
Practical Full Resolution Learned Lossless Image Compression

Fabian Mentzer Eirikur Agustsson Michael Tschannen Radu Timofte Luc Van Gool

mentzerf@vision.ee.ethz.ch aeirikur@vision.ee.ethz.ch michaelt@nari.ee.ethz.ch timofter@vision.ee.ethz.ch vangool@vision.ee.ethz.ch

ETH Zürich, Switzerland

Abstract

We propose the first practical learned lossless image com-

pression system, L3C, and show that it outperforms the pop-

ular engineered codecs, PNG, WebP and JPEG2000. At

the core of our method is a fully parallelizable hierarchi-

cal probabilistic model for adaptive entropy coding which

is optimized end-to-end for the compression task. In con-

trast to recent autoregressive discrete probabilistic models

such as PixelCNN, our method i) models the image distri-

bution jointly with learned auxiliary representations instead

of exclusively modeling the image distribution in RGB space,

and ii) only requires three forward-passes to predict all pixel

probabilities instead of one for each pixel. As a result, L3C

obtains over two orders of magnitude speedups when sam-

pling compared to the fastest PixelCNN variant (Multiscale-

PixelCNN). Furthermore, we find that learning the auxiliary

representation is crucial and outperforms predefined auxil-

iary representations such as an RGB pyramid significantly.

1. Introduction

Since likelihood-based discrete generative models learn

a probability distribution over pixels, they can in theory be

used for lossless image compression [40]. However, recent

work on learned compression using deep neural networks has

solely focused on lossy compression [4, 41, 42, 34, 1, 3, 44].

Indeed, the literature on discrete generative models [46, 45,

35, 32, 20] has largely ignored the application as a loss-

less compression system, with neither bitrates nor runtimes

being compared with classical codecs such as PNG [31],

WebP [47], JPEG2000 [38], and FLIF [39]. This is not sur-

prising as (lossless) entropy coding using likelihood-based

discrete generative models amounts to a decoding complexity

essentially identical to the sampling complexity of the model,

which renders many of the recent state-of-the-art autoregres-

sive models such as PixelCNN [46], PixelCNN++ [35], and

Multiscale-PixelCNN [32] impractical, requiring minutes or

hours on a GPU to generate moderately large images, typi-

cally <256 × 256px (see Table 2). The computational com-

<latexit sha1_base64="06rEWvWPE+mR3cLra/xJ60akb/c=">AAAKdHicvVZbb9MwGM3GZV0YsAFv8GCoJnWsq5JymzQqTdoDPA6JXaQkmhzHac0cJ3IcttbKz+GVR/4Lj/wJnrGTDbreNECNq0qfv/PZx+fE0mc/oSQVlvV9YfHGzVu3l2rL5p2Vu/fur649OEzjjCN8gGIa82MfppgShg8EERQfJxzDyKf4yD/d0/jRZ8xTErOPop9gL4JdRkKCoFCpk7WlL6br4y5hUpDTQUKQyDjOHb0d+BQT1uFxxgLPdJNuGEHRS7GIIOKxdFHm4/Nc2vkUrD8DG+TSalmvJsFxGKqJxtvTYV/jL6fjSOOvp+OBxrcVHnB45mRUcAhEj7BmSCjt7KkTFs55oGE11W8DbG2Bzc3GVil6OGU1y2T/T2qkCPURxTt/S6Un5c6DGVS6aqjo36gmqhpj/x9VF65XZ+MI4fzNvI7CeVjqV+6pX7mpszXOw1VUuauocldna5yHq0HlrgaVuzpb43VdxSy40o5N82S1rhpmMcB4YF8E9d1669Hgx7uv+ydrC9/cIEZZhJlAFKapY1uJ8CTkgigS1fqyFCcQncIudlTIYIRTTxYPihysq0wAwpirPxOgyA6vkDBK037kq8qivY5iOjkRO78kGIf8aFLayUS47UnCkkxghsqjhRkFIgb6PQMCwjEStK8C1eGJUgdQD3KIhHr1XCHQjirdDJ+hOIogC567iHBlRuDYnnQ17Fw+pToNvUlLTzc8aYKh4bI4wE7agwnulOvLG3HWIwI39WVpEsYwB4q501aeg2KvDSDrdr6TqxMUHlAs5O9LlEufqlM+ta1cfWl79LuOB4ftlv2i1f5g13fbRjlqxmPjmdEwbOONsWu8N/aNAwPVVmrt2k7t7fJP84lZN9fL0sWFizUPjSvDbP0C1iAzRg==</latexit>

<latexit sha1_base64="u3Q1uGUfKwtLn7PsOvnF1uOcuVk=">AAAHVnictVXdbtMwFM7Guo7CYAVuJm4MFVLHuirpkEAalSZxw+WQ2I+URJPjnLRmjh05Dl0X5TkQPADPBC+DsJtN69auYmM7UaTj8x2fz+eLdRIkjKbKtn/Pzd9bqCxWl+7XHjxcfvR4pf5kLxWZJLBLBBPyIMApMMphV1HF4CCRgOOAwX5w9MHg+19BplTwz2qYgB/jHqcRJVjp0GF94WfNC6BHea7o0UlCicokFK4ph74IyrtSZDz0a17Si2Ks+imoGBMpco9kARwXuVNcgQ1nYCdFbrenoiKK9MLAnavhwOBvNB5KPHAzpiRGqk95K6KMdQOWwQvH9lHTbulnDW1soPX15kZ54vGQ3SqDw/PQpSQyJAy2rkdkFmXdkxlEJmss6SZEUzua4L5ORz0JwM+ZTuW+OwVn892+kDfo77/0lBBOsAV3J+dMuttX8/rd/auYwMML86hWO1xp2G17ZGjScU6dxvbq6ndtP3YO63PfvFCQLAauCMNp6jp2ovwcS0U1iR4eWQoJJke4B652OY4h9fPRRC3QKx0JUSSkfrlCo+j4jhzHaTqMA505GlCXMROcih2fEUxCQTwt7GYqeufnlCeZAk7Ko0UZQ0ogM9BRSCUQxYba0TOS6u4Q6WOJidJj/wKBUVT3zWFARBxjHr72CJVajNB1/NwzsHv2L+k2TZG2Wa75eQ2NmcdFCG7axwl0y/3ldRj0qYKWuSktyjlIpJm7Ha05GtVaQ3nDKbaKQn9K5/KHm3T2Om1ns9355DS2n1mlLVnPrZdW03Kst9a29dHasXYtUlmubFbeV7qLvxb/VCvVapk6P3e656l1waorfwE0mTsw</latexit>

<latexit sha1_base64="06rEWvWPE+mR3cLra/xJ60akb/c=">AAAKdHicvVZbb9MwGM3GZV0YsAFv8GCoJnWsq5JymzQqTdoDPA6JXaQkmhzHac0cJ3IcttbKz+GVR/4Lj/wJnrGTDbreNECNq0qfv/PZx+fE0mc/oSQVlvV9YfHGzVu3l2rL5p2Vu/fur649OEzjjCN8gGIa82MfppgShg8EERQfJxzDyKf4yD/d0/jRZ8xTErOPop9gL4JdRkKCoFCpk7WlL6br4y5hUpDTQUKQyDjOHb0d+BQT1uFxxgLPdJNuGEHRS7GIIOKxdFHm4/Nc2vkUrD8DG+TSalmvJsFxGKqJxtvTYV/jL6fjSOOvp+OBxrcVHnB45mRUcAhEj7BmSCjt7KkTFs55oGE11W8DbG2Bzc3GVil6OGU1y2T/T2qkCPURxTt/S6Un5c6DGVS6aqjo36gmqhpj/x9VF65XZ+MI4fzNvI7CeVjqV+6pX7mpszXOw1VUuauocldna5yHq0HlrgaVuzpb43VdxSy40o5N82S1rhpmMcB4YF8E9d1669Hgx7uv+ydrC9/cIEZZhJlAFKapY1uJ8CTkgigS1fqyFCcQncIudlTIYIRTTxYPihysq0wAwpirPxOgyA6vkDBK037kq8qivY5iOjkRO78kGIf8aFLayUS47UnCkkxghsqjhRkFIgb6PQMCwjEStK8C1eGJUgdQD3KIhHr1XCHQjirdDJ+hOIogC567iHBlRuDYnnQ17Fw+pToNvUlLTzc8aYKh4bI4wE7agwnulOvLG3HWIwI39WVpEsYwB4q501aeg2KvDSDrdr6TqxMUHlAs5O9LlEufqlM+ta1cfWl79LuOB4ftlv2i1f5g13fbRjlqxmPjmdEwbOONsWu8N/aNAwPVVmrt2k7t7fJP84lZN9fL0sWFizUPjSvDbP0C1iAzRg==</latexit>

D(1)E(1)

D(1)E(1) D(2)

D(3)E(3)

x z(1)

z(2)

z(3)

Q

Q

Q

E(2)

f (3)

f (2)

f (1)

p(z(2)|f (3))

p(z(1)|f (2))

p(x|f (1))

Figure 1: Overview of the architecture of L3C. The feature extrac-

tors E(s) compute quantized (by Q) auxiliary hierarchical feature

representation z(1), . . . , z(S) whose joint distribution with the im-

age x, p(x, z(1), . . . , z(S)), is modeled using the non-autoregressive

predictors D(s). The features f (s) summarize the information up to

scale s and are used to predict p for the next scale.

plexity of these models is mainly caused by the sequential na-

ture of the sampling (and thereby decoding) operation, where

a forward pass needs to be computed for every single (sub)

pixel of the image in a raster scan order.

In this paper, we address these challenges and develop

a fully parallelizeable learned lossless compression system,

outperforming the popular classical systems PNG, WebP and

JPEG2000.

Our system (see Fig. 1 for an overview) is based on a hier-

archy of fully parallel learned feature extractors and predic-

tors which are trained jointly for the compression task. Our

code is available online1. The role of the feature extractors is

to build an auxiliary hierarchical feature representation which

helps the predictors to model both the image and the auxiliary

1https://github.com/fab-jul/L3C-PyTorch

110629

features themselves. Our experiments show that learning the

feature representations is crucial, and heuristic (predefined)

choices such as a multiscale RGB pyramid lead to subopti-

mal performance.

In more detail, to encode an image x, we feed it through

the S feature extractors E(s) and predictors D(s). Then, we

obtain the predictions of the probability distributions p, for

both x and the auxiliary features z(s), in parallel in a single

forward pass. These predictions are then used with an adap-

tive arithmetic encoder to obtain a compressed bitstream of

both x and the auxiliary features (Sec. 3.1 provides an in-

troduction to arithmetic coding). However, the arithmetic de-

coder now needs p to be able to decode the bitstream. Starting

from the lowest scale of auxiliary features z(S), for which we

assume a uniform prior, D(S) obtains a prediction of the dis-

tribution of the auxiliary features of the next scale, z(S−1),

and can thus decode them from the bitstream. Prediction and

decoding is alternated until the arithmetic decoder obtains the

image x. The steps are visualized in Fig. A4 in the appendix.

In practice, we only need to use S = 3 feature extrac-

tors and predictors for our model, so when decoding we only

need to perform three parallel (over pixels) forward passes in

combination with the adaptive arithmetic coding.

The parallel nature of our model enables it to be orders

of magnitude faster for decoding than autoregressive models,

while learning enables us to obtain compression rates com-

petitive with state-of-the-art engineered lossless codecs.

In summary, our contributions are the following:

• We propose a fully parallel hierarchical probabilistic

model, learning both the feature extractors that produce an

auxiliary feature representation to help the prediction task,

as well as the predictors which model the joint distribution

of all variables (Sec. 3).

• We show that entropy coding based on our non-

autoregressive probabilistic model optimized for discrete

log-likelihood can obtain compression rates outperform-

ing WebP, JPEG2000 and PNG, the latter by a large mar-

gin. We are only marginally outperformed by the state-

of-the-art, FLIF, while being conceptually much simpler

(Sec. 5.1).

• At the same time, our model is practical in terms of runtime

complexity and orders of magnitude faster than PixelCNN-

based approaches. In particular, our model is 5.31 · 104×
faster than PixelCNN++[35] and 5.06 · 102× faster than

the highly speed-optimized MS-PixelCNN [32] (Sec. 5.2).

2. Related Work

Likelihood-Based Generative Models As previously

mentioned, essentially all likelihood-based discrete genera-

tive models can be used with an arithmetic coder for lossless

compression. A prominent group of models that obtain state-

of-the-art performance are variants of the auto-regressive

PixelRNN/PixelCNN [46, 45]. PixelRNN and PixelCNN

organize the pixels of the image distribution as a sequence

and predict the distribution of each pixel conditionally on

(all) previous pixels using an RNN and a CNN with masked

convolutions, respectively. These models hence require

a number of network evaluations equal to the number of

predicted sub-pixels2 (3 ·W ·H). PixelCNN++ [35] improves

on this in various ways, including modeling the joint dis-

tribution of each pixel, thereby eliminating conditioning on

previous channels and reducing to W ·H forward passes.

MS-PixelCNN [32] parallelizes PixelCNN by reducing

dependencies between blocks of pixels and processing them

in parallel with shallow PixelCNNs, requiring O(logWH)
forward passes. [20] equips PixelCNN with auxiliary

variables (grayscale version of the image or RGB pyramid)

to encourage modeling of high-level features, thereby im-

proving the overall modeling performance. [7, 29] propose

autoregressive models similar to PixelCNN/PixelRNN, but

they additionally rely on attention mechanisms to increase

the receptive field.

Engineered Codecs The well-known PNG [31] operates in

two stages: first the image is reversibly transformed to a more

compressible representation with a simple autoregressive fil-

ter that updates pixels based on surrounding pixels, then it

is compressed with the deflate algorithm [11]. WebP [47]

uses more involved transformations, including the use of en-

tire image fragments to encode new pixels and a custom en-

tropy coding scheme. JPEG2000 [38] includes a lossless

mode where tiles are reversibly transformed before the cod-

ing step, instead of irreversibly removing frequencies. The

current state-of-the-art (non-learned) algorithm is FLIF [39].

It relies on powerful preprocessing and a sophisticated en-

tropy coding method based on CABAC [33] called MANIAC,

which grows a dynamic decision tree per channel as an adap-

tive context model during encoding.

Context Models in Lossy Compression In lossy compres-

sion, context models have been studied as a way to efficiently

losslessly encode the obtained image representations. Classi-

cal approaches are discussed in [24, 26, 27, 50, 48]. Recent

learned approaches include [22, 25, 28], where shallow au-

toregressive models over latents are learned. [5] presents a

model somewhat similar to L3C: Their autoencoder is simi-

lar to our fist scale, and the hyper encoder/decoder is similar

to our second scale. However, since they train for lossy image

compression, their autoencoder predicts RGB pixels directly.

Also, they predict uncertainties σ for z(1) instead of a mixture

of logistics. Finally, instead of learning a probability distribu-

tion for z(2), they assume the entries to be i.i.d. and fit a uni-

2A RGB “pixel” has 3 “sub-pixels”, one in each channel.

10630

variate non-parametric density model, whereas in our model,

many more stages can be trained and applied recursively.

Continuous Likelihood Models for Compression The ob-

jective of continuous likelihood models, such as VAEs [19]

and RealNVP [12], where p(x′) is a continuous distribution,

is closely related to its discrete counterpart. In particular,

by setting x′ = x + u where x is the discrete image and

u is uniform quantization noise, the continuous likelihood

of p(x′) is a lower bound on the likelihood of the discrete

q(x) = Eu[p(x
′)] [40]. However, there are two challenges

for deploying such models for compression. First, the dis-

crete likelihood q(x) needs to be available (which involves a

non-trivial integration step). Additionally, the memory com-

plexity of (adaptive) arithmetic coding depends on the size

of the domain of the variables of the factorization of q (see

Sec. 3.1 on (adaptive) arithmetic coding). Since the domain

grows exponentially in the number of pixels in x, unless q
is factorizable, it is not feasible to use it with adaptive arith-

metic coding.

3. Method

3.1. Lossless Compression

In general, in lossless compression, some stream of sym-

bols x is given, which are drawn independently and iden-

tically distributed (i.i.d.) from a set X = {1, . . . , |X |} ac-

cording to the probability mass function p̃. The goal is to

encode this stream into a bitstream of minimal length us-

ing a “code”, s.t. a receiver can decode the symbols from

the bitstream. Ideally, an encoder minimizes the expected

bits per symbol L̃ =
∑

j∈X p̃(j)ℓ(j), where ℓ(j) is the

length of encoding symbol j (i.e., more probable symbols

should obtain shorter codes). Information theory provides

(e.g., [9]) the bound L̃ ≥ H(p̃) for any possible code, where

H(p̃) = Ej∼p̃[− log p̃(j)] is the Shannon entropy [36].

Arithmetic Coding A strategy that almost achieves the

lower bound H(p̃) (for long enough symbol streams) is arith-

metic coding [49].3 It encodes the entire stream into a single

number a′ ∈ [0, 1), by subdividing [0, 1) in each step (en-

coding one symbol) as follows: Let a, b be the bounds of the

current step (initialized to a = 0 and b = 1 for the initial

interval [0, 1)). We divide the interval [a, b) into |X | sections

where the length of the j-th section is p̃(j)/(b− a). Then we

pick the interval corresponding to the current symbol, i.e., we

update a, b to be the boundaries of this interval. We proceed

recursively until no symbols are left. Finally, we transmit a′,
which is a rounded to the smallest number of bits s.t. a′ ≥ a.

Receiving a′ together with the knowledge of the number of

encoded symbols and p̃ uniquely specifies the stream and al-

lows the receiver to decode.

3We use (adaptive) arithmetic coding for simplicity of exposition, but any

adaptive entropy-achieving coder can be used with our method.

Adaptive Arithmetic Coding In contrast to the i.i.d. set-

ting we just described, in this paper we are interested in

losslessly encoding the pixels of a natural image, which are

known to be heavily correlated and hence not i.i.d. at all. Let

xt be the sub-pixels2 of an image x, and p̃img(x) the joint dis-

tribution of all sub-pixels. We can then consider the factor-

ization p̃img(x) =
∏

t p̃(xt|xt−1, . . . , x1). Now, to encode x,

we can consider the sub-pixels xt as our symbol stream and

encode the t-th symbol/sub-pixel using p̃(xt|xt−1, . . . , x1).
Note that this corresponds to varying the p̃(j) of the previ-

ous paragraph during encoding, and is in general referred to

as adaptive arithmetic coding (AAC) [49]. For AAC the re-

ceiver also needs to know the varying p̃ at every step, i.e.,

they must either be known a priori or the factorization must

be causal (as above) so that the receiver can calculate them

from already decoded symbols.

Cross-Entropy In practice, the exact p̃ is usually unknown,

and instead is estimated by a model p. Thus, instead of us-

ing length log 1/p̃(x) to encode a symbol x, we use the sub-

optimal length log 1/p(x). Then

H(p̃, p) = Ej∼p̃ [− log p(j)]

= −
∑

j∈X

p̃(j) log p(j) (1)

is the resulting expected (sub-optimal) bits per symbol, and

is called cross-entropy [9].

Thus, given some p, we can minimize the bitcost needed to

encode a symbol stream with symbols distributed according

to p̃ by minimizing Eq. (1). This naturally generalizes to the

non-i.i.d. case described in the previous paragraph by using

different p̃(xt) and p(xt) for each symbol xt and minimizing
∑

t H(p̃(xt), p(xt)).
The following sections describe how a hierarchical causal

factorization of pimg for natural images can be used to effi-

ciently do learned lossless image compression (L3C).

3.2. Architecture

A high-level overview of the architecture is given in Fig. 1,

while Fig. 2 shows a detailed description for one scale s.

Unlike autoregressive models such as PixelCNN and Pixel-

RNN, which factorize the image distribution autoregressively

over sub-pixels xt as p(x) =
∏T

t=1 p(xt|xt−1, . . . , x1), we

jointy model all the sub-pixels and introduce a learned hi-

erarchy of auxiliary feature representations z(1), . . . , z(S) to

simplify the modeling task.We fix the dimensions of z(s) to

be C×H ′×W ′, where the number of channels C is a hy-

perparameter (C = 5 in our reported models), and H ′ =
H/2s,W ′ = W/2s given a H×W -dimensional image.4

4Considering that z(s) is quantized, this conveniently upper bounds the

information that can be contained within each z(s), however, other dimen-

sions could be explored.

10631

Q

C

E
(s)
in

E
(s+1)
in

4Cf

s2f5

s1f1

s1f1

s1f1

E(s) D(s)

f (s)

p(z(s−1)|f (s))

z(s)

U A∗

R
eL

U

C(s−1)
p

π
,µ

,σ

f (s+1)

f (s)

+++ +

Figure 2: Architecture details for a single scale s. For s = 1, E
(1)
in is the RGB image x normalized to [−1, 1]. All vertical black lines

are convolutions, which have Cf = 64 filters, except when denoted otherwise beneath. The convolutions are stride 1 with 3×3 filters,

except when denoted otherwise above (using sSfF = stride s, filter f). We add the features f (s+1) from the predictor D(s+1) to those

of the first layer of D(s) (a skip connection between scales). The gray blocks are residual blocks, shown once on the right side. C is the

number of channels of z(s), C
(s−1)
p is the final number of channels, see Sec. 3.4. Special blocks are denoted in red: U is pixelshuffling

upsampling [37]. A∗ is the “atrous convolution” layer described in Sec. 3.2. We use a heatmap to visualize z(s), see Sec. A.4.

Specifically, we model the joint distribution of the image x
and the feature representations z(s) as

p(x, z(1), . . . , z(S)) =

p(x|z(1), . . . , z(S))
S
∏

s=1

p(z(s)|z(s+1), . . . , z(S))

where p(z(S)) is a uniform distribution. The feature repre-

sentations can be hand designed or learned. Specifically, on

one side, we consider an RGB pyramid with z(s) = B2s(x),
where B2s is the bicubic (spatial) subsampling operator with

subsampling factor 2s. On the other side, we consider a

learned representation z(s) = F (s)(x) using a feature extrac-

tor F (s). We use the hierarchical model shown in Fig. 1 using

the composition F (s) = Q ◦E(s) ◦ · · · ◦E(1), where the E(s)

are feature extractor blocks and Q is a scalar differentiable

quantization function (see Sec. 3.3). The D(s) in Fig. 1 are

predictor blocks, and we parametrize E(s) and D(s) as con-

volutional neural networks.

Letting z(0) = x, we parametrize the conditional distribu-

tions for all s ∈ {0, . . . , S} as

p(z(s)|z(s+1), . . . , z(S)) = p(z(s)|f (s+1)),

using the predictor features f (s) = D(s)(f (s+1), z(s)).5 Note

that f (s+1) summarizes the information of z(S), . . . , z(s+1).

The predictor is based on the super-resolution architec-

ture from EDSR [23], motivated by the fact that our predic-

tion task is somewhat related to super-resolution in that both

are dense prediction tasks involving spatial upsampling. We

mirror the predictor to obtain the feature extractor, and fol-

low [23] in not using BatchNorm [16]. Inspired by the “atrous

spatial pyramid pooling” from [6], we insert a similar layer at

the end of D(s): In A∗, we use three atrous convolutions in

5 The final predictor only sees z(S), i.e., we let f (S+1) = 0.

parallel, with rates 1, 2, and 4, then concatenate the resulting

feature maps to a 3Cf -dimensional feature map.

3.3. Quantization

We use the scalar quantization approach proposed in [25]

to quantize the output of E(s): Given levels L =
{ℓ1, . . . , ℓL} ⊂ R, we use nearest neighbor assignments to

quantize each entry z′ ∈ z(s) as

z = Q(z′) := arg minj‖z
′ − ℓj‖, (2)

but use differentiable “soft quantization”

Q̃(z′) =

L
∑

j=1

exp(−σq‖z
′ − ℓj‖)

∑L
l=1 exp(−σq‖z′ − ℓl‖)

ℓj (3)

to compute gradients for the backward pass, where σq is a

hyperparameter relating to the “softness” of the quantization.

For simplicity, we fix L to be L = 25 evenly spaced values

in [−1, 1].

3.4. Mixture Model

For ease of notation, let z(0) = x again. We model

the conditional distributions p(z(s)|z(s+1), . . . , z(S)) using a

generalization of the discretized logistic mixture model with

K components proposed in [35], as it allows for efficient

training: The alternative of predicting logits per (sub-)pixel

has the downsides of requiring more memory, causing sparse

gradients (we only get gradients for the logit corresponding to

the ground-truth value), and does not model that neighbour-

ing values in the domain of p should have similar probability.

Let c denote the channel and u, v the spatial location. For

all scales, we assume the entries of z
(s)
cuv to be independent

across u, v, given f (s+1). For RGB (s = 0), we define

p(x|f (1)) =
∏

u,v

p(x1uv, x2uv, x3uv|f
(1)), (4)

10632

where we use a weak autoregression over RGB channels

to define the joint probability distribution via a mixture pm
(dropping the indices uv for shorter notation):

p(x1, x2, x3|f
(1)) = pm(x1|f

(1)) · pm(x2|f
(1), x1) ·

pm(x3|f
(1), x2, x1). (5)

We define pm as a mixture of logistic distributions pl (defined

in Eq. (10) below). To this end, we obtain mixture weights6

πk
cuv , means µk

cuv , variances σk
cuv , as well as coefficients λk

cuv

from f (1) (see further below), and get

pm(x1uv|f
(1)) =

∑

k

πk
1uv pl(x1uv|µ̃

k
1uv, σ

k
1uv)

pm(x2uv|f
(1), x1uv) =

∑

k

πk
2uv pl(x2uv|µ̃

k
2uv, σ

k
2uv)

pm(x3uv|f
(1), x1uv, x2uv) =

∑

k

πk
3uv pl(x3uv|µ̃

k
3uv, σ

k
3uv),

(6)

where we use the conditional dependency on previous xcuv

to obtain the updated means µ̃, as in [35, Sec. 2.2],

µ̃k
1uv = µk

1uv µ̃k
2uv = µk

2uv + λk
αuv x1uv

µ̃k
3uv = µk

3uv + λk
βuv x1uv + λk

γuv x2uv. (7)

Note that the autoregression over channels in Eq. (5) is only

used to update the means µ to µ̃.

For the other scales (s > 0), the formulation only changes

in that we use no autoregression at all, i.e., µ̃cuv = µcuv for

all c, u, v. No conditioning on previous channels is needed,

and Eqs. (4)-(6) simplify to

p(z(s)|f (s+1)) =
∏

c,u,v

pm(z(s)cuv|f
(s+1)) (8)

pm(z(s)cuv|f
(s+1)) =

∑

k

πk
cuv pl(xcuv|µ

k
cuv, σ

k
cuv). (9)

For all scales, the individual logistics pl are given as

pl(z|µ, σ) =
(

sigmoid((z + b/2− µ)/σ)−

sigmoid((z − b/2− µ)/σ)
)

. (10)

Here, b is the bin width of the quantization grid (b = 1 for

s = 0 and b = 1/12 otherwise). The edge-cases z = 0 and

z = 255 occurring for s = 0 are handled as described in [35,

Sec. 2.1].

For all scales, we obtain the parameters of p(z(s−1)|f (s))

from f (s) with a 1×1 convolution that has C
(s−1)
p output

channels (see Fig. 2). For RGB, this final feature map must

contain the three parameters π, µ, σ for each of the 3 RGB

6Note that in contrast to [35] we do not share mixture weights πk across

channels. This allows for easier marginalization of Eq. (5).

channels and K mixtures, as well as λα, λβ , λγ for every

mixture, thus requiring C
(0)
p = 3 · 3 · K + 3 · K channels.

For s > 0, C
(s)
p = 3 · C · K, since no λ are needed. With

the parameters, we can obtain p(z(s)|f (s+1)), which has di-

mensions 3×H×W×256 for RGB and C×H ′×W ′×L oth-

erwise (visualized with cubes in Fig. 1).

We emphasize that in contrast to [35], our model is not

autoregressive over pixels, i.e., z
(s)
cuv are modelled as inde-

pendent across u, v given f (s+1) (also for z(0) = x).

3.5. Loss

We are now ready to define the loss, which is a gen-

eralization of the discrete logistic mixture loss introduced

in [35]. Recall from Sec. 3.1 that our goal is to model the

true joint distribution of x and the representations z(s), i.e.,

p̃(x, z(1), . . . , z(s)) as accurately as possible using our model

p(x, z(1), . . . , z(s)). Thereby, the z(s) = F (s)(x) are de-

fined using the learned feature extractor blocks E(s), and

p(x, z(1), . . . , z(s)) is a product of discretized (conditional)

logistic mixture models with parameters defined through the

f (s), which are in turn computed using the learned predic-

tor blocks D(s). As discussed in Sec. 3.1, the expected cod-

ing cost incurred by coding x, z(1), . . . , z(s) w.r.t. our model

p(x, z(1), . . . , z(s)) is the cross entropy H(p̃, p).
We therefore directly minimize H(p̃, p) w.r.t. the parame-

ters of the feature extractor blocks E(s) and predictor blocks

D(s) over samples. Specifically, given N training samples

x1, . . . , xN , let F
(s)
i = F (s)(xi) be the feature representa-

tion of the i-th sample. We minimize

L(E(1), . . . , E(S), D(1), . . . , D(S))

= −

N
∑

i=1

log
(

p
(

xi, F
(1)
i , . . . , F

(S)
i

)

)

= −

N
∑

i=1

log
(

p
(

xi|F
(1)
i , . . . , F

(S)
i

)

·

S
∏

s=1

p
(

F
(s)
i |F

(s+1)
i , . . . , F

(S)
i

)

)

= −

N
∑

i=1

(

log p(xi|F
(1)
i , . . . , F

(S)
i)

+

S
∑

s=1

log p(F
(s)
i |F

(s+1)
i , . . . , F

(S)
i)

)

. (11)

Note that the loss decomposes into the sum of the cross-

entropies of the different representations. Also note that this

loss corresponds to the negative log-likelihood of the data

w.r.t. our model which is typically the perspective taken in

the generative modeling literature (see, e.g., [46]).

Propagating Gradients through Targets We emphasize

that in contrast to the generative model literature, we

learn the representations, propagating gradients to both E(s)

10633

[bpsp] Method Open Images DIV2K RAISE-1k

Ours L3C 2.604 3.097 2.747

Learned
Baselines

RGB Shared 2.918 +12% 3.657 +18% 3.170 +15%

RGB 2.819 +8.2% 3.457 +12% 3.042 +11%

Non-Learned
Approaches

PNG 3.779 +45% 4.527 +46% 3.924 +43%

JPEG2000 2.778 +6.7% 3.331 +7.5% 2.940 +7.0%

WebP 2.666 +2.3% 3.234 +4.4% 2.826 +2.9%

FLIF 2.473 −5.1% 3.046 −1.7% 2.602 −5.3%

Table 1: Compression performance of our method (L3C) and learned baselines (RGB Shared and RGB) to previous (non-learned) ap-

proaches, in bits per sub-pixel (bpsp). We emphasize the difference in percentage to our method for each other method in green if L3C

outperforms the other method and in red otherwise.

and D(s), since each component of our loss depends on

D(s+1), . . . , D(S) via the parametrization of the logistic dis-

tribution and on E(s), . . . , E(1) because of the differentiable

Q. Thereby, our network can autonomously learn to navigate

the trade-off between a) making the output z(s) of feature ex-

tractor E(s) more easily estimable for the predictor D(s+1)

and b) putting enough information into z(s) for the predictor

D(s) to predict z(s−1).

3.6. Relationship to MSPixelCNN

When the auxiliary features z(s) in our approach are re-

stricted to a non-learned RGB pyramid (see baselines in

Sec. 4), this is somewhat similar to MS-PixelCNN [32]. In

particular, [32] combines such a pyramid with upscaling net-

works which play the same role as the predictors in our ar-

chitecture. Crucially however, they rely on combining such

predictors with a shallow PixelCNN and upscaling one di-

mension at a time (W×H→2W×H→2W×2H). While

their complexity is reduced from O(WH) forward passes

needed for PixelCNN [46] to O(logWH), their approach is

in practice still two orders of magnitude slower than ours (see

Sec. 5.2). Further, we stress that these similarities only apply

for our RGB baseline model, whereas our best models are

obtained using learned feature extractors trained jointly with

the predictors.

4. Experiments

Models We compare our main model (L3C) to two learned

baselines: For the RGB Shared baseline (see Fig. A2) we

use bicubic subsampling as feature extractors, i.e., z(s) =
B2s(x), and only train one predictor D(1). During testing,

we obtain multiple z(s) using B and apply the single predic-

tor D(1) to each. The RGB baseline (see Fig. A3) also uses

bicubic subsampling, however, we train S = 3 predictors

D(s), one for each scale, to capture the different distributions

of different RGB scales. For our main model, L3C, we ad-

ditionally learn S = 3 feature extractors E(s).7 Note that

7We chose S = 3 because increasing S comes at the cost of slower train-

ing, while yielding negligible improvements in bitrate. For an image of size

the only difference to the RGB baseline is that the represen-

tations z(s) are learned. We train all these models until they

converge at 700k iterations.

Datasets We train our models on 213 487 images randomly

selected from the Open Images Train dataset [21]. We down-

scale the images to 768 pixels on the longer side to remove

potential artifacts from previous compression, discarding im-

ages where rescaling does not result in at least 1.25× down-

scaling. Further, following [5] we discard high saturation/

non-photographic images, i.e., images with mean S > 0.9
or V > 0.8 in the HSV color space. We evaluate on 500

randomly selected images from Open Images Test and the

100 images from the commonly used super-resolution dataset

DIV2K [2], both preprocessed like the training set. Finally,

we evaluate on RAISE-1k [10], a “real-world image dataset”

with 1000 images: To show how our network generalizes to

arbitrary image sizes, we randomly resize these images s.t.

the longer side is 500− 2000 pixels.

In order to compare to the PixelCNN literature, we ad-

ditionally train L3C on the ImageNet32 and ImageNet64

datasets [8], each containing 1 281 151 training images and

50 000 validation images, of 32× 32 resp. 64× 64 pixels.

Training We use the RMSProp optimizer [15], with a batch

size of 30, minimizing Eq. (11) directly (no regularization).

We train on 128×128 random crops, and apply random hori-

zontal flips. We start with a learning rate λ = 1 ·10−4 and de-

cay it by a factor of 0.75 every 5 epochs. On ImageNet32/64,

we increase the batch size to 120 and decay λ every epoch,

due to the smaller images.

Architecture Ablations We find that adding Batch-

Norm [17] slightly degrades performance. Furthermore, re-

placing the stacked atrous convolutions A∗ with a single con-

volution, slightly degrades performance as well. By stopping

H×W , the last bottleneck has 5×H/8×W/8 dimensions, each quantized

to L = 25 values. Encoding this with a uniform prior amounts to ≈4% of

the total bitrate. For the RGB Shared baseline, we apply D(1) 4 times, as

only one encoder is trained.

10634

Method 32× 32px 320× 320px

B
S

=
1 L3C (Ours) 0.0168 s 0.0291 s

PixelCNN++ [35] 47.4 s∗ ≈ 80 min‡

B
S

=
3

0

L3C (Ours) 0.000624 s 0.0213 s

PixelCNN++ 11.3 s∗ ≈ 18 min‡

PixelCNN [46] 120 s† ≈ 8 hours‡

MS-PixelCNN [32] 1.17 s† ≈ 2 min‡

Table 2: Sampling times for our method (L3C), compared to the

PixelCNN literature. The results in the first two rows were obtained

with batch size (BS) 1, the other times with BS=30, since this is what

is reported in [32]. [∗]: Times obtained by us with code released

of PixelCNN++ [35], on the same GPU we used to evaluate L3C

(Titan X Pascal). [†]: times reported in [32], obtained on a Nvidia

Quadro M4000 GPU (no code available). [‡]: To put the numbers

into perspective, we compare our runtime with linearly interpolated

runtimes for for the other approaches on 320× 320 crops.

gradients from propagating through the targets of our loss,

we get significantly worse performance – in fact, the opti-

mizer does not manage to pull down the cross-entropy of any

of the learned representations z(s) significantly.

We find the choice of σq for Q has impacts on train-

ing: [25] suggests setting it s.t. Q̃ resembles identity, which

we found to be good starting point, but found it beneficial to

let σq be slightly smoother (this yields better gradients for the

encoder). We use σq = 2.

Additionally, we explored the impact of varying C (num-

ber of channels of z(s)) and the number of levels L and found

it more beneficial to increase L instead of increasing C, i.e.,

it is beneficial for training to have a finer quantization grid.

Other Codecs We compare to FLIF and the lossless mode

of WebP using the respective official implementations [39,

47], for PNG we use the implementation of Pillow [30], and

for the lossless mode of JPEG2000 we use the Kakadu imple-

mentation [18]. See Sec. 2 for a description of these codecs.

5. Results

5.1. Compression

Table 1 shows a comparison of our approach (L3C) and

the learned baselines to the other codecs, on our testsets, in

terms of bits per sub-pixel (bpsp)8 All of our methods outper-

form the widely-used PNG, which is at least 43% larger on

all datasets. We also outperform WebP and JPEG2000 every-

where by a smaller margin of up to 7.5%. We note that FLIF

still marginally outperforms our model but remind the reader

of the many hand-engineered highly specialized techniques

involved in FLIF (see Section 2). In contrast, we use a simple

convolutional feed-forward neural network architecture. The

8We follow the likelihood-based generative modelling literature in mea-

suring bpsp; X bits per pixel (bpp) = X/3 bpsp, see also footnote 2.

[bpsp] ImageNet32 Learned

L3C (ours) 4.76 X

PixelCNN [46] 3.83 X

MS-PixelCNN [32] 3.95 X

PNG 6.42

JPEG2000 6.35

WebP 5.28

FLIF 5.08

Table 3: Comparing bits per sub-pixel (bpsp) on the 32 × 32 im-

ages from ImageNet32 of our method (L3C) vs. PixelCNN-based

approaches and classical approaches.

RGB baseline with S = 3 learned predictors outperforms

the RGB Shared baseline on all datasets, showing the impor-

tance of learning a predictor for each scale. Using our main

model (L3C), where we additionally learn the feature extrac-

tors, we outperform both baselines: The outputs are at least

12% larger everywhere, showing the benefits of learning the

representation.

5.2. Comparison with PixelCNN

While PixelCNN-based approaches are not designed for

lossless image compression, they learn a probability distri-

bution over pixels and optimize for the same log-likelihood

objective. Since they thus can in principle be used inside a

compression algorithm, we show a comparison here.

Sampling Runtimes Table 2 shows a speed comparison to

three PixelCNN-based approaches (see Sec. 2 for details on

these approaches). We compare time spent when sampling

from the model, to be able to compare to the PixelCNN liter-

ature. Actual decoding times for L3C are given in Sec. 5.3.

While the runtime for PixelCNN [46] and MS-

PixelCNN [32] is taken from the table in [32], we can com-

pare with L3C by assuming that PixelCNN++ is not slower

than PixelCNN to get a conservative estimate9, and by con-

sidering that MS-PixelCNN reports a 105× speedup over

PixelCNN. When comparing on 320×320 crops, we thus ob-

serve massive speedups compared to the original PixelCNN:

>1.63 · 105× for batch size (BS) 1 and >5.31 · 104× for

BS 30. We see that on 320 × 320 crops, L3C is at least

5.06 · 102× faster than MS-PixelCNN, the fastest PixelCNN-

type approach. Furthermore, Table 2 makes it obvious that

the PixelCNN based approaches are not practical for lossless

compression of high-resolution images.

We emphasize that it is impossible to do a completely fair

comparison with PixelCNN and MS-PixelCNN due to the un-

availability of their code and the different hardware. Even if

the same hardware was available to us, differences in frame-

works/framework versions (PyTorch vs. Tensorflow) can not

9PixelCNN++ is in fact around 3× faster than PixelCNN due to mod-

elling the joint directly, see Sec. 2.

10635

be accounted for. See also Sec. A.3 for notes on the influence

of the batch size.

Bitcost To put the runtimes reported in Table 2 into per-

spective, we also evaluate the bitcost on ImageNet32, for

which PixelCNN and MS-PixelCNN were trained, in Ta-

ble 3. We observe our outputs to be 20.6% larger than MS-

PixelCNN and 24.4% larger than the original PixelCNN, but

smaller than all classical approaches. However, as shown

above, this increase in bitcost is traded against orders of mag-

nitude in speed. We obtain similar results for ImageNet64,

see Sec. A.2.

5.3. Encoding / Decoding Time

To encode/decode images with L3C (and other methods

outputting a probability distribution), a pass with an entropy

coder is needed. We implemented a relatively simple pipeline

to encode and decode images with L3C, which we describe

in the supplementary material, in Section A.1. The results

are shown in Tables 4 and A1. As noted in Section A.1, we

did not optimize our code for speed, yet still obtain practi-

cal runtimes. We also note that to use other likelihood-based

methods for lossless compression, similar steps are required.

While our encoding time is in the same order as for classical

approaches, our decoder is slower than that of the other ap-

proaches. This can be attributed to more optimized code and

offloading complexity to the encoder – while in our approach,

decoding essentially mirrors encoding. However, combining

encoding and decoding time we are either faster (FLIF) or

have better bitrate (PNG, WebP, JPEG2000).

5.4. Sampling Representations

We stress that we study image compression and not image

generation. Nevertheless, our method produces models from

which x and z(s) can be sampled. Therefore, we visualize

the output when sampling part of the representations from

our model in Fig. 3: the top left shows an image from the

Open Images test set, when we store all scales (losslessly).

When we store z(1), z(2), z(3) but not x and instead sample

from p(x|f (1)), we only need 39.2% of the total bits with-

out noticeably degrading visual quality. Sampling z(1) and x
leads to some blur while reducing the number of stored bits to

Codec Encoding [s] Decoding [s] [bpsp] GPU CPU

L3C (Ours) 0.242 0.374 2.646 X X

PNG 0.213 6.09 · 10−5 3.850 X

JPEG2000 1.48 · 10−2 2.26 · 10−4 2.831 X

WebP 0.157 7.12 · 10−2 2.728 X

FLIF 1.72 0.133 2.544 X

Table 4: Encoding and Decoding times compared to classical ap-

proaches, on 512× 512 crops, as well as bpsp and required devices.

4.061 bpsp stored: 0,1,2,3 1.211 bpsp stored: 1,2,3

0.375 bpsp stored: 2,3 0.121 bpsp stored: 3

Figure 3: Effect of generating representations instead of storing

them, given different z(s) of a 512 × 512 image from the Open

Images test set. Below each generated image, we show the required

bitcost and which scales are stored.

9.21% of the full bitcost. Finally, only storing z(3) (contain-

ing 64× 64× 5 values from L and 2.85% of the full bitcost)

and sampling z(2), z(1), and x produces significant artifacts.

However, the original image is still recognizable, showing the

ability of our networks to learn a hierarchical representation

capturing global image structure.

6. Conclusion

We proposed and evaluated a fully parallel hierarchical

probabilistic model with auxiliary feature representations.

Our L3C model outperforms PNG, JPEG2000 and WebP on

all datasets. Furthermore, it significantly outperforms the

RGB Shared and RGB baselines which rely on predefined

heuristic feature representations, showing that learning the

representations is crucial. Additionally, we observed that

using PixelCNN-based methods for losslessly compressing

full resolution images takes two to five orders of magnitude

longer than L3C.

To further improve L3C, future work could investigate

weak forms of autoregression across pixels and/or dynamic

adaptation of the model network to the current image. More-

over, it would be interesting to explore domain-specific ap-

plications, e.g., for medical image data.

Acknowledgments The authors would like to thank Sergi Caelles for the

insightful discussions and feedback. This work was partly supported by ETH

General Fund (OK) and Nvidia through the hardware grant.

10636

References

[1] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Tim-

ofte, L. Benini, and L. V. Gool. Soft-to-Hard Vector Quantiza-

tion for End-to-End Learning Compressible Representations.

In NIPS, 2017. 1

[2] E. Agustsson and R. Timofte. NTIRE 2017 Challenge on Sin-

gle Image Super-Resolution: Dataset and Study. In CVPR

Workshops, 2017. 6

[3] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte,

and L. Van Gool. Generative Adversarial Networks for

Extreme Learned Image Compression. arXiv preprint

arXiv:1804.02958, 2018. 1

[4] J. Ballé, V. Laparra, and E. P. Simoncelli. End-to-end Opti-

mized Image Compression. ICLR, 2016. 1

[5] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. John-

ston. Variational Image Compression with a Scale Hyperprior.

ICLR, 2018. 2, 6

[6] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-

thinking Atrous Convolution for Semantic Image Segmenta-

tion. arXiv preprint arXiv:1706.05587, 2017. 4

[7] X. Chen, N. Mishra, M. Rohaninejad, and P. Abbeel. Pixel-

SNAIL: An Improved Autoregressive Generative Model. In

ICML, 2018. 2

[8] P. Chrabaszcz, I. Loshchilov, and F. Hutter. A downsampled

variant of ImageNet as an alternative to the CIFAR datasets.

arXiv preprint arXiv:1707.08819, 2017. 6

[9] T. M. Cover and J. A. Thomas. Elements of Information The-

ory. John Wiley & Sons, 2012. 3

[10] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato.

RAISE: A Raw Images Dataset for Digital Image Forensics.

In ACM MMSys. ACM, 2015. 6

[11] P. Deutsch. DEFLATE compressed data format specification

version 1.3. Technical report, 1996. 2

[12] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation

using Real NVP. ICLR, 2017. 3

[13] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp. The use of

asymmetric numeral systems as an accurate replacement for

huffman coding. In PCS, 2015. 12

[14] F. Giesen. Interleaved entropy coders. arXiv preprint

arXiv:1402.3392, 2014. 12

[15] G. Hinton, N. Srivastava, and K. Swersky. Neural Networks

for Machine Learning Lecture 6a Overview of mini-batch gra-

dient descent. 6

[16] S. Ioffe. Batch Renormalization: Towards Reducing Mini-

batch Dependence in Batch-Normalized Models. In NIPS,

2017. 4

[17] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating

Deep Network Training by Reducing Internal Covariate Shift.

In ICML, 2015. 6

[18] Kakadu JPEG2000 implementation. http://

kakadusoftware.com. 7

[19] D. P. Kingma and M. Welling. Auto-Encoding Variational

Bayes. In ICLR, 2014. 3

[20] A. Kolesnikov and C. H. Lampert. PixelCNN Models with

Auxiliary Variables for Natural Image Modeling. In ICML,

2017. 1, 2

[21] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-

Haija, A. Kuznetsova, H. Rom, J. Uijlings, S. Popov,

S. Kamali, M. Malloci, J. Pont-Tuset, A. Veit, S. Be-

longie, V. Gomes, A. Gupta, C. Sun, G. Chechik,

D. Cai, Z. Feng, D. Narayanan, and K. Murphy. Open-

Images: A public dataset for large-scale multi-label and

multi-class image classification. Dataset available from

https://storage.googleapis.com/openimages/web/index.html,

2017. 6

[22] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang. Learning Con-

volutional Networks for Content-weighted Image Compres-

sion. In CVPR, 2018. 2

[23] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced

Deep Residual Networks for Single Image Super-Resolution.

In CVPR Workshops, 2017. 4

[24] D. Marpe, H. Schwarz, and T. Wiegand. Context-based adap-

tive binary arithmetic coding in the h. 264/avc video compres-

sion standard. IEEE Transactions on circuits and systems for

video technology, 13(7):620–636, 2003. 2

[25] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and

L. Van Gool. Conditional Probability Models for Deep Image

Compression. In CVPR, 2018. 2, 4, 7

[26] B. Meyer and P. Tischer. TMW - a new method for lossless

image compression. In PCS, 1997. 2

[27] B. Meyer and P. E. Tischer. Glicbawls - Grey Level Image

Compression by Adaptive Weighted Least Squares. In Data

Compression Conference, 2001. 2

[28] D. Minnen, J. Ballé, and G. D. Toderici. Joint Autoregressive

and Hierarchical Priors for Learned Image Compression. In

NeurIPS. 2018. 2

[29] N. Parmar, A. Vaswani, J. Uszkoreit, Ł. Kaiser, N. Shazeer,

and A. Ku. Image Transformer. ICML, 2018. 2

[30] Pillow Library for Python. https://python-pillow.

org. 7

[31] Portable Network Graphics (PNG). http://libpng.

org/pub/png/libpng.html. 1, 2

[32] S. Reed, A. Oord, N. Kalchbrenner, S. G. Colmenarejo,

Z. Wang, Y. Chen, D. Belov, and N. Freitas. Parallel Multi-

scale Autoregressive Density Estimation. In ICML, 2017. 1,

2, 6, 7, 12

[33] I. E. Richardson. H. 264 and MPEG-4 video compression:

video coding for next-generation multimedia. John Wiley &

Sons, 2004. 2

[34] O. Rippel and L. Bourdev. Real-Time Adaptive Image Com-

pression. In ICML, 2017. 1

[35] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. Pixel-

CNN++: A PixelCNN Implementation with Discretized Lo-

gistic Mixture Likelihood and Other Modifications. ICLR,

2017. 1, 2, 4, 5, 7

[36] C. E. Shannon. A Mathematical Theory of Communication.

Bell System Technical Journal, 27(3):379–423, 1948. 3

[37] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken,

R. Bishop, D. Rueckert, and Z. Wang. Real-Time Single Im-

age and Video Super-Resolution Using an Efficient Sub-Pixel

Convolutional Neural Network. CVPR, 2016. 4

[38] A. Skodras, C. Christopoulos, and T. Ebrahimi. The JPEG

2000 still image compression standard. IEEE Signal process-

ing magazine, 18(5):36–58, 2001. 1, 2

10637

[39] J. Sneyers and P. Wuille. FLIF: Free lossless image format

based on MANIAC compression. In ICIP, 2016. 1, 2, 7

[40] L. Theis, A. v. d. Oord, and M. Bethge. A note on the evalua-

tion of generative models. ICLR, 2016. 1, 3

[41] L. Theis, W. Shi, A. Cunningham, and F. Huszar. Lossy Image

Compression with Compressive Autoencoders. ICLR, 2017. 1

[42] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen,

J. Shor, and M. Covell. Full Resolution Image Compression

with Recurrent Neural Networks. In CVPR, 2017. 1

[43] R. Torfason, F. Mentzer, E. Agustsson, M. Tschannen, R. Tim-

ofte, and L. Van Gool. Towards Image Understanding from

Deep Compression without Decoding. ICLR, 2018. 13

[44] M. Tschannen, E. Agustsson, and M. Lucic. Deep Genera-

tive Models for Distribution-Preserving Lossy Compression.

In NeurIPS. 2018. 1

[45] A. van den Oord, N. Kalchbrenner, L. Espeholt,

k. kavukcuoglu, O. Vinyals, and A. Graves. Conditional

Image Generation with PixelCNN Decoders. In NIPS, 2016.

1, 2

[46] A. Van Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel

Recurrent Neural Networks. In ICML, 2016. 1, 2, 5, 6, 7, 12

[47] WebP Image format. https://developers.google.

com/speed/webp/. 1, 2, 7

[48] M. J. Weinberger, J. J. Rissanen, and R. B. Arps. Applica-

tions of Universal Context Modeling to Lossless Compression

of Gray-Scale images. IEEE Transactions on Image Process-

ing, 5(4):575–586, 1996. 2

[49] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic

coding for data compression. Communications of the ACM,

30(6):520–540, 1987. 3

[50] X. Wu, E. Barthel, and W. Zhang. Piecewise 2D autoregression

for predictive image coding. In ICIP, 1998. 2

10638

