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Abstract

We introduce GFrames, a novel local reference frame

(LRF) construction for 3D meshes and point clouds.

GFrames are based on the computation of the intrinsic gra-

dient of a scalar field defined on top of the input shape. The

resulting tangent vector field defines a repeatable tangent

direction of the local frame at each point; importantly, it di-

rectly inherits the properties and invariance classes of the

underlying scalar function, making it remarkably robust un-

der strong sampling artifacts, vertex noise, as well as non-

rigid deformations. Existing local descriptors can directly

benefit from our repeatable frames, as we showcase in a se-

lection of 3D vision and shape analysis applications where

we demonstrate state-of-the-art performance in a variety of

challenging settings.

1. Introduction

Computing correspondence between 3D shapes (in par-

ticular, meshes and point clouds) is a key task in com-

puter graphics and vision, recently becoming increasingly

relevant due to the availability of off-the-shelf depth sen-

sors such as Microsoft Kinect or Intel RealSense and large-

scale 3D datasets. 3D shape matching underlies applica-

tions such as robotic grasping and manipulation, scene un-

derstanding for augmented reality, obstacle avoidance and

path planning for driver-less cars, to mention a few. Ef-

fective pipelines addressing this task rely upon the defini-

tion of a compact representation of the local geometry of

the objects involved. Such point descriptors are expected

to be compact, local, and distinctive. While point descrip-

tors have been traditionally hand-crafted, recent proposals

attempted to learn them by leveraging recent advances in

deep learning [7, 20, 3, 24].

At the heart of most descriptors typically lies the con-
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Figure 1. Comparison of LRF repeatability measured as mean co-

sine error on two non-rigid poses of the dog shape. We compare

with the de-facto standard SHOT [34]. Left: The heat map encodes

local frame alignment growing from red (gross misalignment) to

white (perfectly aligned LRFs). Right: The computed LRFs; we

only show the x axes for visualization purposes.

struction of a local reference frame (LRF), a local system

of Cartesian coordinates at each point, with respect to which

the local geometric structure around that point is encoded.

The effectiveness of the descriptor directly depends on the

reliability of its underlying LRF; in turn, the quality of the

latter is determined by its invariance to transformations that

can be observed in the data. Most LRFs exploit some geo-

metric properties of the local neighbors, such as the covari-

ance matrix of the 3D coordinates of the neighborhood.

In this paper, we propose GFrames, a novel LRF that

is demonstrably robust to severe sampling artifacts, vertex

noise, and object deformation. Key to our method is the

definition of the tangent component as the intrinsic gradient
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of a scalar function defined on the 3D object. The choice

of the function directly determines the invariance classes of

the resulting LRF; by doing so, we crucially shift the key

difficulties of directly dealing with the object geometry to

the simpler manipulation of a vector space of real-valued

functions. The intrinsic construction further makes our LRF

a natural choice in the more challenging non-rigid setting

(see Figure 1). GFrames can be used as-is to improve exist-

ing descriptors and provide a robust choice in applications

requiring a repeatable frame.

Our key contributions can be summarized as follows:

• We introduce a novel, theoretically principled LRF for

3D shapes that is remarkably robust to sampling, and

that can be made provably invariant to non-rigid near-

isometric transformations;

• We provide simple algorithms for its robust computa-

tion on triangle meshes as well as point clouds, and

demonstrate its effectiveness on datasets addressing

deformable matching of meshes as well as rigid point

cloud registration;

• We showcase our construction in several classical 3D

vision applications in challenging settings, on both

synthetic and real-world data, where we achieve a gap

in performance compared with the state-of-the-art.

We make a special effort of comparing on benchmarks

used both in computer graphics and vision, which include

tasks such as deformable matching of complete meshes

(common in the former community) and registration of par-

tial point clouds (from the latter community), demonstrat-

ing in both cases the effectiveness of our approach. With

this, we aim to bridge the gap between the two worlds and

propose a method that can be used broadly across the board.

2. Related work on LRFs

A robust and repeatable LRF is a key component

for most ‘handcrafted’ 3D local descriptors, such as fast

point feature histograms [30], exponential mapping [25],

SHOT [34], ROPS [13], USC [33], and point signatures [8],

to name just a few. Furthermore, robust local frames have a

crucial role in recent geometric deep learning approaches

[7], constructing non-Euclidean analogies of CNNs on

meshes through local patch operators [20, 3, 24].

Local descriptors making use of local frames tend to

be very sensitive to misalignment between LRFs at corre-

sponding feature points, causing the performance of sur-

face matching pipelines to be notably dependent on the re-

peatability of the adopted LRF (see [26, 27] for an extensive

study). On the other hand, local descriptors that do not ex-

ploit an LRF are either not distinctive enough [1], costly to

compute [28], or suffer from poor performance in the pres-

ence of noise and missing parts [32].

For a given 3D shape M, an LRF L(p) at point p ∈ M
is an orthogonal set of unit vectors (moving frame):

L(p) = {x̂(p), ŷ(p), ẑ(p)} (1)

satisfying the right-hand rule ŷ = ẑ × x̂. Following [35],

we distinguish between LRFs depending on whether they

are based on covariance analysis or geometric attributes.

The former family includes methods that define the axes

in L(p) as eigenvectors of the 3D covariance matrix be-

tween points lying within a spherical support of radius

r > 0 centered at p, denoted by Br(p) = {s ∈ M :
‖p − s‖2 < r}. Inherent to such methods is the sign am-

biguity of eigenvectors, making it hard to define repeatable

directions; thus, efforts have largely concentrated on the re-

liable disambiguation of the axes sign. In [25], no disam-

biguation takes place, and the axis x̂ is simply defined as

the principal eigenvector projected onto the tangent plane

defined by the normal n̂(p) (assumed to be given as in-

put). In [22], all the three axes are given directly by the

eigenvectors; however, here ±ẑ is disambiguated by evalu-

ating the two inner products 〈n̂,±ẑ〉 and keeping the sign

yielding a positive number. Axis x̂ nevertheless remains

ambiguous. The LRF proposed with the SHOT descrip-

tor [34] employs a different covariance matrix, where the

contributions of the points in Br(p) are weighted by their

distance to p. Sign ambiguity is addressed by choosing the

sign that makes the eigenvector consistent with the major-

ity of the measurements [5]; in practice, this results in the

x̂ axis pointing in the direction of greater sample density.

Similarly, in the ROPS descriptor [13] the axis x̂ is made to

point in the direction of greater mesh density.

Methods based on geometric attributes determine x̂ by

identifying a reference point q ∈ Br(p) within the support

region, and then projecting the difference vector q − p onto

the tangent plane at p. Within this family, methods mainly

differ by the geometric criterion used to select q. As an early

example, point signatures [8] first fit a plane to the boundary

path γ = M∩ Br(p); the reference is then selected as the

point q ∈ γ with the largest positive distance to the fitted

plane. In [26], a tangent plane is fitted to the entire Br(p);
its normal vector ẑ = ±n̂ is disambiguated by taking the

sign yielding a positive inner product with the average nor-

mal of the points in Br(p). The reference is then taken as

the point q ∈ Br′>r(p) having the largest angular devia-

tion with respect to n̂. The method of [27] follows a sim-

ilar approach, whereas q is selected as the point exhibiting

the largest signed distance (rather than angle) to the tangent

plane. To our knowledge, the latter approach is the current

state-of-the-art for computing repeatable LRFs, and hence

is chosen as our baseline in the experimental section.

Finally, several deep learning-based 3D descriptors have

been proposed in recent years, with most of them relying

upon fixed LRFs in order to achieve rotation invariance.
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Figure 2. A scalar field on shape M, and its intrinsic gradient ∇f .

Such cases include CGF-32 [15], PFFNet [11], and met-

ric learned SHOT [9] which all deploy the LRF of [34].

In ACNN [4, 3] and MoNet [24] architectures, the local

patches are oriented using the principal curvature direction.

PointNet [29] uses a spatial transformer network [14] to

predict a rigid transformation to canonically align the input

data, while PCPNet [12] applies the transformer locally.

Based upon these considerations, we argue that the defi-

nition of a robust and repeatable LRF is still considered an

open and challenging problem that underpins many existing

approaches and is ubiquitous in many applications.

3. Background

In this paper, we consider 3D shapes represented as

meshes or point clouds. To this end, we start with a continu-

ous mathematical model and then discuss the discretization.

Manifolds. We assume that our shapes arise from the sam-

pling of 2-dimensional Riemannian manifolds (surfaces)

M, possibly with boundary ∂M, embedded into R
3. Lo-

cally around each point x ∈ M, the manifold is homeo-

morphic to the tangent plane TpM; the disjoint union of

all such planes forms the tangent bundle TM. We further

equip the manifold with a Riemannian metric, defined as

an inner product 〈·, ·〉TpM : TpM × TpM → R on the

tangent plane depending smoothly on p. Functions of the

form f : M → R and F : M → TM are referred to as

scalar- and (tangent) vector fields, respectively. Properties

expressed solely in terms of the metric are called intrinsic.

In particular, isometric deformations of the manifold (such

as a change in pose) preserve all intrinsic structures.

Intrinsic gradient. In classical calculus, derivatives de-

scribe how a function f changes with an infinitesimal

change of its argument x. Due to the lack of vector space

structure on the manifold (meaning that we cannot add

two points, i.e., an expression like “p + dp′′ is meaning-

less), one needs to define the differential of f as an oper-

ator df : TM → R acting on tangent vector fields. At

each point p, the differential is a linear functional df(p) =
〈∇f(p), · 〉TpM acting on tangent vectors F (p) ∈ TpM,

which models a small displacement around p. The change

Figure 3. Gradient estimation on a triangle mesh (left) and on a

point cloud of a partial scan (right). Our approach only needs a

notion of a tangent space to be applied to any given representation.

of the function value as the result of this displacement is

given by applying the differential to the tangent vector,

df(p)F (p) = 〈∇Mf(p), F (p)〉TpM. This can be thought

of as an extension of the notion of directional derivative,

where the linear operator ∇Mf : L2(M) → L2(TM) is

called the intrinsic gradient, and is similar to the classical

gradient defining the direction of the steepest change of the

function at a point, with the only difference that the direc-

tion is now a tangent vector; see Figure 2 for an example.

Discretization. Let us now assume the manifold is sam-

pled at n points p1, . . . , pn, being the most basic represen-

tation of the shape called a point cloud. Equipping it fur-

ther with a simplicial structure with edges E and triangular

faces F yields a triangular mesh, which we assume to be a

(discrete) manifold. Scalar functions f : M → R are rep-

resented as vectors f = (f(p1), . . . , f(pn))
⊤ encoding the

value of f at each point. Following standard practice, func-

tions are assumed to behave linearly between neighboring

points (within each triangle in the case of meshes).

On meshes, the discrete intrinsic gradient ∇f yields tan-

gent vector fields defined on the mesh triangles; on each

triangle tj , it is computed as a 3D vector

∇f(tj) =
(

e21 e31
)

(

E F

F G

)−1(
f(p2)− f(p1)
f(p3)− f(p1)

)

(2)

where E = ‖e21‖
2, F = 〈e21, e31〉, and G = ‖e31‖

2 (see

inset below for the notation).

p1

p2
p3

tj
e21 e31

On point clouds, the intrinsic gradient

is discretized as follows. For each point

p, we first estimate its tangent space by lo-

cally fitting a plane to points within radius

r around p. These points are projected

onto the plane, where they are locally meshed into a trian-

gle patch P using Delaunay triangulation. We then take the

weighted average ∇f(p) = 1∑
A(tj)

∑

tj∈P A(tj)∇f(tj),

where A(tj) denotes the area of triangle tj .

We remark that, with this procedure, only a local recon-

struction is carried out at each point p, and then thrown
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Figure 4. The x̂ axis of our LRF on different hand poses. In this

example, repeatability is almost ideal due to the repeatability of

the chosen scalar function f(pi) =
1

n

∑n

j=1
d(pi, pj) equal to the

average geodesic distance [37] from each point to all the others.

away once ∇f(p) is estimated. This brings additional ro-

bustness and efficiency in the presence of clutter or large

point clouds; see Figure 3 for an example. Finally, normals

on point clouds are estimated via total least squares [23]; for

triangle meshes, the normal n̂(p) at a vertex p is computed

as the area-weighted average of the normals of the triangles

sharing the vertex p.

4. Proposed local reference frame

Our technique is based upon the construction of tangent

vector fields as gradients of scalar functions f : M → R.

We compute the average gradient of f around p as:

x(p) :=
1

∑

tj∈Nr(p)
A(tj)

∑

tj∈Nr(p)

A(tj)∇f(tj) (3)

where Nr(p) is the set of triangles within distance r from p.

While it brings resilience to noise, the averaging process

does not guarantee orthogonality to the normal vector n̂(p).
We thus project x(p) onto the plane identified by n̂(p) and

rescale the projection to unit norm, leading to the moving

frame Lf (p) = {x̂(p), ŷ(p), ẑ(p)}:

x̂(p) := (x(p)− (x(p)⊤n̂(p))n̂(p))‖ ‖ (4)

ŷ(p) := ẑ(p)× x̂(p) (5)

ẑ(p) := n̂(p) (6)

where (·)‖ ‖ denotes vector normalization and the notation

Lf emphasizes that the definition of the LRF depends on

the choice of the scalar function f .

Note that the gradient ∇f is guaranteed

curl-free (i.e., it never behaves like a vortex,

see inset). This is desirable so as to reduce

LRF inconsistency.

Choice of the function. Eq. (3) requires f to be differen-

tiable; this is always true in our case, due to the assump-

tion of piecewise-linearity. A separate question concerns

the presence of singular points (where ∇f(p) = 0). In the

+f
∇f

−f

M N

Figure 5. Sign flips of f (top row) lead to reversed axes in our

LRF. In the bottom row, two high-frequency functions which are

not exactly repeatable on M and N lead to local axis flips.

particular case of closed (genus zero) surfaces, these are un-

avoidable due to the Poincaré-Hopf (“Hairy Ball”) Theorem

stating that the only surface with nowhere vanishing tangent

vector field is torus-like (genus 1); as we will show in our

experiments, however, such points are rare and do not affect

the overall quality of the LRF.

The choice of the function plays a role in determining the

invariance class induced by the LRF, and is task-dependent:

for instance, in order to achieve invariance to 3D rotations,

it is sufficient that the function does not depend on the posi-

tion of the object in space (an example is mean curvature).

We will provide several possible choices in Section 6.

Descriptor steering. Constructing local descriptors d :
M → R

k on top of a smooth frame field Lf can be

seen as “steering” the descriptor field d along a given flow.

For shape matching and registration applications, this fact

can be exploited by designing flows using prior knowledge

(in the form of sparse input correspondence). Specifically,

given a single point-wise match (x∗, y∗) ∈ M×N , the sim-

ple Euclidean distance from x∗ (resp. y∗) to all other points

in M (resp. N ) have compatible gradients (Fig. 3), making

our LRFs an ideal choice in correspondence pipelines.

5. Properties

We list some of the key properties that make our pro-

posed LRFs suitable for challenging settings. Additional

properties depend on the choice of the underlying function,

and will be explored in the experimental section.

Invariance properties depend on the choice of the scalar

function f ; for example, mean curvature endows the LRF

with rotation invariance, and Gaussian curvature with in-

variance to isometric deformations. If available, it is also

possible to use color texture as f . The chosen function must

be repeatable only up to a global scale, since ∇αf = α∇f

for any α ∈ R and the normalization (4) make all options

automatically scale-invariant; see Figure 4 for an example.
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Figure 6. Top left: LRF repeatability under increasing subsam-

pling, from 0% (no subsampling) to 98% (severe). We report re-

sults obtained with local radius r = 0.02 (dashed) and r = 0.16
(solid); all shapes have unit diameter. Top right: Comparisons at

increasing radius, averaged over all subsampling levels. Bottom:

Example of subsampled shapes used in these tests.

Sign ambiguity is arguably the key issue of existing LRFs

(see Section 2), with a direct impact on their reliability. Our

frames do not suffer from sign ambiguity unless the sign of

f is flipped (Figure 5, top), or if f contains high frequency

oscillations (Figure 5, bottom).

Robustness to sampling is another central weakness of

many state-of-the-art LRFs [34, 27]. To the best of our

knowledge, none of the existing methods can deal with

strong differences in sampling (arising, for example, when

matching a CAD model to a 2.5D scan) or severe subsam-

pling. We run a full quantitative comparison with such

methods in Figure 6, using the repeatability measure de-

fined in Sec. 6.1; for these and the following tests, we av-

erage over a representative dataset of six different shape

classes (cat, centaur, dog, hand, human, squirrel) of vary-

ing resolution (ranging from 6K to 28K vertices).

Robustness to noise is achieved by averaging the gradient

over a local neighborhood (3). Crucially, our LRFs also

leverage the smoothness of the function f : M → R in

addition to the smoothness of the 3D object M itself. This

way, we shift the problem of dealing with a noisy geometric

domain to a far easier task of choosing a smooth enough

function on top of it. In Figure 7 we show a full quantitative

evaluation at increasing amounts of surface noise.

Symmetry disambiguation is another property unique to

our method. Choosing an asymmetric f (e.g., distance

to a point) directly endows descriptors constructed on top

0 1 2 3 4 5
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0.8
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Noise level

M
ea

n
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SHOT [34]

noise
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noise
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Figure 7. LRF repeatability at increasing surface noise (expressed

as a multiplier of mesh resolution), obtained with radius r = 0.02
(dashed) and r = 0.16 (solid). Our results are better than FLARE

and comparable with SHOT while using a much smaller radius; for

comparison, on the top hand we plot the neighborhood at r = 0.02
(in blue) and r = 0.16 (in red). Due to the use of much smaller

radius, our LRFs are much more robust to clutter and partiality.

of Lf with symmetry-awareness. The lack of such prop-

erty is considered a big drawback in shape analysis ap-

plications, leading to ambiguous solutions in most top-

performing shape matching pipelines.

6. Applications

We evaluate GFrames in different applications and set-

tings, including rigid registration and deformable matching.

6.1. LRF repeatability and rigid shape matching

Data. We use real scans of 4 objects (Armadillo, Bunny,

Buddha, Dragon), from the Stanford 3D Scanning Repos-

itory [10], acquired with a Cyberware 3030 MS scanner.

Some views of these objects are depicted in Figure 8.

Ground-truth transformations are available for all the scans.

Evaluation. We evaluate the proposed method through the

repeatability of the LRF and the efficiency of the descriptor

built on the LRF. LRF repeatability at corresponding points

on different shapes is assessed via the MeanCos and ThCos

metrics [27]. The former represents the alignment error of

both the x̂ and ẑ axes, while the latter indicates whether

the two reference systems are aligned. More specifically,

ThCos is the percentage of LRFs with a MeanCos value

above a certain threshold (we used the value of 0.97).

For each of M scans for a given test model, we extract a

set of uniformly distributed keypoints, and take all possible

N = M(M−1)
2 view pairs (Vi, Vj). Due to partial overlap,

a keypoint belonging to Vi may have no correspondence in

Vj . Hence, given the ground-truth transformations Gi,Gj

bringing Vi, Vj into a canonical frame, we compute the set:

Oi,j = {ki : ‖Giki −N (Giki,GjVj)‖ ≤ ǫovr} , (7)

containing the keypoints in Vi that have a corresponding
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Gaussian curvature mean curvature STED FLARE function

Armadillo Dragon Bunny Buddha

Figure 8. Example views from the Stanford repository. On each

object we plot one of the four scalar functions used for the rigid

matching experiments. Note how, despite baseline curvatures ap-

pear almost constant, they still exhibit enough gradient to outper-

form the SHOT LRF in most of our tests (compare with Figure 9).

point in Vj . Here, N (Giki,GjVj) denotes the nearest

neighbor of Giki in the transformed view GjVj , and ǫovr is

set to 2.5ρ1. If the number of points in Oi,j is less than 20%

of the keypoints in Vi, the pair (Vi, Vj) is discarded due to

insufficient overlap; otherwise, keypoint correspondences

are established via nearest neighbor search in R
3. Then,

given a pair of corresponding keypoints (ki, kj) ∈ Vi × Vj ,

we compute their LRFs and evaluate their repeatability ac-

cording to the MeanCos and ThCos metrics.

Choice of the scalar function. The freedom of choosing

f is a big advantage, allowing us to better adapt to the task

at hand. As baseline choices, we use the aforementioned

mean (Ours mean) and Gaussian (Ours Gauss) curvature.

In addition, we use the following two functions:

STED (sum of total Euclidean distances), simply defined as

the sum f(xi) =
∑n

j=1 ‖xi − xj‖2.

FLARE: originally proposed in [27], it is computed at each

point p as the average of the signed distances to the tan-

gent plane defined by the normal n̂(p), computed only on a

subset of points lying at the periphery of the support region.

An example of each scalar function is shown in Figure 8.

In Figure 9, we compare our LRF construction to

the ones used in the state-of-the-art SHOT [34] and

FLARE [27]. Our scalar functions result effective in achiev-

ing a repeatable LRF. Ours FLARE is consistently bet-

ter than SHOT and FLARE LRFs on both metrics, while

Ours STED outperforms them in terms of MeanCos. Note

how Ours FLARE always outperforms the original FLARE

method, highlighting the usefulness of relying on gradient-

based LRFs for better repeatability. Ours STED tends to

be less repeatable in terms of ThCos; the STED function is

more sensitive to scan overlap, as we noticed a significant

improvement with the increase of the overlap.

A qualitative comparison on two views of a room from

the RGB-D SLAM Dataset [31] is further shown in Fig. 11,

1Point cloud resolution ρ is the average Euclidean distance from each

point to its nearest neighbor.
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Figure 9. LRF repeatability on the Stanford dataset (the higher

the better). Here, SHOT denotes the LRF of the SHOT descriptor.
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Figure 10. Descriptor matching results using the SHOT descriptor

computed on different LRFs (among which the SHOT LRF itself).

The y-axis denotes the percentage of matches whose Euclidean

distance from the ground truth is less than 7mm.

confirming the large improvement produced by our ap-

proach also on this type of real-world data. We refer to the

supplementary material for additional examples and details.

Finally, Fig. 10 reports a comparison in terms of descrip-

tor matching, where the SHOT descriptor is used on top of

each LRF. These results confirm the trend of the previous
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SHOT Ours

1

0

Figure 11. LRF repeatability on two views of a room (depicted on

the left; their alignment is on the bottom). MeanCos error is en-

coded as a heat map, growing from white to red. Most of the error

of our LRFs comes from incomplete overlap of the two views.

TOPKIDS SMPL SPRING TOSCA

Figure 12. Representative data used in the deformable matching

tests. TOPKIDS exhibit topological gluing at self-contacts (arm

touching the body). Shapes from SMPL, SPRING, and TOSCA

are used in cross-dataset matching experiments; the zoom-ins

highlight the difference in mesh density and connectivity.

tests; Ours STED and Ours FLARE exhibit the best accu-

racy, with the former having larger error on Buddha, which

has smaller overlap compared to the other objects.

To stress our robustness in multiple contexts, we addi-

tionally evaluate our method on the Angel point clouds from

the recent laser scan dataset [15] (more results are in the

supplemetary material due to lack of space). On average we

obtain (MeanCos, ThCos, %Correspondence); SHOT: 0.19,

0.06, 0.13; Ours STED: 0.69, 0.16, 0.25.

6.2. Deformable shape matching

Data. We adopt real-world as well as synthetic datasets:

TOSCA [6] (7 classes of synthetic animal and human

meshes undergoing non-rigid deformations), FAUST [2]

(100 scanned meshes of 10 human subjects in different

poses), TOPKIDS [17] (15 synthetic human meshes in dif-

ferent poses, with severe topological artifacts in areas of

self-contact). Examples of these shapes are shown in Figure

12. All datasets come with ground-truth correspondence;

for cross-dataset experiments, the ground-truth is estimated

using the shape registration method FARM [19].

Evaluation. As a baseline, we use the original SHOT de-

scriptor and compare it to SHOT descriptors constructed on

top of our LRFs. Pointwise correspondence is established

by nearest neighbors in descriptor space, and evaluated ac-

cording to the Princeton protocol [16], computing the per-

Gaussian curv. mean curv. DEP Fiedler squared

Figure 13. The four scalar functions used in the deformable setting.

Their gradient has few singular points, which do not strongly affect

the quality of the resulting LRF.

centage of matches that fall into geodesic radius r (repre-

sented as a fraction of the shape geodesic diameter) from

the ground truth correspondence.

Choice of the scalar function. We adopt the same baseline

as the rigid setting (mean and Gaussian curvature) plus two

functions specific to this task (see examples in Figure 13):

Fiedler vector is the first non-constant eigenfunction of the

Laplace-Beltrami operator of the surface. Except for a sign

ambiguity (simply solved by taking the square of the func-

tion), it is fully intrinsic and thus invariant to isometries.

Discrete Time Evolution Process (DEP) is a recent intrinsic

point descriptor that is stable to non-isometric distortions,

missing parts, and topological noise [21]. It is similar to the

average geodesic distance [37], but was shown to be more

robust for non-isometric deformations. We compute DEP

using biharmonic distances as done in [19].

We consider four different settings of deformable shape

matching (see Figure 14):

Isometric deformations. We test on 8 pairs of deformable

animals (TOSCA, dog and horse categories) and 20 scans

of a human subject in different poses (FAUST intra). We

report an improvement of ∼ 10% over the de-facto LRF.

Non-isometric deformations. We test on 20 pairs of dif-

ferent poses and different subjects (FAUST inter), demon-

strating similar performance to the previous setting.

Topological noise. We evaluate on 15 poses of a synthetic

human undergoing severe topological variations, e.g., glu-

ing hands to the body (TOPKIDS). Performance here is

worse than on previous datasets; for instance, the Fiedler

vector is directly affected by topological gluing happening

over long distances. Despite this, in this challenging setting,

the advantage of our model (Ours DEP and Ours Fied) over

the baseline is even more pronounced.

Different connectivity and resolution. We compose a hy-

brid dataset of human shape pairs from SMPL [18], TOSCA

and SPRING [36]; see the last three columns of Figure 12

for examples. This experiment is particularly challenging

due to the differences in mesh connectivity and density

among the various models. Such a setting is a notoriously
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Figure 14. Error rates for deformable matching on different datasets. The y-axis represents the percentage of matches for which the

geodesic distance from the ground truth is less than the value reported on the x-axis. The numbers in the legend denote the AUC.
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Figure 15. Qualitative comparisons on a standard (left) and chal-

lengin (right) case. Pointwise matching error is encoded as a

heatmap, growing from white to dark red.

tough nut for existing LRFs and local descriptors, and is

not frequently considered in existing benchmarks. Never-

theless, we still outperform the baseline.

In Fig. 15 we show the matching error in one standard

(FAUST) and one challenging (TOPKIDS) case. Finally,

on TOSCA we also evaluate the LRF repeatability (Mean-

Cos) over all 64 pairs of the dog and horse classes. SHOT

achieves an average score of 0.76, while Ours Fied reaches

up to 0.90 (close to ideal). A qualitative evaluation of this

result is shown for a dog pair in Fig. 1 using Ours DEP.

7. Conclusions

We introduced GFrames, a new local reference frame for

3D shape matching applicable to meshes and point clouds.

Our construction is based on the computation of the tan-

gent component of the LRF as the intrinsic gradient of a

scalar function on the surface; different designs are possi-

ble depending on the task, as we showcased on a selection

of relevant problems in 3D computer vision and shape anal-

ysis. The flexibility of our approach lies in the freedom of

choosing a scalar function on top of which a stable LRF,

and in turn repeatable descriptors, can be constructed. On

the other hand, the main limitation lies in the requirement

for the chosen function to have limited high frequency con-

tent, which may lead to unstable gradients; this excludes,

for instance, the adoption of highly detailed texture or os-

cillatory functions obtained, e.g., by wave propagation. As

a promising avenue of future work, we envision the adop-

tion of GFrames in deep learning pipelines, where the scalar

function itself may be learned in an end-to-end fashion.
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