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Abstract

Most current state-of-the-art connectome reconstruction

pipelines have two major steps: initial pixel-based segmen-

tation with affinity prediction and watershed transform, and

refined segmentation by merging over-segmented regions.

These methods rely only on local context and are typically

agnostic to the underlying biology. Since a few merge er-

rors can lead to several incorrectly merged neuronal pro-

cesses, these algorithms are currently tuned towards over-

segmentation producing an overburden of costly proofread-

ing. We propose a third step for connectomics reconstruc-

tion pipelines to refine an over-segmentation using both lo-

cal and global context with an emphasis on adhering to the

underlying biology. We first extract a graph from an in-

put segmentation where nodes correspond to segment la-

bels and edges indicate potential split errors in the over-

segmentation. To increase throughput and allow for large-

scale reconstruction, we employ biologically inspired geo-

metric constraints based on neuron morphology to reduce

the number of nodes and edges. Next, two neural networks

learn these neuronal shapes to aid the graph construction

process further. Lastly, we reformulate the region merg-

ing problem as a graph partitioning one to leverage global

context. We demonstrate the performance of our approach

on four real-world connectomics datasets with an average

variation of information improvement of 21.3%.

1. Introduction

By studying connectomes–wiring diagrams extracted

from the brain containing every neuron and the synapses be-

tween them–neuroscientists hope to understand better cer-

tain neurological diseases, generate more faithful models of

the brain, and advance artificial intelligence [12, 15]. To

this end, neuroscientists produce high-resolution images of

brain tissue with electron microscopes where every synapse,

mitochondrion, and cell boundary is visible [19]. Since

these datasets now exceed a petabyte in size, manual tracing
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of neurons is infeasible and automatic segmentation tech-

niques are required.

Current state-of-the-art automatic 3D reconstruction ap-

proaches typically use pixel-based convolutional neural net-

works (CNNs) and watershed transforms to generate an

initial over-segmentation [24, 37, 42], followed by region

merging steps [11, 21, 25, 30, 35]. Flood-filling networks

combine these two steps into one by gradually expanding

segments from a seed voxel [18]. However, all of these

above strategies make decisions using only the local con-

text and do not consider the global ramifications to individ-

ual merges. Therefore, a small number of compounding

merge errors can create an under-segmentation with sev-

eral neuronal processes labeled as one neuron. Since cor-

recting such merge errors is computationally challenging,

current methods typically favor over-segmentation where a

neuronal process is segmented into multiple labels. Unfor-

tunately proofreading these split errors, while easier, still

remains onerous [33].

We propose a third step for connectomics reconstruction

workflows to refine these over-segmentations and close the

gap between automatic and manual segmentation. We re-

formulate the region merging problem as a graph partition-

ing one to leverage global context during the agglomeration

process. Thus far the computational burden associated with

global optimization strategies remains their biggest draw-

back despite some research into parallelizing the computa-

tion [2]. Performing the graph partitioning step after an ex-

isting agglomeration technique allows us to capture larger

shape context when making decisions. Furthermore, the

amount of computation significantly decreases as the input

method correctly segments a large number of supervoxels.

The remaining split errors typically occur in places where

a neuronal process becomes quite thin or the corresponding

image data noisy—difficult locations to reconstruct using

only the local context from images and affinities.

When constructing our graph, we employ geometric con-

straints guided by the underlying biological morphology

to reduce the number of nodes and edges. Due to their

biological nature, over-segmented regions should be con-
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Figure 1. Most current state-of-the-art segmentation pipelines consist of affinity generation with watershed transform and region merging

(left). We follow these existing methods by constructing a graph derived from their segmentation by enforcing geometric constraints

inspired by the underlying biology and learning typical neuronal morphologies (center). Our graph formulation allows us to partition the

graph with a global optimization strategy to produce an improved segmentation (right).

nected with specific geometric and topological properties in

mind. For example, among other biological considerations,

L-shaped junctions and arrow-shaped junctions are rare in

neuronal structures. We can both use and learn these shape

priors to produce a more accurate region merging strategy.

Our region merging framework consists of several steps

to first construct a graph from an input segmentation and

then to partition the graph using a global optimization strat-

egy (Fig. 1). We first identify segments that are clearly

over-segmented based on our knowledge of the span of neu-

ronal processes and use a trained CNN to merge these seg-

ments with larger ones nearby. Remaining segments receive

a node in our graph. We then generate skeletons for each

segment to produce a simple yet expressive representation

of the underlying shape of a given segment (Fig. 1, cen-

ter). From these skeletons, we identify potential segments

to merge, which in turn receive a corresponding edge in the

graph. Another CNN classifier learns the local structural

shapes of neurons and produces probabilities that two seg-

ments belong to the same neuron. Finally, we employ a

graph optimization algorithm to partition the graph into an

improved reconstruction (Fig. 1, right). Our graph formula-

tion creates a formal description of the problem enabling a

diverse range of optimization strategies in the future.

This work makes three main contributions: first, a

method to extract biologically-inspired graphs from an

input segmentation using hand-designed geometric con-

straints and machine-learned neuronal morphologies; sec-

ond, a top-down framework to correct split errors in an input

segmentation; last, a reduction of variation of information

on state-of-the-art inputs by 21.3% on four datasets.

2. Related Work

Initial Pixel-based Segmentation Methods. There are two

main approaches to segmenting electron microscopy im-

ages at the voxel-level. In the first, 2D or 3D convolu-

tional neural networks are trained to produce an interme-

diate representation such as boundary [7, 16, 21, 37] or

affinity maps [24, 39]. Advancements in architecture de-

signs (e.g., 3D U-Net [6]), model averaging techniques [40],

segmentation-specific loss functions (e.g., MALIS [4]), and

data augmentation strategies [25] have greatly improved the

results for these intermediate representations. Afterwards,

clustering techniques such as watershed [8, 10, 42] or graph

partition [1] transform these intermediate representations

into a segmentation. In the second approach, neural net-

works [18, 28] are trained recursively to grow the current

estimate of a binary segmentation mask, which is further

extended to handle multiple neurons [29]. Despite impres-

sive segmentation accuracies, the computational burden of

this approach remains a limitation as the network needs to

infer each segment separately.

Agglomeration Strategies. Agglomeration methods are

parameterized by the similarity metric between adjacent

segments and merging strategy. For the similarity metric,

Lee et al. [25] and Funke et al. [11] rely solely on the pre-

dicted affinities and define the metric as the mean affin-

ity between segments. Classification-based methods gen-

erate the probability to merge two segments from hand-

crafted [17, 21, 30, 34, 42] or learned features [3]. Niko

et al. [23] use the information about post- and pre-synaptic

connections to refine the multicut algorithm and prevent ax-

ons and dendrites from merging. For the merging strat-

egy, most methods use variants of hierarchical agglomer-

ation [21, 30, 34, 35, 42] to greedily merge a pair of re-

gions at a time. Other methods formulate agglomeration

as reinforcement learning [17] and superpixel partitioning

problems [2]. More recently, flood-filling networks [18] use

different seeding strategies with the same network from the
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Figure 2. The above neuronal process is incorrectly segmented into

several labels. Five of the segments are very small indicating that

they must merge with a nearby larger segment. Frequently these

small segments are artifacts of noisy affinities around locations

where a process becomes quite thin.

initial segmentation step to agglomerate regions.

Error-correction Methods. Although significant advance-

ments in the above methods produce impressive results,

there are still errors in the segmentations. These errors are

corrected either manually with human proofreading [14, 22]

or automatically [43]. Since correcting errors is a compu-

tationally expensive task, various research explores how to

use machine learning to improve human efficiency [13], au-

tomatic detection of error regions [36, 43], or reduce the

search space via skeletonization [9]. However, these meth-

ods rely only on local context for decision-making and do

not enforce biological constraints on their corrections.

3. Biologically-Constrained Graphs

Most current graph-based approaches assign a node to

every unique label in the volume with edges between seg-

ments that have at least one neighboring pair of voxels.

However, as the image volumes grow in size, the number

of edges under such an approach increases dramatically. We

employ hand-crafted geometric constraints based on the un-

derlying biology to reduce the number of nodes and edges.

Furthermore, we learn neuron morphologies with two neu-

ral networks to aid in the graph generation process.

3.1. Node Generation

Current pipelines that agglomerate regions based on the

affinity predictions alone produce a large number of tiny

segments (e.g., 86.8% of the segments produced by the wa-

terz algorithm on a representative dataset contain fewer than

9, 600 voxels corresponding to a volume of approximately

0.01 µm3). Since these strategies use only the mean affin-

ity between two supervoxels, noise in the affinity generation

process produces these small artifacts. In particular, these

segments frequently occur in regions where a neuronal pro-

cess becomes quite thin leading to low affinities between

voxels (Fig. 2). We can leverage additional information

about the underlying biology to identify and correct these

segments: namely that neurons are quite large and should

Figure 3. Both networks take three channels as input correspond-

ing to if a particular voxel belongs to segment one, segment two, or

either segment. This particular example is input to the edge CNN

to determine if two segments belong to the same neuronal process.

not contain few voxels when segmented. Figure 2 shows

an example neuronal process over-segmented into six dis-

tinct components, five of which are relatively small. Each

of these segments had sufficiently low mean affinities with

its neighbors.

We identify these small segments and merge them be-

fore graph construction to reduce the number of nodes (and

edges). We flag any segment whose volume is less than tvol
cubic microns as small and create a list of nearby large seg-

ments as potential merge candidates. The simplest method

to absorb these segments is to agglomerate them with a non-

flagged neighbor with the highest mean affinity. However,

these segments arise because of inaccuracies in the affini-

ties. We employ two methods to merge these nodes based

on the geometry of the small segments themselves. Some

agglomeration strategies produce several “singleton” seg-

ments that are completely contained within one image slice.

We link these singletons together across several slices by

considering the Intersection over Union when superimpos-

ing two adjacent slices. Second, we train a neural network

to learn if two segments, one small and the other large, be-

long to the same neuron.

Looking at the local shape around two segments can pro-

vide significant additional information over just the raw im-

age data or affinities alone. Often split errors occur at re-

gions with either image artifacts or noisy affinities; how-

ever, the segment shapes provide additional information.

We extract a small cube with diameter dnode nanometers

around each small–large segment pair. We train a feed-

forward 3D CNN to learn the neuron morphology and pre-

dict which pairs belong to the same neuron. The CNN takes

as input three channels corresponding to if the voxel be-

longs to the small segment, the large segment, or either seg-

ment (Fig. 3). Our network contains three VGG-style con-

volution blocks [5] and two fully connected layers before a

final sigmoid activation. The network parameters are fur-

ther discussed in Sec. 4.2. Each small segment is merged

with exactly one nearby large segment to prevent a merge
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Figure 4. Two typical instances of split errors in connectomics seg-

mentations. In the top image, the neuronal process is split multiple

times at some of its thinnest locations. On the bottom, multiple

spines are split from the dendrite.

error from connecting two distinct neurons completely.

3.2. Edge Generation

Each remaining segment in the volume has a large num-

ber of adjacent neighbors (28 per segment averaged over

three gigavoxel datasets). We use a geometric prior on

the split errors to reduce the number of considered errors

greatly. Most split errors follow one of two modalities: ei-

ther a neuronal process is split into two or more parts across

its primary direction (Fig. 4, top) or several spines are bro-

ken off a dendrite (Fig. 4, bottom).

We generate skeletons for each segment to create a sim-

ple yet expressive representation of a volume’s underlying

shape. For example, this approach allows us to quickly

identify all of the dendritic spines in a segment with min-

imal computation (Fig. 5). Some previous research focuses

on the development and use of skeletons in the biomedi-

cal and connectomics domains for quicker analysis [38, 41]

and error correction [9]. Topological thinning and medial

axis transforms receive a significant amount of attention

in the computer graphics and volume processing commu-

nities [26, 32].

We first downsample each segment using a max-pooling

procedure to a resolution of (Xres, Yres, Zres) nanometers

before generating the skeletons. This process does not cause

significant detail loss since the finest morphological fea-

tures of neurons are on the order of 100 nm [36]. In fact,

the produced skeletons more closely follow the underly-

ing geometry since the boundaries of these segments are

quite noisy. We use a sequential topological thinning algo-

rithm [31] to gradually erode the boundary voxels for each

segment until only a skeleton remains. Figure 5 shows two

example segments with their corresponding skeletons. The

larger spheres in the skeleton correspond to endpoints. We

generate a vector at each endpoint to indicate the direction

of our skeleton before endpoint termination.

Figure 5. Two example skeletons produced by a topological thin-

ning algorithm [31]. The larger spheres represent endpoints and

the vectors protruding from them show the direction of the skele-

ton at endpoint termination.

When generating the edges for our graph, we exploit the

aforementioned split error modalities which follow from the

underlying biological structure of neurons. To identify these

potential split error locations, we use the directional vectors

at each skeleton endpoint. For each endpoint ve in a given

segment Se we consider all voxels vn within a defined ra-

dius of tedge nanometers. If that voxel belongs to another

segment Sn that is locally adjacent to Se and the vector be-

tween ve and vn is within θmax degrees of the directional

vector leaving the skeleton endpoint, nodes Se and Sn re-

ceive an edge in the graph. θmax is set to approximately

18.5◦; this value follows from the imprecision of the end-

point vector generation strategy.

3.3. Edge Weights

To generate the merge probabilities between two seg-

ments we use a CNN similar to the one discussed in Sec-

tion 3.1. We extract a small cube of diameter dedge nanome-

ters around each potential merge location found in the edge

generation step. Again, we train a new feed-forward 3D

CNN with three channels encoding whether a voxel belongs

to each segment or either (Fig. 3). The network follows the

same general architecture with three VGG-style convolution

layers followed by two fully connected layers and a final

sigmoid activation.

We next convert these probabilities into edge weights

with the following weighting scheme [20]:

we = log
pe

1− pe
+ log

1− β

β
(1)

where pe is the corresponding merge probability and β

is a tunable parameter that encourages over- or under-

segmentation. Note high probabilities transform into pos-

itive weights. This follows from our optimization strategy
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Table 1. We show results on four testing datasets, two from the PNI volumes, one from the Kasthuri volume, and one on the SNEMI3D

challenge dataset. We use four PNI volumes for training and three for validation. We further finetune our neural networks on separate

training data for both the Kasthuri and SNEMI3D volumes.

Dataset Brain Region Sample Resolution Dimensions Segmentation

PNI Primary Visual Cortex 3.6× 3.6× 40 nm3 2048× 2048× 256 Zwatershed and Mean Agg [25]

Kasthuri Somatosensory Cortex 6× 6× 30 nm3 1335× 1809× 338 Waterz [11]

SNEMI3D Somatosensory Cortex 3× 3× 30 nm3 1024× 1024× 100 Waterz [11]

(discussed below) which minimizes an objective function

and therefore should collapse all positive weighted edges.

3.4. Graph Optimization

Our graph formulation enables us to apply a diverse

range of graph-based global optimization strategies. Here,

we reformulate the partitioning problem as a multicut one.

There are two primary benefits to this minimization strat-

egy: first, the final number of segments depends on the input

and is not predetermined; second, the solution is globally

consistent (i.e., a boundary remains only if the two corre-

sponding nodes belong to different segments) [20].

We use the greedy-additive edge contraction method to

produce a feasible solution to the multicut problem [20].

Following their example, we use the more general lifted

multicut formulation where all non-adjacent pairs of nodes

receive a “lifted” edge and a corresponding edge weight in-

dicating the long-range probability that two nodes belong

to the same neuron. Ideally, these weights perfectly reflect

the probability that two nodes belong to the same neuron

by considering all possible paths between the nodes in the

graph. Unfortunately, such computation is expensive, so

we create a lower estimate of the probability by finding the

shortest path on the negative log-likelihood graph (i.e., each

original edge weight we is now − logwe) and setting the

probability equal to e raised to the distance [20].

4. Experiments

We discuss the datasets used for evaluation and the vari-

ous parameters from the previous section.

4.1. Datasets

We evaluate our methods using four datasets with differ-

ent resolutions, acquisition techniques, and input segmen-

tation strategies (Table 3.2). The PNI volumes were given

to us by the authors of [43] and contain nine separate vol-

umes imaged by a serial section transmission electron mi-

croscope (ssTEM). We use four of these volumes to train

our networks and tune parameters, three for validation, and

the last two for testing. These image volumes have an initial

segmentation produced by a variant of a 3D U-Net followed

by zwatershed and mean agglomeration [25].

The Kasthuri dataset is freely available online1 and rep-

1https://neurodata.io/data/kasthuri15/

resents a region of the neocortex imaged by a scanning elec-

tron microscope (SEM). We divide this volume into training

and testing blocks. We initially use a 3D U-Net to produce

affinities and agglomerate with the waterz algorithm [11].

Although our proposed method is designed primarily for

large-scale connectomics datasets, we evaluate our method

on the popular SNEMI3D challenge dataset.2 Our initial

segmentation strategy is the same for both the SNEMI3D

and Kasthuri datasets.

4.2. Parameter Configuration

Here we provide the parameters and CNN architectures

discussed in Section 3. The supplemental material provides

additional experiments that explore each of these parame-

ters and network architectures in further detail.

Node Generation. To determine a suitable value for tvol—

the threshold to receive a node in the graph—we consider

the edge generation step which requires expressive skele-

tons. Skeletons generated through gradual boundary ero-

sion [31] tend to reduce small segments to a singular point

removing all relevant shape information. After exploring

various threshold values on four training datasets we set

tvol = 0.010 36 µm3.

Skeletonization Method. To evaluate various skeleton

generation approaches we create and publish a skeleton

benchmark dataset.3 We evaluate three different skele-

ton approaches with varying parameters on this benchmark

dataset [26, 31, 38]. Downsampling the data to 80 nanome-

ters in each dimension followed by a topological thinning

algorithm [31] produces the best results.

Edge Generation. During edge generation, we want to

minimize the total number of edges while maintaining a

high recall on the edges corresponding to split errors. After

considering various thresholds, we find that tedge = 500 nm
guarantees both of these attributes. When transforming our

probabilities into edge weights, we use β = 0.95 to reduce

the number of false merges further.

CNN Training. Of the nine PNI datasets, we use four for

training and three for validation. We experimented with var-

ious network architectures and input cube sizes. Our node

network receives a cube with dnode = 800 nm which is then

sampled into a voxel grid of size (60, 60, 20). Our edge

2http://brainiac2.mit.edu/SNEMI3D/home
3http://rhoana.org/skeletonbenchmark
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Table 2. Our proposed method reduces the total variation of information by 20.9%, 28.7%, 15.6%, and 19.8% on four testing datasets.

The variation of information split decreases significantly, achieving a maximum reduction of 45.5% on the second PNI testing dataset.

Dataset

PNI Test One

PNI Test Two

Kasthuri Test

SNEMI3D

Total VI

Baseline Proposed Decrease

0.491 0.388 -20.9%

0.416 0.297 -28.7%

0.965 0.815 -15.6%

0.807 0.647 -19.8%

VI Split

Baseline Proposed

0.418 0.273

0.368 0.200

0.894 0.681

0.571 0.438

VI Merge

Baseline Proposed

0.073 0.115

0.049 0.097

0.071 0.134

0.236 0.209

Figure 6. Here we show three success (left) and two failure (right) cases for our proposed methods. On the left, we see two dendrites with

eight spines each correctly merged. Correcting these types of splits errors is particularly essential for extracting the wiring diagram since

synaptic connections occur on the spines. In between these examples, we show a typical neuronal process initially split at numerous thin

locations. Circled on the top right is an incorrectly merged spine to the dendrite. We correctly connect five spines but we accidentally

merge two spines to the same location once. Below that is an example where a merge error in the input segmentation causes an error.

network receives a cube with dedge = 1200 nm which is

similarly sampled into a voxel grid of size (52, 52, 18)

We train each network on the PNI data for 2,000 epochs.

There are 20,000 examples per epoch with an equal rep-

resentation of ones that should and should not merge. We

employ extensive data augmentation by randomly rotating

the input around the z-axis and reflecting over the xy-plane.

For the Kasthuri and SNEMI3D data, we finetune the pre-

trained network for 500 epochs.

4.3. Error Metrics

We evaluate the performance of the different methods

using the split variation of information (VI) [27]. The split

and merge variation of information scores quantify over-

and under-segmentation respectively using the conditional

entropy. The sum of the two entropies gives the total varia-

tion of information. For our CNNs, a true positive indicates

a corrected split error and a false positive a merge error in-

troduction.

5. Results

We provide quantitative and qualitative analysis of our

method and ablation studies comparing the effectiveness of

each component.

5.1. Benchmark Comparison

Table 2 shows the total variation of information improve-

ment of our method over our input segmentations on four

test datasets. We reduce the total variation of information on

the two PNI, Kasthuri, and SNEMI3D datasets by 20.9%,

28.7%, 15.6%, and 19.8% respectively. Our VI split scores

decrease by 34.5%, 45.5%, 23.8%, and 23.3% on the four

datasets. Our proposed method only merges segments to-

gether and does not divide any into multiple components,

and thus our VI merge scores can only increase. However,

our input segmentations are very over-segmented and have

a small VI merge score at the start. Our algorithm increases

the VI merges (i.e., it makes some wrong merge decisions)

but the overall decrease in VI split overcomes the slight in-
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Figure 7. One success (left) and one failure (right) of our proposed biologically-constrained edge generation strategy. In the left instance,

the broken spine has a skeleton endpoint with a vector directed at the main process. In the right example, two spines are split from the

dendrite but merged together in the input segmentation. The skeleton traverses near the broken location without producing an endpoint.

creases in VI merge. On the SNEMI3D dataset, we generate

multiple baselines and proposed segmentations by varying

the merging threshold in the waterz algorithm. We show the

results on the best baseline compared to the best-corrected

segmentation, and thus the VI merge can decrease for this

dataset.

Figure 6 shows five examples from our proposed

method, three correct (left) and two failures (right). Here,

we see two example dendrites with eight spines each cor-

rectly reconnected to the neuronal process. Fixing these

types of split errors is crucial for extracting the wiring di-

agram from the brain: electrical signal from neighboring

cells is propagated onwards through post-synaptic densities

located on these spines. Between these two dendrites, we

show a typical neuronal process split into multiple segments

at locations where the process becomes quite thin. Our edge

generation step quickly identifies these locations as poten-

tial split errors, and our CNN predicts that the neuronal pro-

cess is continuing and not terminating. On the top right, we

show an example dendrite where we correctly merge five

spines. However, in one location (circled) we accidentally

merge one additional spine causing a merge error. Below

that, we show an error caused by a merge error in the input

segmentation. The purple neuronal process is incorrectly

merged at one location with a perpendicular traversing pro-

cess (circled). We merge other segments with the perpen-

dicular process causing an increase in VI merge.

5.2. Empirical Ablation Studies

Here, we elaborate on the effectiveness of each compo-

nent of our method on three of the datasets and compare

against relevant baselines.

Node Generation. Table 3 summarizes the success of our

node generation strategy in terms of correctly merging small

segments to larger ones from the same process. We compare

our results against the following simple baseline: how many

small labels are correctly merged if they receive the same

label as the adjacent large segment with which it shares

the highest mean affinity. Our method significantly outper-

forms the baseline on the PNI datasets. The baseline per-

forms poorly as expected since the input segmentation ag-

Table 3. Our proposed node generation strategy that merges small

segments into nearby larger ones outperforms the baseline strat-

egy. In our best instance, we correctly merge 444 small segments

while only incorrect merging 75.

Dataset Baseline Proposed

PNI Test One 305 / 521 (36.9%) 686 / 169 (80.2%)

PNI Test Two 185 / 281 (39.7%) 444 / 75 (85.5%)

Kasthuri Test 4,514 / 4,090 (52.5%) 6,623 / 2,020 (76.6%)

glomeration strategy initially opted not to merge these small

segments based on the affinities alone. In each case, we cor-

rectly merge between 76 and 85% of small segments. The

waterz agglomeration strategy produces many more small

segments than the mean agglomeration method. Interest-

ingly, the baseline is much higher for this strategy, indicat-

ing that a simple post-processing method of merging small

segments based on a thresholded affinity might be justified.

Edge Generation. There are two main components to edge

generation: skeletonization and location of potential split

errors. We created a skeleton benchmark dataset for con-

nectomics segmentations and labeled the endpoints for 500

ground truth segments. The utilized skeletonization ap-

proach has a precision of 94.7% and a recall of 86.7% for

an overall F-score of 90.5% on the benchmark dataset.

Figure 7 shows some qualitative examples of where our

method succeeds (left) and fails (right). Our method cor-

rectly establishes edges whenever one of the neuronal pro-

cesses has a skeleton endpoint and directional vector in the

vicinity of the error (left). In this particular example, the

broken spine has an endpoint vector pointing directly at the

corresponding dendrite. On the right, we see a failure where

two spines are connected to one another causing the skele-

ton to have no endpoints at the break.

Table 4 provides the quantitative results for our edge

generation method. The simple baseline strategy is to use

the adjacency graph from the segmentation. That is, two

nodes receive an edge if the corresponding segments have a

pair of neighboring voxels. We notice that the adjacency

graph creates a large number of edges between neuronal

processes that should not merge. In contrast, our proposed

method reduces the graph size by around 60% on each of
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Table 4. Our edge generation strategy reduces the number of edges

in the graph by around 60% on each of the three datasets. Impres-

sively 80% of the true split errors remain after the edge pruning

operations.

Dataset Baseline Proposed Edge Recall

PNI Test One 528 / 25,619 417 / 10,074 79.0% / 39.3%

PNI Test Two 460 / 30,388 370 / 11,869 80.4% / 39.1%

Kasthuri Test 1,193 / 43,951 936 / 18,168 78.5% / 41.3%

Figure 8. The receiver operating characteristic (ROC) curve for

our learned edge features for three test datasets.

Table 5. Using a global graph optimization strategy prevents seg-

ments from merging incorrectly over a traditional greedy ap-

proach. Our average decrease in VI merge over the baseline is

15.1% with a maximum decrease of 23.6%.
Dataset Baseline Proposed Decrease

PNI Test One 0.127 0.115 -9.4%

PNI Test Two 0.127 0.097 -23.6%

Kasthuri Test 0.153 0.134 -12.4%

the three datasets. Similarly, our recall of true split errors is

around 80% on each dataset.

We provide the results of our edge CNN in Figure 8.

Overall our network performs well on each of our datasets

with accuracies of 96.4%, 97.2%, and 93.4% on the PNI

and Kasthuri datasets respectively.

Graph Partitioning. Lastly, we quantify the benefits to us-

ing a global graph partitioning strategy over a standard ag-

glomeration technique. As a baseline, we merge regions to-

gether using only the local context from our CNN classifier.

To create a fair comparison with our proposed method, we

merge all segments whose predicted merge scores exceed

95% (a corollary to the chosen β value). Table 5 shows

the improvement in variation of information merge over a

greedy agglomeration approach. The VI merge score de-

creases by 15.1% on average when using a global optimiza-

tion strategy.

5.3. Computational Performance

All performance experiments ran on an Intel Core i7-

6800K CPU 3.40 GHz with a Titan X Pascal GPU. All

code is written in Python and is freely available4. We

use the Keras deep learning library for our neural net-

works with Theano backend and cuDNN 7 acceleration

for CUDA 8.0. Table 6 shows the running time for each

step of our proposed method on the PNI Test Two dataset

(2048× 2048× 256). Our method achieves a throughput of

1.66 megavoxels per second.

Table 6. Running times on a gigavoxel dataset.

Step Running Time

Node Feature Extraction 73 seconds

Node CNN 208 seconds

Skeleton Generation 34 seconds

Edge Feature Extraction 208 seconds

Edge CNN 109 seconds

Lifted Multicut 13 seconds

Total 10.75 minutes

6. Conclusions

We propose a third step for connectomics reconstruction

workflows to refine over-segmentations produced by typical

state-of-the-art reconstruction pipelines. Our method uses

both local and global context to improve on the input seg-

mentation using a global graph optimization strategy. For

local context, we employ geometric constraints based on the

underlying biology and learn typical neuron morphologies.

Performing the graph optimization after initial segmenta-

tion allows us to capture larger shape context when mak-

ing decisions. We improve on state-of-the-art segmentation

methods on four different datasets, reducing the variation of

information by 21.3% on average.

Our graph formulation provides a formal description of

the problem and enables a wide range of optimization strate-

gies in the future. Our current implementation makes use

of the lifted multicut formulation. However, our method

can easily be extended to a wide range of other graph parti-

tioning strategies. For example, with progress in automatic

identification of neuron type (e.g., excitatory or inhibitory)

we can introduce additional constraints to the global opti-

mizer to prevent different types from merging.
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