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Abstract

Researchers have observed that Visual Question Answer-

ing (VQA ) models tend to answer questions by learning

statistical biases in the data. For example, their answer to

the question “What is the color of the grass?” is usually

“Green”, whereas a question like “What is the title of the

book?” cannot be answered by inferring statistical biases.

It is of interest to the community to explicitly discover such

biases, both for understanding the behavior of such mod-

els, and towards debugging them. Our work address this

problem. In a database, we store the words of the question,

answer and visual words corresponding to regions of inter-

est in attention maps. By running simple rule mining algo-

rithms on this database, we discover human-interpretable

rules which give us unique insight into the behavior of such

models. Our results also show examples of unusual behav-

iors learned by models in attempting VQA tasks.

1. Introduction

In recent years, the problem of Visual Question Answer-

ing (VQA ) - the task of answering a question about an

image has become a hotbed of research activity in the com-

puter vision community. While there are several publicly

available VQA datasets[6, 23, 26, 29], our focus in this pa-

per will be on the dataset provided in [6] and [18], which

is the largest natural image-question-answer dataset and the

most widely cited. Even so, the narrowed-down version of

the VQA problem on this dataset is not monolithic - ideally,

several different skills are required by a model to answer the

various questions. In Figure 1(left) , a question like “What

time is it?” requires the acquired skill of being able to read

the time on a clock-face, “What is the title of the top book?”

requires an OCR-like ability to read sentences, whereas the

question “What color is the grass?” can be answered largely

using statistical biases in the data itself (because frequently

in this dataset, grass is green in color). Many models have

attempted to solve the problem of VQA with varying de-

grees of success, but among them, the vast majority still

attempt to solve the VQA task by exploiting biases in the

dataset [25, 37, 2, 17, 7, etc], while a smaller minority ad-

dress the individual problem types [4, 38, 11, etc].

Keeping the former in mind, in this work, we provide

a method to discover and enumerate explicitly, the various

biases that are learned by a VQA model. To illustrate, in

Figure 1(right), we provide examples of some rules learned

by a strong baseline [25]. The model seems to have learned

that if a question contains the words {What, time, day} (Eg

: “What time of day is it?”) and the accompanying image

contains the bright sky ( ), the model is likely to an-

swer “afternoon”. The model answers “night” to the same

question accompanied with an image containing a “night-

sky” patch ( ). On the other hand, if it contains a clock

face( ), it tends to answer the question with a time in an

“HH:MM” format, while a question like “What time of the

year?” paired with leafless trees( ) prompts “fall” as the

answer. At the core of our method towards discovering such

biases is the classical Apriori algorithm [3] which is used to

discover rules in large databases - here the database refers

to the question-words and model responses on the VQA

validation set, which can be mined to produce these rules.

Deep learning algorithms reduce training error by learn-

ing biases in the data. This is evident from the observation

that validation/test samples from the long tail of a data dis-

tribution are hard to solve, simply because similar examples

do not occur frequently enough in the training set[41, 31,

etc]. However, explicitly enumerating these biases in a

human-interpretable form is possible only in a handful of

problems, such as VQA. VQA is particularly illustrative

because the questions and answers are in human language,

while the images (and attention maps) can also be inter-

preted by humans. VQA is also interesting because it is

a multi-modal problem - both language and vision are re-

quired to solve this problem. The language alone (i.e., an

image agnostic model) can generate plausible (but often in-

correct) answers to most questions (as we show in Section

4.1), but incorporating the image generates more accurate

answers. That the language alone is able to produce plausi-

ble answers strongly indicates that VQA models implicitly

∗This work was done while the author was at the University of Mary-

land.
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No. antecedant antecedant consequents

words visual words

1 what,time,day afternoon*

2 what,time,day night*

3 what,time,clock,show 11:30*

4 what,time,year fall*

Figure 1. On the left, we show examples of two questions from the VQA dataset of [6, 18] where a model would require a “skill” to answer

correctly (such as telling the time, or reading the English language), and a third which can be answered using statistical biases in the data

itself. On the right, we show examples of statistical biases for a set of questions containing the phrase “What time?” and various visual

elements (antecedents). Note that each row in this figure represents multiple questions in the VQA validation set. The * next to the answer

(or consequent) reminds us that it is from the set of answer words. There are several visual words associated with afternoon and night, but

we have provided only two for brevity.

.

use simple rules to produce answers - we endeavour in this

paper to find an approach that can discover these rules.

Finally, we note that in this work, we do not seek to im-

prove upon the state of the art. We do most of our experi-

ments on the model of Kazemi et. al.[25], which is a strong

baseline for this problem. We choose this model because it

is simple to train and analyze (Section 3.1). To concretely

summarize, our main contribution is to provide a method

that can capture macroscopic rules that a VQA model os-

tensibly utilizes to answer questions. To the best of our

knowledge, this is the first detailed work that analyzes the

VQA dataset of [18] in this manner.

The rest of this paper is arranged as follows : In Sec-

tion 2, we discuss related work, specifically those which

look into identifying pathological biases in several machine

learning problems, and “debugging” VQA models. In Sec-

tion 3, we discuss details of our method. In Section 4,

we provide experimental results and list (in a literal sense)

some rules we believe the model is employing to answer

questions. We discuss limitations of this method in Section

5 and conclude in Section 6.

2. Background and Related Work

The VQA problem is most often solved as a multi-class

classification problem. In this formulation, an image(I) usu-

ally fed through a CNN, and a question(Q) fed through

a language module like an LSTM [22] or GRU [13], are

jointly mapped to an answer category (“yes”, “no”, “1”,

“2”, etc). Although the cardinality of the set of all an-

swers given a QI dataset is potentially infinite, researchers

have observed that a set of a few thousand (typically 3000

or so) most frequently occurring answers can account for

over 90% of all answers in the VQA dataset. Further, the

evaluation of VQA in [6] and [18] is performed such that

an answer receives partial credit if at least one human an-

notator agreed with the answer, even if it might not be the

answer provided by the majority of the annotators. This

further encourages the use of a classification based VQA

system that limits the number of answers to the most fre-

quent ones, rather than an answer generation based VQA

system (say, using a decoder LSTM like [39]).

On undesirable biases in machine learning models:

Machine learning methods are increasingly being used as

tools to calculate credit scores, interest rates, insurance

rates, etc, which deeply impact lives of ordinary humans.

It is thus vitally important that machine learning models

not discriminate on the basis of gender, race, nationality,

etc[19, 5, 9]. [36] focus on revealing racial biases in image-

based datasets by using adversarial examples. [43] explores

data as well as models associated with object classification

and visual semantic role labeling for identifying gender bi-

ases and their amplification. Further, [8] shows the presence

of gender biases while encoding word embeddings, which is

further exacerbated while using those embeddings to make

predictions. [21] propose an Equalizer model which ensures

equal gender probability when making predictions on image

captioning tasks.

On debugging deep networks: The seminal work by

[28] suggests that the Machine Learning community does

not have a good understanding of what it means to inter-

pret a model. In particular, this work expounds post-hoc

interpretability - interpretation of a model’s behavior based

on some criteria, such as visualizations of gradients [34] or

attention maps [42], after the model has been trained. Lo-

cally Interpretable Model Agnostic Explanations (LIME),

[32] explain a classifier’s behavior at a particular point by

perturbing the sample and building a linear model using

the perturbations and their predictions. A follow up work

[33] constructs Anchors, which are features such that, in an

instance where these features are present, a model’s pre-
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diction does not change. This work is the most similar

prior work to ours, and the authors provide a few results

on VQA as well. However, they only assume the existence

of a model, and perturb instances of the data, whereas ours

assumes the existence of responses to a dataset, but not the

model itself. We use standard rule finding algorithms and

provide much more detailed results on the VQA problem.

On debugging VQA :[1] study the behavior of models

on the VQA 1.0 dataset. Through a series of experiments,

they show that VQA models fail on novel instances, tend

to answer after only partially reading the question and fail

to change their answers across different images. In [2], rec-

ognizing that deep models seem to use a combination of

identifying visual concepts and prediction of answers using

biases learned from the data, the authors develop a mecha-

nism to disentangle the two. However, they do not explicitly

find a way to discover such biases in the first place. In [18],

the authors introduce a second, more balanced version of

the VQA dataset that mitigates biases (especially language

based ones) in the original dataset. The resulting balanced

dataset is christened VQA 2.0, and is the dataset that our

results are reported on. In [24], the authors balance yes/no

questions (those which indicate the presence or absence of

objects), and propose two new evaluation metrics that com-

pensate for forms of dataset bias.

3. Method

We cast our bias discovery task as an instance of the rule

mining problem, which we shall describe below. The con-

nection between discovering biases in VQA and rule min-

ing is as follows : each (Question, Image, Answer) or QI+A

triplet can be cast as a transaction in a database, where each

word in the question, answer and image patch (or visual

word, Section 3.2 and 3.3) is akin to an item. There are now

three components to our rule mining operation :

• First, a frequent itemset miner picks out a set of all

itemsets which occur at least s times in the dataset

where s is the support. Because our dataset has over

200,000 questions (the entire VQA validation set),

and the number of items exceeds 40,000 (all question

words+all answer words+all visual words), we choose

GMiner [14] due to its speed and efficient GPU imple-

mentation. Examples of such frequent itemsets in the

context of VQA include {what, color, red*}, {what,

sport, playing}, where the presence of a * indicates

that the word is an answer-word.

• Next, a rule miner Apriori [3] forms all valid associa-

tion rules A → C, such that the rule has a support > s

and a confidence > c, where the confidence is defined

as
|A∪C|
|A| . Here, the itemset A is called antecedent and

the itemset C is called consequent. We choose c = 0.2

unless specified otherwise. An example of an associa-

tion rule is {what, sport, playing, } → {tennis*},

which can be interpreted as “If the question contains

the words —what, sport, playing— and the accompa-

nying image contains a tennis player, the answer could

be tennis”.

• Finally, a post-processing step removes obviously spu-

rious rules by considering the causal nature of the

VQA problem (i.e., only considering rules that obey

: Image/Question → Answer). For the purpose of the

results in Section 4, we query these rules with search

terms like {What,sport}.

More concretely, let the ith (Image, Question) pair result in

the network predicting the answer ai. Let the question itself

contain the words {wi
1, w

i
2, ...., w

i
k}. Further, while answer-

ing the question, let the part of the image that the network

shows attention towards correspond to the visual code-word

vi (Section 3.2 and 3.3). Then, this QI+A corresponds to the

transaction {wi
1, w

i
2, ...., w

k
k , v

i, ai}. By pre-computing and

combining question, answer and visual vocabularies, each

item in a transaction can be indexed uniquely. This is shown

in Figure 2 and explained in greater detail in the following

sub-sections.

3.1. Baseline Model

The baseline model we use in this work is from [25],

which was briefly a state-of-the-art method, yielding higher

performance than other, more complicated models. We

choose this model for two reasons : first, its simplicity

(in other words, an absence of “bells and whistles”) makes

it a good test-bed for our method and has been used by

other works that explore the behavior of VQA algorithms

[30, 16]. The second reason is that the performance of

this baseline is within 4% of the state-of-the-art model [37]

without using external data or ensembles. We use the imple-

mentation of https://github.com/Cyanogenoid/pytorch-vqa.

A brief description of this model is as follows : The VQA

problem is formulated as a multi-class classification prob-

lem (Section 2). The input to the model is an image and a

question, while the output is the answer class with the high-

est confidence (out of 3000 classes). Resnet-152[20] fea-

tures are extracted from the image and concatenated with

the last hidden state of an LSTM[22]. The text and visual

features are combined to form attention maps which are fed

to the softmax (output) layer through two dense layers. In

this work, we focus on the second attention map.

3.2. Visual Codebook Generation

We generate the visual codebook using the classi-

cal “feature extraction followed by clustering” technique

from [35]. First, we use the bounding-box annotations

in MSCOCO[27] and COCO-Stuff[10] to extract 300,000
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which dessert are you tempted to try

.........

ResNet-152

c
o
n
c
a
t

Attention

k-nearest 

neighbor

Codebook

✓

donut

cake

icecream

.

.

Answer VQA itemset "database"

1. what, dessert, are, you, tempted, to, try,                 , donut*

2. what, sport, are, they, playing,                   , baseball*

3. ....................

softmax

LSTM

Figure 2. The model from [25] tries to answer the question “Which dessert are you tempted to try?”. In doing so, the visual attention

focuses on a region of the image which contains donuts. We use the method by [12] to place a bounding box over this region, which maps

to a distinct visual word representing donuts in our vocabulary. Our database of items thus contains all of the words of the question, the

visual word and the answer words. Rules are then extracted using the Apriori algorithm [3]

.

patches from the MSCOCO training set. After resizing

each of the patches to 224× 224 pixels, we extract ResNet-

152[20] features for each of these patches, and cluster them

into 1250 clusters using k-means clustering[15]. We note

in Figure 3 that the clusters have both expected and un-

expected characteristics beyond “objectness” and “stuff-

ness”. Expected clusters include dominant objects in the

MSCOCO dataset like zebras, giraffes, elephants, cars,

buses, trains, people, etc. However, other clusters have tex-

tural content, unusual combinations of objects as well as

actions. For example, we notice visual words like “peo-

ple eating”, “cats standing on toilets”, “people in front of

chain link fences”, etc, as shown in Figure 3. The presence

of these more eclectic code-words casts more insight into

the model’s learning dynamics - we would prefer frequent

itemsets containing the visual code-word corresponding to

“people eating” than just “people” for a QA pair of (what is

she doing?, eating).

3.3. From attention map to bounding box

In this work, we make an assumption that the network fo-

cuses on exactly one part of the image, although our method

can be easily extended to multiple parts[12]. Following the

elucidation of our method in Section 3 and given an atten-

tion map, we would like to compute the nearest visual code-

word. Doing so requires making the choice of a bounding

box that covers enough of the salient parts of the image,

cropping and mapping this patch to the visual vocabulary.

While there are trainable (deep network based) methods for

cropping attention maps [40], we instead follow the simpler

formulation suggested by [12], which states that : within an

attention-map G, given a percentage ratio τ , find the small-

est bounding box B which satisfies :

∑

pǫB

G(p) ≥ τ
∑

p

G(p), τǫ[0, 1]

Since we follow [25] who use a ResNet-152 architecture

for visual feature extraction, the attention maps are of size

14 × 14. It can be shown easily that given a m × n grid,

the number of unique bounding boxes that can be drawn on

this grid, i.e., num bboxes =
m×n×(m+1)×(n+1)

4 , and when

m = n = 14, num bboxes turns out to be 11,025. Because

m(= n) is small and fixed in this case, we pre-compute and

enumerate all 11,025 bounding boxes and pick the smallest

one which encompasses the desired attention, with τ = 0.3.

The reason behind a conservatively low choice for τ is that

we do not want to crop large regions of the image, which

might contain distractor patches. This part of the pipeline is

depicted in Figure 4.

3.4. Pipeline Summarized

Now, the pipeline for the experiments (Figure 2) on the

VQA dataset including images is as follows. We provide as

input to the network - an image and a question. We observe

the second attention map and use the method of Section 3.3

to place a tight-fitting bounding-box around those parts of

the image that the model attends to. We then extract features

on this bounding-box using a ResNet-152 network and per-

form a k-nearest neighbor search (with k = 1) to obtain

its nearest visual word from the vocabulary. The words in

the question, visual code-word and predicted answer for the

entire validation set are provided as the database of transac-

tions to the frequent itemset miner [14], and rules are then

obtained using the Apriori algorithm [3].

4. Experiments

4.1. Language only statistical biases in VQA

We show that a large number of statistical biases in VQA

are due to language alone. We illustrate this with an obvi-

ous example : a language-only model, i.e., one that does not

see the image, but still attempts the question, answers about
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sky

pizza

lamp

giraffe

zebra

people's bottoms

cat on toilets

people eating

women in bridal attire

plastic packaging

people wearing suits

black and white tennis teams

people carrying surfboards

objects with wires

stadium crowds

Figure 3. We show visual code-words generated by the method of Section 3.1. In the first (left-most) column, we notice visual code-words

corresponding to objects or patches in MSCOCO, but in the latter two columns (on the right) we notice code-words corresponding to more

complex visual concepts like “people eating”, “women in bridal-wear” or “black-and-white tennis photographs”.

Figure 4. In the first example, critical to answering the question correctly is discovering the presence of a fence (shown in red) in the

attention heat-map. The cropping method of [12] places a conservative box over this region, which corresponds to net-like or fence-like

visual code-words like a tennis-net or a baseball batting-cage in the visual codebook. Similarly, in the second example, the attention

corresponds to a visual code-word which clearly depicts boats, and in the third example, the attention corresponds to the teddy-bear

code-word.

43% of the questions correctly on VQA 2.0 validation set

and 48% of the questions correctly on VQA 1.0 validation

set[18]. However, on a random set of 200 questions from

VQA 2.0, we observed empirically that the language-only

model answers 88.0% of questions with a plausibly correct

answer even with a harsh metric of what plausible means.

Some of these responses are fairly sophisticated as can be

seen in Table 1. We note, for example, that questions con-

taining “kind of bird” are met with a species of bird as re-

sponse, “What kind of cheese” is answered with a type of
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Question Predicted G.T Ans.

What kind of bird is perched on this branch ? owl sparrow

What does that girl have on her face ? sunglasses nothing

What kind of cheese is on pizza ? mozzarella mozzarella

What is bench made of ? wood wood

What brand of stove is in kitchen ? electric LG

Table 1. We run a language-only VQA baseline and note that al-

though only 43% of the questions are answered correctly in VQA

2.0 ([18]), a large number of questions (88%) in our experiments

are answered with plausibly correct responses. For example, “Sun-

glasses” would be a perfectly plausible answer to the question

“What does that girl have on her face?” - perhaps even more so

than the ground-truth answer (“Nothing”). The last example shows

an implausible answer provided by the model to the question.

cheese, etc. Thus, the model maps out key words or phrases

in the question and ostensibly tries to map them through a

series of rules to answer words. This strongly indicates that

these are biases learned from the data, and the ostensible

rules can be mined through a rule-mining algorithm.

4.2. Vision+Language statistical biases in VQA

After applying the method of Section 3, we will examine

some rules that have been learned by our method on some

popular question types in VQA . Question types are taken

from [6] and for the purpose of brevity, only a few instruc-

tive rules for each question type are displayed. These ques-

tion types are : “What is he/she doing?” (Section 4.2.3),

“Where?” (Figure 9), “How many?” (Section 4.2.1), “What

brand?” (Figure 8), and “Why?”(Section 4.2.2). The tables

we present are to be interpreted thus : A question contain-

ing the antecedent words paired with an image containing

the antecedent visual words can sometimes (but not always)

lead to the consequent answer. Two instances of patches

mapping to this visual word (Section 3.2) are provided. The

presence of an ∗ after the consequent is to remind the reader

that the consequent word came from the set of answers.

4.2.1 How many?

This particular instance of the trained VQA model seems

to have learned that giraffes have four legs, stop signs have

four letters, kitchen stoves have four burners and zebras and

giraffes have several (100) stripes and spots respectively

(Figure 5). Upon closer examination, we found 33 ques-

tions (out of >200k) in the VQA validation set which con-

tain the words {How,many,burners} and the most common

answer predicted by our model for these is 4 (which also

resembles the ground-truth distribution). However, some of

them were along the lines of “How many burners are turned

on?”, which led to answers different from “4”.

4.2.2 Why?

Traditionally, “Why?” questions in VQA are consid-

ered challenging because they require a reason based

answer. We describe some of the rules purportedly

learned by our model for answering “Why?” questions,

in Figure 6. Some interesting but intuitive beliefs that

the model has learned are that movements cause blurry

photographs (why,blurry→movement), outstretching one’s

arms help in balancing (why,arm→balance) and that peo-

ple wear helmets or orange vests for the purpose of safety

(why,helmet/orange→safety). In many of these cases, no

visual element has been picked up by the rule mining al-

gorithm - this strongly indicates that the models are mem-

orizing the answers to the “Why?” questions, and not per-

forming any reasoning. In other words, we could ask the

question “Why is the photograph blurry?” to an irrelevant

image and obtain “Movement” as the predicted answer.

4.2.3 What is he/she doing?

More interesting are our results on the “What is he/she do-

ing?” category of questions (Figure 7). While common

activities like “snowboarding” or “surfing” are prevalant

among the answers, we noticed a difference in rules learned

for male and female pronouns. For the female pronoun

(she/woman/girl/lady), we observed only stereotypical out-

puts like “texting” even for a very low support, as com-

pared to a more diverse set of responses with the male pro-

noun. This is likely, a reflection on the inherent bias of

the MSCOCO dataset which the VQA dataset of [6, 18]

is based on. Curiously, another work by [21] had simi-

lar observations for image captioning models also based on

MSCOCO.

5. Limitations

While simplicity is the primary advantage of our method,

some drawbacks are the following : the exact nature of

the rules is limited by the process used to generate the vi-

sual vocabulary. In other words, while our method pro-

vides a unique insight into the behavior of a VQA model,

there surely exist some rules that the models seem to fol-

low which cannot be captured by this method. For ex-

ample, rules involving colors are difficult to identify be-

cause ResNets are trained to be somewhat invariant to col-

ors, so purely color-based visual words are hard to com-

pute. Other examples include inaccurate visual code-words

- for example, in rule 4 of Figure 8, the antecedant vi-

sual word does show a motorbike, although not a Harley

Davidson. Similarly a code-word contains images of scis-

sors and toothbrushes grouped together as part of the

(What,brand→Colgate) associate rule (rule 5 of Figure 8).
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No. antecedant antecedant consequents support confidence

words visual words x 10-5

1 many,stripe,how 100* 12.1295 0.76

2 many,spot,how 100* 9.79688 0.91

3 many,burner,how 4* 3.73214 0.38

4 many,leg,how 4* 2.33259 0.33

5 how,letter,many 4* 2.33259 0.71

Figure 5. How many? : Rule 3-5 show that stoves have 4 burners, giraffes have 4 legs and stop signs have 4 letters. Giraffes and zebras

have many (100) spots and stripes, respectively (rules 1-2).

No. antecedant antecedant consequents support confidence

words visual words x 10-5

1 why raining* 6.06473 0.31

2 umbrella,why shade* 6.06473 0.62

3 why,blurry - movement* 6.06473 0.46

4 helmet,why - safety* 4.66518 0.77

5 why,fence - safety* 4.19866 0.47

6 why,wet - surfing* 3.73214 0.33

7 arm,why - balance* 3.26563 0.47

8 orange,why - safety* 2.33259 0.5

Figure 6. Why? : Rules that exceeded the support threshold indicate that arms are outstretched for balance (rule 7), umbrellas protect one

from rain and provide shade (rules 1-2), and that helmets, fences and (wearing) orange lead to safety (rules 4, 5, 8). The absence of visual

words in some of these rules indicates that the model is predicting the answer based on question-words only.

No. antecedant antecedant consequents support confidence

words visual words x 10-5

1 doing,what,man surfing* 17.7277 0.64

2 doing,what,man skateboarding* 13.529 0.81

3 doing,what,man snowboarding* 6.53125 0.5

4 doing,what,man playing wii* 2.79911 0.46

5 doing,what,woman texting* 1.86607 0.4

Figure 7. What is he/she doing? : We observed a difference in diversity of rules for male (skateboarding, snowboarding, surfing) and

female pronouns (texting) even at very low support. This indicates that the VQA , or more likely, the MSCOCO datasets are unintentionally

skewed in terms of gender.
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No. antecedant antecedant consequents support confidence

words visual words x 10-5

1 brand,what dell* 9.33036 0.41

2 brand,what wilson* 5.59822 0.57

3 brand,computer,what apple* 4.66518 0.45

4 brand,what harley davidson* 4.19866 0.38

5 what,brand colgate* 3.26563 0.58

6 brand,what jetblue* 2.33259 0.38

Figure 8. What brand? : The VQA model seems to have learned that the Wilson brand is related to tennis, Dell and Apple make laptop

computers and that Jetblue is a “brand” of airline.

No. antecedant antecedant consequents support confidence

words visual words x 10-5

1 where airport* 21.9263 0.61

2 where zoo* 13.529 0.54

3 where africa* 9.79688 0.38

4 where bathroom* 5.59822 0.23

5 where skate park* 5.1317 0.24

6 bus,where downtown* 5.1317 0.24

Figure 9. Where? : The model of [25] has learned that giraffes can be found in zoos, elephants are from Africa, aircraft can be found in

airports and that buses are found in the downtown of a city

6. Conclusion

In this work, we present a simple technique to explicitly

discover biases and correlations learned by VQA models.

To do so, we store in a database - the words in the question,

the response of the model to the question and the portion

of the image attended to by the model. Our method then

leverages the Apriori algorithm[3] to discover rules from

this database. We glean from our experiments that VQA

models intuitively seem to correlate elements (both textual

and visual) in the question and image to answers.

Our work is consistent with prior art in machine learn-

ing on fairness and accountability[21], which often shows a

skew towards one set of implied factors (like gender), com-

pared to others. It is also possible to use the ideas in this

work to demonstrate effectiveness of VQA systems - show-

ing dataset biases presented by a frequent itemset and rule

miner is a middle-ground between quantitative and qualita-

tive results. Finally, our method is not limited only to VQA

, but any problem with a discrete vocabulary. A possible

future extension of this work is to track the development of

these rules as a function of training time.
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