be grouped together perceptually into

category-independent object proposals. We also generate

guidance maps from higher-level image structures, specifi-

cally region-based object proposals [3, 29, 37, 43, 47]. Such

proposals have been used in the past as weak supervision
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Figure 3. Example of guidance maps. We transform the user-provided positive (shown as green dots) and negative (shown as red dots)

clicks into guidance maps for the instance segmentation network (columns 2 to 5). The second and third column correspond to the positive

and negative superpixel based guidance map respectively. Examples of the object based guidance map and the scale-aware guidance map

are shown in columns 4 and 5 respectively. For the clarity of visualization, we inverted the values of the object-based guidance map and

the scale-aware guidance map (Best viewed in color).

for semantic segmentation [28, 14] and allow us to incorpo-

rate a weak object-related prior to the guidance map, even if

the instance is not explicitly specified by the user-provided

clicks. To do so, we begin with a set of object propos-

als [43], which have positive clicks its pixel support. For

each pixel in the guidance map, we count the number of

proposals from this set to which the pixel belongs. Pix-

els belonging to same object proposals are more likely to

belong in the same object category and the number of pro-

posals to which pixels belong incorporates a co-occurrence

prior with respect to the current positive clicks.

More formally, let {Lp} be the set of object proposals for

an image with support of pixel location p. The object-based

guidance map can be generated as follows:

Go(p) =
∑

p′∈{p0}

∑

L∈{Lp′}

1[p ⊂ L] (3)

where 1[p ⊂ L] is an indicator function which returns 1

if object proposal L has in its support or contains pixel p.

Similar to the superpixel-base guidance map, the object-

based guidance is also re-scaled to [0, 255]. In the absence

of user-provided clicks, all pixels are set to the value of 0.

Examples are shown in the fourth column of Fig. 3.

3.3. Scale­aware guidance

Within an image, object instances can exhibit a large

variation in their spatial extent [46]. While deep CNNs

are known for their ability to handle objects at different

scales [10], specifying the scale explicitly leads to an im-

provement in performance [41]. Interactive instance seg-

mentation methods [36] which isolate the object tend to

have a superior performance. For segmenting object in-

stances, it is thus desirable to construct guidance maps

which exhibit spatial extents consistent with the object.

A common limitation of most click-based interactive ap-

proaches is that the provided guidance is non-informative

about scaling of the intended object instance. The com-

monly used forms of guidance are either too localized [35]

(guidance map values are clipped to 0 at a distance of 20

pixels from the clicks) or non-informative [53].

Suppose now that we have some rough estimate of an ob-

ject’s scale in pixels, either in width or length. A convenient

way to make our guidance maps scale-aware is to incorpo-

rate contributions of superpixels and object proposals which

are in agreement with this scale. More specifically, we can

apply this to the superpixel guidance map by truncating dis-

tances exceeding some factor f of our scale measure s, i.e.

Gsp-sc
t (p) = min

[

Gsp
t (p), fs

]

. (4)

We can apply similar constraints to the object-proposal

based guidance by considering only the proposals within an

accepted size range bounded by tolerance factors f1 and f2:

Go-sc(p) =
∑

p′∈{p0}

∑

L∈{Lp′}

1[p ⊂ L]·1[f1 ≤ |L|/s2 ≤ f2].

(5)
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3.4. Simulating user interactions

Even when selecting the same object instance, it is un-

likely that different users will provide the same interactions

inputs. For the model to fully capture expected behaviour

across different users, one would need significant amounts

of interaction training data. Rather than obtaining these

clicks from actual users for training, we simply simulate

user clicks and generate guidance maps accordingly.

We follow the sampling strategies proposed in [53]. For

each object instance, we sample Npos positive clicks within

the object maintaining a distance din
1

pixels from the ob-

ject boundary and din
2

pixels from each other. For nega-

tive clicks, we test the first two of the three sampling strate-

gies outlined in [53], one in which N1

neg clicks are sampled

randomly from the background, ensuring a distance of dout
1

pixels away from the object boundary and dout
2

pixels from

each other and one in which N2

neg clicks on each of the neg-

ative objects (objects not of interest).

The above click-sampling strategy helps the network to

understand notions such as negative objects and background

but cannot train the network to identify and correct errors

made during the prediction [35]. To this end, we also ran-

domly sample Niter clicks based on the segmentation er-

rors. After an initial prediction is obtained, positive or neg-

ative clicks are randomly sampled from the error. Existing

set of clicks are then replaced with the newly sampled clicks

with a probability of 0.3. To mimic a typical user’s behav-

ior [35], the error-correction clicks are placed closest to the

center of the largest misclassified region.

To estimate the scale measure s, we reserve the first two

clicks, one positive and one negative, and assume that the

Euclidean distance between the two is a roughly propor-

tional measure; f , f1 and f2 are then set accordingly.

4. Experimental Validation

4.1. Datasets & Evaluation

We apply our proposed guidance maps and evaluate the

resulting instance segmentations on four publicly available

datasets: PASCAL VOC 2012 [16], GrabCut [45], Berke-

ley [38], and MS COCO [33].

PASCAL VOC 2012 consists of 1464 training images and

1449 validation images spread across 20 object classes.

GrabCut consists of 50 images with the corresponding

ground truth segmentation masks and is a used as a com-

mon benchmark for most interactive segmentation methods.

Typically, the images have a very distinct foreground and

background distribution.

Berkeley consists of 100 images with a single foreground

object. The images in this dataset represent the various chal-

lenges encountered in an interactive segmentation setting

such as low contrast between the foreground and the back-

ground, highly textured background etc.

MS COCO is a large-scale image segmentation dataset

with 80 different object categories, 20 of which are from

the Pascal VOC 2012 dataset. For fair comparison with [53,

32], we randomly sample 10 images per category for eval-

uation and splitting the evaluation for the 20 Pascal cate-

gories versus the 60 additional categories.

Evaluation Fully automated instance segmentation is usu-

ally evaluated with mean intersection over union (mIoU)

between the ground truth and predicted segmentation mask.

Interactive instance segmentation is differently evaluated

because a user can always add more positive and negative

clicks to improve the segmentation and thereby increase the

mIoU. As such, the established way of evaluating an in-

teractive system is according to the number of clicks re-

quired for each object instance to achieve a fixed mIoU.

Like [53, 32, 35, 6], we limit the maximum number of clicks

per instance to 20. Note that unlike [53, 32], we do not ap-

ply any post-processing with a conditional random field and

directly use the segmentation output from the FCN.

4.2. Implementation Details

Training As our base segmentation network, we adopt the

FCN [34] pre-trained on PASCAL VOC 2012 dataset [16]

as provided by MatConvNet [48]. The output layer is re-

placed with a two-class softmax layer to produce binary

segmentations of the specified object instance. We fine-

tune the network on the 1464 training images with instance-

level segmentation masks of PASCAL VOC 2012 seg-

mentation dataset [16] together with the 10582 masks of

SBD [20]. We further augment the training samples with

random scaling and flipping operations. We use zero ini-

tialization for the extra channels of the first convolutional

layer (conv1 1). Following [53], we fine-tune first the

stride-32 FCN variant and then the stride-16 and stride-8
variants. The network is trained to minimize the average bi-

nary cross-entropy loss.For optimization, we use a learning

rate of 0.01 and stochastic gradient descent with Nesterov

momentum with the default value of 0.9 is used.

Click Sampling We generate training images with a va-

riety of click numbers and locations; sometimes, clicks

end up being sampled from the same superpixel, which

reduces training data variation. To prevent this and also

make the network more robust to the click number and lo-

cation for training, we sample randomly from the follow-

ing hyperparameters rather than fixing them to single val-

ues: Npos = {2, 3, 4, 5}, N1

neg = {5, 10}, N2

neg = {3, 5},

din
1

= {15, 20, 40}, din
2

= {7, 10, 20}, dout
1

= {15, 40, 60},

dout
2

= {10, 15, 25}. The randomness in the number of

clicks and their relative distances prevents the network from

over-fitting during training.
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Guidance Dropout Since the FCNs are pre-trained on

PASCAL VOC 2012, we expect the network to return a

good initial prediction for images with object instances

from one of its 20 classes. Thus, during training, when

the network receives images without any instance ambigu-

ity (i.e. an image with single object), we zero the guidance

maps (value of 0 for object guidance map and 255 for the

superpixel based guidance map) with a probability of 0.2 to

encourage good segmentations without any guidance. We

further increase robustness by resetting the positive or neg-

ative superpixel-based guidance with a probability of 0.4.

Interaction Loop During evaluation, a user provides pos-

itive and negative clicks sequentially to segment the object

of interest. After each click is added, the guidance maps

are recomputed; in addition the a distance transform of pre-

dicted mask from the previous iteration is provided as an

extra channel [35]. The newly generated guidance map is

concatenated with the image and given as input to the FCN-

8s network which produces an updated segmentation map.

Superpixels & Object Proposals We use the implemen-

tation provided in [43] for generating superpixels; on aver-

age, each frame has 500 − 1000 superpixels. For compari-

son, we also try other superpixelling variants e.g. SLIC [1]

and CTF [54]. Although several object proposal algorithms

exist [47, 8, 43], we use only MCG [43] as it has been shown

to have higher quality proposals [14]. The final stage of

MCG returns a ranking which we disregard. We use the

pre-computed object proposals for PASCAL VOC 2012 and

MS COCO provided by the authors of [43]. For GrabCut

and Berkeley, we run MCG [43] on the ‘accurate’ setting to

obtain our set of object proposals.

4.3. Impact of Structure­Based Guidance

We begin by looking at the impact of superpixel based

guidance. As a baseline, we compare with [53], which

uses a standard Euclidean distance-based guidance as given

in Eq. 1 (see examples in second row of Fig. 1). Sim-

ilar to [53], we concatenate our positive and negative

superpixel-based guidance maps with the three color chan-

nels and feed it as an input to the FCN-8s [34]. We use the

superpixels computed using MCG [43]. For a fair compari-

son, we train our network non-iteratively, i.e., during train-

ing, we do not generate click samples based on the error in

the prediction and do not append the distance transform of

the current predicted mask as an extra channel. Looking at

Table. 1, we see that our superpixel based guidance maps

significantly reduce the number of clicks required to reach

the standard mIoU threshold.

The object-based guidance provides the network with a

weak localization prior of the object of interest. adding the

object-based guidance with the superpixel based guidance

leads to further improvements in performance (see third row

of Table. 1). The impact is more prominent for datasets with

a single distinct foreground object (e.g. 9.3% and 14% rel-

ative improvement for the Berkeley and GrabCut dataset).

Finally, by making the feedback iterative, i.e. based on pre-

vious segmentation errors, we can further reduce the num-

ber of clicks. Overall, our structure-based guidance maps

can reduce the number of clicks by 35% to 47% and un-

equivocally proves that having structural information in the

guidance map is highly beneficial.

GrabCut Berkeley VOC 2012
@90% @90% @85%

Euclidean ([53]) 6.04 8.65 6.88

SP 4.44 6.67 4.23

SP + Obj. 3.82 6.05 4.02

SP + Obj. + Iter 3.58 5.60 3.62

Table 1. Clicks required for different types of guidance. Guid-

ance maps leveraging structural information require significantly

less clicks than Euclidean distance-based guidance. SP refers to

the superpixel guidance maps and Obj refers to the obect based

guidance map and Iter refers to iterative training.

4.4. Impact of Scale­Aware Guidance

Due to fixed-size receptive field, FCNs experience diffi-

culty when segmenting small objects [40]. The benefits of

our scale-aware guidance map is most pronounced for seg-

menting small objects; for large objects (¿ 32×32 pixels), it

does not seem to much effect. To highlight the impact of our

guidance on small object instances, we pick the subset of

621 objects (from PASCAL VOC 2012) which are smaller

than 32 × 32; objects smaller than this size are harder to

identify [46].

In the scale agnostic setting, we consider all object pro-

posals which has the click in its pixel support for generat-

ing the object-based guidance map, i.e. (as shown in Equa-

tion. 3; note that this is equivalent to having f1 = 0, f2 =
∞). Since the lower bound on scale has little effect, we

set f1 = 0. Looking at the average number of clicks re-

quired per instance to reach 85% mIoU for the subset of

small objects (see Fig. 4 (a)), we find that having a soft

scale estimate improves the network performance when it

comes to segmenting smaller objects. This is primarily be-

cause the guidance map disregards object proposals which

are not consistent in scale and can degrade the network per-

formance by inducing a misleading co-occurrence prior.

When the scale s is based on ground truth (as the square

root of the number of pixels in the mask foreground, see

black curve in Fig. 4 (a)), the average clicks required per

instance is consistently lower than the scale-agnostic case,

even when as we relax f2 up to 6, i.e. allowing for object
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Figure 4. (a) Scale-Aware Guidance. The figure shows the average number of clicks required for segmenting small object instances

(smaller than 32× 32 pixels [46]) for varying degrees of tolerance till which we accept object proposals for generating our guidance map

based on our estimated object scale and the ground truth object scale (computed as the square root of the number of pixels in the object

mask). (b) Number of superpixels. The figure shows the average number of clicks required for segmenting object instances in PASCAL

VOC 12 val set for different number of superpixels.

proposals which are 6 times larger than the actual object

scale. Estimating the scale from the clicks is of course

much less accurate than when it is take from the ground

truth masks (compare black curve vs blue curve in Fig. 4

(a)). Nevertheless, even with such a coarse estimate, we

find improvements in the number of clicks required as com-

pared to the scale-agnostic scenario (compare red dashed

line in Fig. 4 (a)). Given the first pair of positive and neg-

ative clicks, our estimated object scale is
√
πd where d is

the euclidean distance between the positive and the nega-

tive click. In our experiments, we observed that our es-

timated scale varies between 50 − 300% from the ground

truth scale). In comparison to a scale-agnostic setting, over

the PASCAL VOC 2012 val set, we observe an improve-

ment of 0.1 clicks on the small objects subset and an im-

provement of 0.032 clicks per instance for objects larger

than 32× 32 pixels.

Segmenting small objects with CNNs can be problem-

atic [40]; we observed similar difficulties in preliminary ex-

periments. For objects smaller than 32 × 32 pixels from

PASCAL VOC 2012 val set, we require an average of 4.33
clicks which is significantly higher than our dataset average

of 3.62 clicks.

4.5. Superpixels

Type of Superpixels To study the impact of the super-

pixeling algorithm, we consider the two variants SLIC [1]

and CTF [54] and use only the superpixel based guidance

map. On an average, MCG [43] generates 500 − 1000 su-

perpixels for each image in its default setting. For a fair

comparison, we generate 500 and 1000 superpixels using

SLIC and CTF. We observe that using 1000 SLIC superpix-

els results in performance similar to the MCG. However, ir-

respective of the superpixeling method, we found an overall

improvement when the guidance maps are generated based

on superpixels instead of pixel-based distances.

#superpixels SLIC [1] CTF [54] MCG [43]

500 4.45 4.82
4.23

1000 4.29 4.58

Table 2. Choice of superpixel algorithm

Number of Superpixels For this study, we consider only

the superpixel-based map as guidance and use SLIC [1] as

the superpixel algorithm. In the extreme case, all superpix-

els will have one pixel in its support and the guidance map

degenerates to the Euclidean distance transform commonly

used in existing interactive methods [53, 31]. We use the

reported results in iFCN [53] on PASCAL VOC 2012 val

set as our degenerate case (as shown by the red curve in

Fig. 4 (b)). In addition to the reported results for 500 and

1000 superpixels on PASCAL VOC 2012 val set (as shown

in Table 4 of the paper), we generate 2000, 5000 and 10000
superpixels using SLIC [1]. We notice an initial gain in per-

formance, but with increase in the number of superpixels,

the performance drops as our network requires more and

more clicks to segment the object of interest. As the num-

ber of superpixels increase, the benefits of local structure

based grouping is lost as each superpixel is segmented into

similar and redundant superpixels.
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Method Base GrabCut Berkeley PascalVOC12 MS-COCO MS-COCO

Network @90% @90% @85% seen@85% unseen@85%

iFCN [53] FCN-8s [34] 6.04 8.65 6.88 8.31 7.82

RIS-Net [32] DeepLab-LargeFOV [10] 5.00 6.03 5.12 5.98 6.44

ITIS [35] DeepLabV3+ [12] 5.60 - 3.80 - -

DEXTR [36] DeepLabV2 [11] 4.00 - 4.00 - -

VOS-Wild [6] ResNet-101 [24] 3.80 - 5.60 - -

FCTSFN [26] Custom 3.76 6.49 4.58 9.62 9.62

IIS-LD [31] CAN [55] 4.79 - - 12.45 12.45

Ours FCN-8s [34] 3.58 5.60 3.62 5.40 6.10

Table 3. The average number of clicks required to achieve a particular mIoU. The best results are indicated in bold.

4.6. Comparison to State of the Art

We compare the average number of clicks required to

reach some required mIoU (see Table 3) against other meth-

ods reported in the literature. The methods vary in the base

segmentation network from the basic FCNs to the highly

sophisticated DeepLabV3 and also make use of additional

CRF post-processing. We achieve the lowest number of

clicks required for all datasets across the board, again prov-

ing the benefits of applying guidance maps based on exist-

ing image structures. We report results for our best trained

SP+Obj+Iter network. To reach the mIoU threshold of 90%
on GrabCut and Berkeley, our full model needs the fewest

number of clicks as shown in Table 3 with a relative im-

provement of 5.79% and 7.13% over the current bench-

mark. For PASCAL VOC 2012 val set, we observe a rel-

ative improvement of 4.7%. For MS COCO, we observe a

larger improvement for the 20 seen categories from PAS-

CAL VOC 2012, as our networks were trained heavily on

these object categories. Overall, we achieve an improve-

ment of 9.7% and 5.28% over the 20 seen and 60 unseen

object categories. We note that such an improvement is

achieved despite the fact that our base network is the most

primitive of the methods compared, i.e. an FCN-8s, in com-

parison to the others who use much deeper (ResNet-101)

and more complex (DeepLabV3) network architectures. It

should be noted that FCTSFN [26] and IIS-LD [31] report

their result over all the 80 classes of MS COCO and not

separately for 20 seen and 60 unseen classes.

We also compare our approach to that of [9]. [9] targets

images with only a single foreground objects. To be com-

parable, we consider only our results with a single positive

(foreground) click. We find that for the GrabCut and Berke-

ley dataset, our mIoU is higher by 4% and 8% respectively.

5. Discussion & Conclusion

In this work, we investigated the impact of the guid-

ance maps for interactive object segmentation. Conven-

tional methods use distance transform based approaches for

generating guidance maps which disregard the inherent im-

age structure. We proposed a scale aware guidance map

generated using hierarchical image information which leads

to significant reduction in the average number of clicks re-

quired to obtain a desirable object mask.

During experimentation, we observed that the object in-

stances within the datasets varied greatly in difficulty. For

instance, on PASCAL VOC 2012, the base network, with-

out any user guidance, is able to meet the ≥ 85% mIoU

criteria for 433 of the 697 instances. Similarly observations

were made for GrabCut (≥ 90% mIoU, 13 out of 50) and

Berkeley (≥ 90% mIoU, 15 out of 100). On the other hand,

we encountered instances where our algorithm repeatedly

exhausted the 20 click budget regardless of sampled click

locations and iterative feedback based on prediction errors.

This is especially true for objects with very fine detailing,

such as such as spokes in bicycle wheels, partially occluded

chairs, etc. Based on these two extreme cases, we conclude

that interactive segmentation is perhaps not so relevant for

single object instances featuring prominently at the center

of the scene and should feature more challenging scenar-

ios. On the other hand, we need to design better algorithms

which can handle objects that are not contiguous in region,

i.e. has holes and are able to handle scenarios of occlusion.

Depending on the target application, dedicated base archi-

tectures may be necessary to efficiently handle these cases.
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