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Abstract

We propose a novel probabilistic generative model for

action sequences. The model is termed the Action Point

Process VAE (APP-VAE), a variational auto-encoder that

can capture the distribution over the times and categories

of action sequences. Modeling the variety of possible action

sequences is a challenge, which we show can be addressed

via the APP-VAE’s use of latent representations and non-

linear functions to parameterize distributions over which

event is likely to occur next in a sequence and at what time.

We empirically validate the efficacy of APP-VAE for model-

ing action sequences on the MultiTHUMOS and Breakfast

datasets.

1. Introduction

Anticipatory reasoning to model the evolution of action

sequences over time is a fundamental challenge in human

activity understanding. The crux of the problem in making

predictions about the future is the fact that for interesting

domains, the future is uncertain – given a history of actions

such as those depicted in Fig. 1, the distribution over future

actions has substantial entropy.

In this work, we propose a powerful generative approach

that can effectively model the categorical and temporal vari-

ability comprising action sequences. Much of the work in

this domain has focused on taking frame level data of video

as input in order to predict the actions or activities that may

occur in the immediate future. There has also been recent

interest on the task of predicting the sequence of actions that

occur farther into the future [6, 32, 1].

Time series data often involves regularly spaced data

points with interesting events occurring sparsely across

time. This is true in case of videos where we have a reg-

ular frame rate but events of interest are present only in

some frames that are infrequent. We hypothesize that in

order to model future events in such a scenario, it is bene-

ficial to consider the history of sparse events (action cate-

gories and their temporal occurrence in the above example)

alone, instead of regularly spaced frame data. While the

Figure 1. It is difficult to make predictions, especially about the fu-

ture. Given a history of past actions, multiple actions are possible

in the future. We focus on the problem of learning a distribution

over the future actions – what are the possible action categories

and when will they start.

history of frames contains rich information over and above

the sparse event history, we can possibly create a model for

future events occurring farther into the future by choosing

to only model the sparse sequence of events. This approach

also allows us to model high-level semantic meaning in the

time series data that can be difficult to discern from low-

level data points that are regular across time.

Our model is formulated in the variational auto-encoder

(VAE) [15] paradigm, a powerful class of probabilistic

models that facilitate generation and the ability to model

complex distributions. We present a novel form of VAE

for action sequences under a point process approach. This

approach has a number of advantages, including a proba-

bilistic treatment of action sequences to allow for likelihood

evaluation, generation, and anomaly detection.

Contribution. The contributions of this work center

around the APP-VAE (Action Point Process VAE), a novel

generative model for asynchronous time action sequences.

The contributions of this paper include:

• A novel formulation for modeling point process data

within the variational auto-encoder paradigm.

• Conditional prior models for encoding asynchronous

time data.
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Figure 2. Given the history of actions, APP-VAE generates a distribution over possible actions in the next step. APP-VAE can recurrently

perform this operation to model diverse sequences of actions that may follow. The figure shows the distributions for the fourth action in a

basketball game given the history of first three actions.

• A probabilistic model for jointly capturing uncertainty

in which actions will occur and when they will happen.

2. Related Work

Activity Prediction. Most activity prediction tasks are

frame-based, i.e. the input to the model is a sequence of

frames before the action starts and the task is predict what

will happen next. Lan et al. [18] predict future actions from

hierarchical representations of short clips by having differ-

ent classifiers at each level in a max-margin framework.

Mahmud et al. [20] jointly predicts future activity as well

as its starting time by a multi-streams framework. Each

streams tries to catch different features for having a richer

feature representation for future prediction: One stream for

visual information, one for previous activities and the last

one focusing on the last activity.

Farha et al. [1] proposed a framework for predicting the

action categories of a sequence of future activities as well

as their starting and ending time. They proposed two de-

terministic models, one using a combination of RNN and

HMM and the other one is a CNN predicting a matrix which

future actions are encoded in it.

Asynchronous Action Prediction. We focus on the task

of predicting future action given a sequence of previous

actions that are asynchronous in time. Du et al. [6] pro-

posed a recurrent temporal model for learning the next ac-

tivity timing and category given the history of previous ac-

tions. Their recurrent model learns a non-linear map of his-

tory to the intensity function of a temporal point process

framework. Zhong et al. [32] also introduced a hierarchi-

cal recurrent network model for future action prediction for

modeling future action timing and category. Their model

takes frame-level information as well as sparse high-level

events information in the history to learn the intensity func-

tion of a temporal point process. Xiao et al. [28] introduced

an intensity-free generative method for temporal point pro-

cess. The generative part of their model is an extension of

Wasserstein GAN in the context of temporal point process

for learning to generate sequences of action.

Early Stage Action Prediction. Our work is related to

early stage action prediction. This task refers to predicting

the action given the initial frames of the activity [19, 10, 25].

Our task is different from early action prediction, because

the model doesn’t have any information about the action

while predicting it. Recently Yu et al. [31] used variational

auto-encoder to learn from the frames in the history and

transfer them into the future. Sadegh Aliakbarian et al. [24]

combine context and action information using a multi-stage

LSTM model to predict future action. The model is trained

with a loss function which encourages the model to predict

action with few observations. Gao et al. [7] proposed to use

a Reinforced Encoder-Decoder network for future activity

prediction. Damen et al. [3] proposed a semi-supervised

variational recurrent neural network to model human activ-

ity including classification, prediction, detection and antici-

pation of human activities.

Video Prediction. Video prediction has recently been

studied in several works. Denton and Fergus [5] use a vari-

ational auto-encoder framework with a learned prior to gen-

erate future video frames. He et al. [9] also proposed a gen-

erative model for future prediction. They structure the latent

space by adding control features which makes the model

able to control generation. Vondrick et al. [27] uses adver-

sarial learning for generating videos of future with trans-

forming the past pixels. Patraucean et al. [23] describe a

spatio-temporal auto-encoder that predicts optical flow as

a dense map, using reconstruction in its learning criterion.

Villegas et al. [26] propose a hierarchical approach to pixel-

level video generation, reasoning over body pose before

rendering into a predicted future frame.

3. Asynchronous Action Sequence Modeling

We first introduce some notations and the problem def-

inition. Then we review the VAE model and temporal
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Figure 3. Our proposed recurrent VAE model for asynchronous action sequence modeling. At each time step, the model uses the history

of actions and inter-arrival times to generate a distribution over latent codes, a sample of which is then decoded into two probability

distributions for the next action: one over possible action labels and one over the inter arrival time.

point process that are used in our model. Subsequently, we

present our model in detail and how it is trained.

Problem definition. The input is a sequence of actions

x1:n = (x1, . . . , xn) where xn is the n-th action. The ac-

tion xn = (an, τn) is represented by the action category

an ∈ {1, 2, . . . ,K} (K discrete action classes) and the

inter-arrival time τn ∈ R
+. The inter-arrival time is the

difference between the starting time of action xn−1 and xn.

We formulate the asynchronous action distribution model-

ing task as follows: given a sequence of actions x1:n−1, the

goal is to produce a distribution over what action an will

happen next, and the inter arrival time τn. We aim to de-

velop probabilistic models to capture the uncertainty over

these what and when questions of action sequence model-

ing.

3.1. Background: Base Models

Variational Auto-Encoders (VAEs). A VAE [15] de-

scribes a generative process with simple prior pθ(z) (usu-

ally chosen to be a multivariate Gaussian) and complex

likelihood pθ(x|z) (the parameters of which are produced

by neural networks). x and z are observed and latent vari-

ables, respectively. Approximating the intractable posterior

pθ(z|x) with a recognition neural network qφ(z|x), the pa-

rameters of the generative model θ as well as the recogni-

tion model φ can be jointly optimized by maximizing the

evidence lower bound L on the marginal likelihood pθ(x):

log pθ(x) = KL(qφ‖pθ) + L(θ, φ)

≥ L(θ, φ) = −Eqφ

[

log
qφ(z|x)

pθ(z, x)

]

.
(1)

Recent works expand VAEs to time-series data includ-

ing video [2, 5, 9], text [4, 12], or audio [30]. A popu-

lar design choice of such models is the integration of a per

time-step VAE with RNN/LSTM temporal modelling. The

ELBO thus becomes a summation of time-step-wise varia-

tional lower bound1:

L(θ, φ, ψ) =

N
∑

n=1

[

Eqφ(z1:n|x1:n) [log pθ(xn|x1:n−1, z1:n)]

− KL(qφ(zn|x1:n)||pψ(zn|x1:n−1))
]

. (2)

with a “prior” pψ(zn|x1:n−1) that evolves over the N time

steps used.

Temporal point process. A temporal point process is a

stochastic model used to capture the inter-arrival times of

a series of events. A temporal point process is charac-

terized by the conditional intensity function λ(τn|x1:n−1),
which is conditioned on the past events x1:n−1 (e.g. action

in this work). The conditional intensity encodes instanta-

neous probabilities at time τ . Given the history of n − 1
past actions, the probability density function for the time of

the next action is:

f(τn|x1:n−1) = λ(τn|x1:n−1)e
−

τn∫

0

λ(u|x1:n−1) du
(3)

The Poisson process [16] is a popular temporal point pro-

cess, which assumes that events occur independent of one

another. The conditional intensity is λ(τn|x1:n−1) = λ

where λ is a positive constant. More complex conditional

intensities have been proposed like Hawkes Process [8] and

Self-Correcting Process [13]. All these conditional inten-

sity function seek to capture some forms of dependency on

1Note that variants exist, depending on the exact form of the recurrent

structure and its VAE instantiation.
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the past action. However, in practice the true model of the

dependencies is never known [21] and the performance de-

pend on the design of the conditional intensity. In this work,

we learn a recurrent model that estimates the conditional in-

tensity based on the history of actions.

3.2. Proposed Approach

We propose a generative model for asynchronous action

sequence modeling using the VAE framework. Figure 3

shows the architecture of our model. Overall, the input se-

quence of actions and inter arrival times are encoded using

a recurrent VAE model. At each step, the model uses the

history of actions to produce a distribution over latent codes

zn, a sample of which is then decoded into two probability

distributions: one over the possible action categories and

another over the inter-arrival time for the next action. We

now detail our model.

Model. At time step n during training, the model takes

as input the action xn, which is the target of the prediction

model, and the history of past actions x1:n−1. These inputs

are used to compute a conditional distribution qφ(zn|x1:n)
from which a latent code zn is sampled. Since the true

distribution over latent variables zn is intractable we rely

on a time-dependent inference network qφ(zn|x1:n) that

approximates it with a conditional Gaussian distribution

N (µφn
, σ2
φn

). To prevent zn from just copying xn, we force

qφ(zn|x1:n) to be close to the prior distribution p(zn) us-

ing a KL-divergence term. Usually in VAE models, p(zn)
is a fixed Gaussian N (0, I). But a drawback of using a

fixed prior is that samples at each time step are drawn ran-

domly, and thus ignore temporal dependencies present be-

tween actions. To overcome this problem, a solution is to

learn a prior that varies across time, being a function of all

past actions except the current action pψ(zn+1|x1:n). Both

prior and approximate posterior are modelled as multivari-

ate Gaussian distributions with diagonal covariance with pa-

rameters as shown below:

qφ(zn|x1:n) = N (µφn
, σ2
φn

) (4)

pψ(zn+1|x1:n) = N (µψn+1
, σ2
ψn+1

) (5)

At step n, both posterior and prior networks observe actions

x1:n but the posterior network outputs the parameters of a

conditional Gaussian distribution for the current action xn
whereas the prior network outputs the parameters of a con-

ditional Gaussian distribution for the next action xn+1.

At each time-step during training, a latent variable zn
is drawn from the posterior distribution qφ(zn|x1:n). The

output action x̂n is then sampled from the distribution

pθ(xn|zn) of our conditional generative model which is pa-

rameterized by θ. For mathematical convenience, we as-

sume the action category and inter-arrival time are condi-

tionally independent given the latent code zn:

pθ(xn|zn) = pθ(an, τn|zn) = paθ(an|zn)p
τ
θ (τn|zn) (6)

where paθ(an|zn) (resp. pτθ (τn|zn)) is the conditional gen-

erative model for action category (resp. inter-arrival time).

This is a standard assumption in event prediction [6, 32].

The sequence model generates two probability distribu-

tions: (i) a categorical distribution over the action categories

and (ii) a temporal point process distribution over the inter-

arrival times for the next action.

The distribution over action categories is modeled with

a multinomial distribution when an can only take a finite

number of values:

paθ(an = k|zn) = pk(zn) and

K
∑

k=1

pk(zn) = 1 (7)

where pk(zn) is the probability of occurrence of action k,

and K is the total number of action categories.

The inter-arrival time is assumed to follow an exponen-

tial distribution parameterized by λ(zn), similar to a stan-

dard temporal point process model:

pτθ (τn|zn) =

{

λ(zn)e
−λ(zn)τn if τn ≥ 0

0 if τn < 0
(8)

where pτθ (τn|zn) is a probability density function over ran-

dom variable τn and λ(zn) is the intensity of the process,

which depends on the latent variable sample zn.

Learning. We train the model by optimizing the varia-

tional lower bound over the entire sequence comprised of

N steps:

Lθ,φ(x1:N ) =

N
∑

n=1

(Eqφ(zn|x1:n)[log pθ(xn|zn)] (9)

−DKL(qφ(zn|x1:n)||pψ(zn|x1:n−1)))

Because the action category and inter-arrival time are con-

ditionally independent given the latent code zn, the log-

likelihood term can be written as follows:

Eqφ(zn|x1:n)[log pθ(xn|zn)] = (10)

Eqφ(zn|x1:n)[log p
a
θ(an|zn)] + Eqφ(zn|x1:n)[log p

τ
θ (τn|zn)]

Given the form of paθ the log-likelihood term reduces to a

cross entropy between the predicted action category dis-

tribution paθ(an|zn) and the ground truth label a∗n. Given

the ground truth inter-arrival time τ∗n , we compute its log-

likelihood over a small time interval ∆τ under the predicted

distribution.

log

[

∫ τ∗

n+∆τ

τ∗

n

pτθ (τn|zn) dτn

]

= log(1− e−λ(zn)∆τ ) (11)

− λ(zn)τ
∗
n
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We use the re-parameterization trick [15] to sample from

the encoder network qφ.

Generation. The goal is to generate the next action x̂n =
(ân, τ̂n) given a sequence of past actions x1:n−1. The gen-

eration process is shown on the bottom of Figure 3. At test

time, an action at step n is generated by first sampling zn
from the prior. The parameters of the prior distribution are

computed based on the past n− 1 actions x1:n−1. Then, an

action category ân and inter-arrival time τ̂n are generated as

follows:

ân ∼ paθ(an|zn) τ̂n ∼ pτθ (τn|zn) (12)

Architecture. We now describe the architecture of our

model in detail. At step n, the current action xn is em-

bedded into a vector representation xembn with a two-step

embedding strategy. First, we compute a representation for

the action category (an) and the inter-arrival time (τn) sepa-

rately. Then, we concatenate these two representations and

compute a new representation xembn of the action.

aembn =femba (an) τembn = fembτ (τn) (13)

xembn = femba,τ ([aembn , τembn ]) (14)

We use a 1-hot encoding to represent the action category la-

bel an. Then, we have two branches: one to estimate the

parameters of the posterior distribution and another to esti-

mate the parameters of the prior distribution. The network

architecture of these two branches is similar but we use sep-

arate networks because the prior and the posterior distribu-

tion capture different information. Each branch has a Long

Short Term Memory (LSTM) [11] to encode the current ac-

tion and the past actions into a vector representation:

hpostn = LSTMφ(x
emb
n , h

post
n−1) (15)

hpriorn = LSTMψ(x
emb
n , h

prior
n−1 ) (16)

Recurrent networks turn variable length sequences into

meaningful, fixed-sized representations. The output of the

posterior LSTM hpostn (resp. prior LSTM hpriorn ) is passed

into a posterior (also called inference) network f
post
φ (resp.

prior network f
prior
ψ ) that outputs the parameters of the

Gaussian distribution:

µφn
, σ2
φn

= f
post
φ (hpostn ) (17)

µψn
, σ2
ψn

= f
prior
ψ (hpriorn ) (18)

Then, a latent variable zn is sampled from the posterior (or

prior during testing) distribution and is fed to the decoder

networks for generating distributions over the action cate-

gory an and inter-arrival time τn.

The decoder network for action category faθ (zn) is a

multi-layer perceptron with a softmax output to generate the

probability distribution in Eq. 7:

paθ(an|zn) = faθ (zn) (19)

The decoder network for inter-arrival time fτθ (zn) is an-

other multi-layer perceptron, producing the parameter for

the point process model for temporal distribution in Eq. 8:

λ(zn) = fτθ (zn) (20)

During training, the parameters of all the networks are

jointly learned in an end-to-end fashion.

4. Experiments

Datasets. We performed experiments using APP-VAE on

two action recognition datasets. We use the standard train-

ing and testing sets for each.

MultiTHUMOS Dataset [29] is a challenging dataset for ac-

tion recognition, containing 400 videos of 65 different ac-

tions. On average, there are 10.5 action class labels per

video and 1.5 actions per frame.

Breakfast Dataset [17] contains 1712 videos of breakfast

preparation for 48 action classes. The actions are performed

by 52 people in 18 different kitchens.

Architecture details. The APP-VAE model architecture

is shown in Fig. 3. Action category and inter-arrival time

inputs are each passed through 2 layer MLPs with ReLU

activation. They are then concatenated and followed with a

linear layer. Hidden state of prior and posterior LSTMs is

128. Both prior and posterior networks are 2 layer MLPs,

with ReLU activation after the first layer. Dimension of the

latent code is 256. Action decoder is a 3 layer MLP with

ReLU at the first two layers and softmax for the last one.

The time decoder is also a 3 layer MLP with ReLU at the

first two layers, with an exponential non-linearity applied to

the output to ensure the parameter of the point process is

positive.

Implementation details. The models are implemented

with PyTorch [22] and are trained using the Adam [14] opti-

mizer for 1,500 epochs with batch size 32 and learning rate

0.001. We split the standard training set of both datasets

into training and validation sets containing 70% and 30%

of samples respectively. We select the best model during

training based on the model loss (Eq. 10) on the validation

set.

Baselines. We compare APP-VAE with the following

models for action prediction tasks.
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Dataset Model Stoch. Var. LL

Breakfast

APP-LSTM - -6.668

APP-VAE w/o Learned Prior ✓ ≥-9.427

APP-VAE ✓ ≥-5.944

MultiTUHMOS

APP-LSTM - -4.190

APP-VAE w/o Learned Prior ✓ ≥-5.344

APP-VAE ✓ ≥-3.838

Table 1. Comparison of log-likelihood on Breakfast and MultiTHUMOS datasets.

• Time Deterministic LSTM (TD-LSTM). This is a

vanilla LSTM model that is trained to predict the next

action category and the inter-arrival time, comparable

with the model proposed by Farha et al. [1]. This

model directly predicts the inter-arrival time and not

the distribution over it. TD-LSTM uses the same en-

coder network as APP-VAE. We use cross-entropy loss

for action category output and perform regression over

inter-arrival time using mean squared error (MSE) loss

similar to [1].

• Action Point Process LSTM (APP-LSTM). This base-

line predicts the inter-arrival time distribution similar

to APP-VAE. The model uses the same reconstruction

loss function as in the VAE model – cross entropy

loss for action category and negative log-likelihood

(NLL) loss for inter-arrival time. APP-LSTM does not

have the stochastic latent code that allows APP-VAE

to model diverse distributions over action category and

inter-arrival time. Our APP-LSTM baseline encom-

passes Du et al. [6]’s work. The only difference is the

way we model the intensity function (IF). Du et al. [6]

defines IS explicitly as a function of time. This design

choice has been investigated in Zhong et al. [32]; an

implicit intensity function is shown to be superior and

thus adapted in our APP-LSTM baseline.

Metrics. We use log-likelihood (LL) to compare our

model with the APP-LSTM. We also report accuracy of ac-

tion category prediction and mean absolute error (MAE) of

inter-arrival time prediction. We calculate accuracy by com-

paring the most probable action category from the model

output with the ground truth category. To calculate MAE,

we use the expected inter-arrival time under the predicted

distribution pτθ (τn|zn):

Epτ
θ
(τn|zn)[τn] =

∞
∫

0

τn · pτθ (τn|zn)dτn =
1

λ(zn)
(21)

The expected value 1
λ(zn)

and the ground truth inter-arrival

time are used to compute MAE.

4.1. Experiment Results

We discuss quantitative and qualitative results from our

experiments. All quantitative experiments are performed

by teacher forcing methodology i.e. for each step in the se-

quence of actions, the models are fed the ground truth his-

tory of actions, and likelihood and/or other metrics for the

next action are measured.

Quantitative results. Table 1 shows experimental results

that compare APP-VAE with the APP-LSTM. To estimate

the log-likelihood (LL) of our model, we draw 1500 sam-

ples from the approximate posterior distribution, following

the standard approach of importance sampling. APP-VAE

outperforms the APP-LSTM on both MultiTHUMOS and

Breakfast datasets. We believe that this is because the APP-

VAE model is better in modeling the complex distribution

over future actions.

Table 2 shows accuracy and MAE in predicting the fu-

ture action given the history of previous actions. APP-

VAE outperforms TD-LSTM and APP-LSTM under both

the metrics. For each step in the sequence we draw 1500

samples from the prior distribution that models the next step

action. Given the output distributions, we select the action

category with the maximum probability as the predicted ac-

tion, and the expected value of inter-arrival time as the pre-

dicted inter-arrival time. Out of 1500 predictions, we select

the most frequent action as the model prediction for that

time step, and compute inter-arrival time by averaging over

the corresponding time values.

Table 1 and 2 also show the comparison of our model

with the case where the prior is fixed in all of the time-steps.

In this experiment, we fixed the prior to the standard normal

distribution N (0, I). We can see that the learned prior vari-

ant outperforms the fixed prior variant consistently across

all datasets. The model with the fixed prior does not per-

form well because it learns to predict the majority action

class and average inter-arrival time of the training set, ig-

noring the history of any input test sequence.

In addition to the above strategy of selecting the mode

action at each step, we also report action category accu-

racy and MAE obtained by averaging over predictions of

all 1500 samples. We summarize these results in Table 4.
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Figure 4. Examples of generated sequences. Given the history (shown at left), we generate a distribution over latent code zn for the

subsequent time step. A sample is drawn from this distribution, and decoded into distributions over action category and time, from which

a next action/time pair by selecting the action with the highest probability and computing the expectation of the generated distribution over

τ (Equation 21). This process is repeated to generate a sequence of actions. Two such sampled sequences (a) and (b) are shown for each

history, and compared to the respective ground truth sequence (in line with history row). We can see that APP-VAE is capable of generating

diverse and plausible action sequences.

Dataset Model Time Loss stoch. var. ↑ accuracy ↓ MAE

Breakfast

TD-LSTM MSE - 53.64 173.76

APP-LSTM NLL - 61.39 152.17

APP-VAE w/o Learned Prior NLL ✓ 27.09 270.75

APP-VAE NLL ✓ 62.20 142.65

MultiTUHMOS

TD-LSTM MSE - 29.74 2.33

APP-LSTM NLL - 36.31 1.99

APP-VAE w/o Learned Prior NLL ✓ 8.79 2.02

APP-VAE NLL ✓ 39.30 1.89

Table 2. Accuracy of action category prediction and Mean Absolute Error (MAE) of inter-arrival time prediction of all model variants.

Arrows show whether lower (↓ ) or higher (↑ ) scores are better.

We next explore the architecture of our model by vary-

ing the sizes of the latent variable. Table 5 shows the log-

likelihood of our model for different sizes of the latent vari-

able. We see that as we increase the size of the latent

variable, we can model a more complex latent distribution

which results in better performance.

Qualitative Results. Fig. 4 shows examples of diverse fu-

ture action sequences that are generated by APP-VAE given

the history. For different provided histories, sampled se-

quences of actions are shown. We note that the overall du-

ration and sequence of actions on the Breakfast Dataset are

reasonable. Variations, e.g. taking the juice squeezer before

using it, adding salt and pepper before cooking eggs, are

plausible alternatives generated by our model.

Fig. 5 visualizes a traversal on one of the latent codes

for three different sequences by uniformly sampling one

z dimension over
[

µ − 5σ, µ + 5σ
]

while fixing others

to their sampled values. As shown, this dimension corre-

lates closely with the action add saltnpepper, strifry egg
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Test sequences with high likelihood

1 NoHuman, CliffDiving, Diving, Jump, BodyRoll, CliffDiving, Diving, Jump, BodyRoll, CliffDiving, Diving, Jump,

BodyRoll, BodyContract, Run, CliffDiving, Diving, Jump, ..., BodyRoll, CliffDiving, Diving, BodyContract, CliffDiving,

Diving, CliffDiving, Diving, CliffDiving, Diving, Jump, CliffDiving, Diving, Walk, Run, Jump, Jump, Run, Jump

2 CleanAndJerk, PickUp, BodyContract, Squat, StandUp, BodyContract, Squat, CleanAndJerk, PickUp, StandUp,

BodyContract, Squat, CleanAndJerk, PickUp, StandUp, Drop, BodyContract, Squat, PickUp, ..., Squat, StandUp, Drop,

BodyContract, Squat, BodyContract, Squat, BodyContract, Squat, BodyContract, Squat, BodyContract, Squat, NoHuman

Test sequences with low likelihood

1 NoHuman, TalkToCamera, GolfSwing, GolfSwing, GolfSwing, GolfSwing, NoHuman

2 NoHuman, HammerThrow, TalkToCamera, CloseUpTalkToCamera, HammerThrow, HammerThrow, HammerThrow,

TalkToCamera, ..., HammerThrow, HammerThrow, HammerThrow, HammerThrow, HammerThrow, HammerThrow,

HammerThrow, HammerThrow, HammerThrow, HammerThrow, HammerThrow, HammerThrow, HammerThrow

Table 3. Example of test sequences with high and low likelihood according to our learned model

Figure 5. Latent Code Manipulation. The history + ground-

truth label of future action for the sub-figures are: (a)

“SIL, crack egg”→“add saltnpepper”, (b) “SIL, take plate,

crack egg”→ “add saltnpepper” and (c) “SIL, pour oil,

crack egg”→“add saltnpepper”.

Dataset Model Acc MAE

Breakfast APP-VAE - avg 59.02 145.95

APP-VAE - mode 62.20 142.65

MultiTUHMOS APP-VAE - avg 35.23 1.96

APP-VAE - mode 39.30 1.89

Table 4. Accuracy (Acc) and Mean Absolute Error (MAE) under

mode and averaging over samples.

and fry egg.

We further qualitatively examine the ability of the model

to score the likelihood of individual test samples. We sort

the test action sequences according to the average per time-

step likelihood estimated by drawing 1500 samples from

the approximate posterior distribution following the impor-

tance sampling approach. High scoring sequences should

be those that our model deems as “normal” while low scor-

ing sequences those that are unusual. Tab. 3 shows some

example of sequences with low and high likelihood on the

Latent size 32 64 128 256 512

LL (≥) -4.486 -3.947 -3.940 -3.838 -4.098

Table 5. Log-likelihood for APP-VAE with different latent variable

dimensionality on MultiTHUMOS.

MultiTHUMOS dataset. We note that a regular, structured

sequence of actions such as jump, body roll, cliff diving for

a diving action or body contract, squat, clean and jerk for a

weightlifting action receives high likelihood. However, re-

peated hammer throws or golf swings with no set up actions

receives a low likelihood.

Finally we compare asynchronous APP-LSTM with a

synchronous variant (with constant frame rate) on Breakfast

dataset. The synchronous model predicts actions one step at

a time and the sequence is post-processed to infer the dura-

tion of each action. The performance is significantly worse

for both MAE time (152.17 vs 1459.99) and action predic-

tion accuracy (61.39% vs 28.24%). A plausible explanation

is that LSTMs cannot deal with very long-term dependen-

cies.

5. Conclusion

We presented a novel probabilistic model for point pro-

cess data – a variational auto-encoder that captures uncer-

tainty in action times and category labels. As a generative

model, it can produce action sequences by sampling from

a prior distribution, the parameters of which are updated

based on neural networks that control the distributions over

the next action type and its temporal occurrence. The model

can also be used to analyze given input sequences of ac-

tions to determine the likelihood of observing particular se-

quences. We demonstrate empirically that the model is ef-

fective for capturing the uncertainty inherent in tasks such

as action prediction and anomaly detection.
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