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Abstract

In this paper, we present a large-scale dataset and es-

tablish a baseline for prohibited item discovery in Secu-

rity Inspection X-ray images. Our dataset, named SIXray,

consists of 1,059,231 X-ray images, in which 6 classes of

8,929 prohibited items are manually annotated. It raises

a brand new challenge of overlapping image data, mean-

while shares the same properties with existing datasets, in-

cluding complex yet meaningless contexts and class imbal-

ance. We propose an approach named class-balanced hi-

erarchical refinement (CHR) to deal with these difficulties.

CHR assumes that each input image is sampled from a mix-

ture distribution, and that deep networks require an itera-

tive process to infer image contents accurately. To accel-

erate, we insert reversed connections to different network

backbones, delivering high-level visual cues to assist mid-

level features. In addition, a class-balanced loss function

is designed to maximally alleviate the noise introduced by

easy negative samples. We evaluate CHR on SIXray with

different ratios of positive/negative samples. Compared to

the baselines, CHR enjoys a better ability of discriminating

objects especially using mid-level features, which offers the

possibility of using a weakly-supervised approach towards

accurate object localization. In particular, the advantage of

CHR is more significant in the scenarios with fewer positive

training samples, which demonstrates its potential applica-

tion in real-world security inspection.1

1. Introduction

Security inspection has been playing a critical role in

protecting public space from safety threatening such as ter-

rorism. With the growth of population in large cities and

crowd density in public transportation hubs, it becomes

∗Qixiang Ye is the corresponding author.
1Data and code: https://github.com/MeioJane/SIXray.
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Figure 1. Example images in the presented SIXray dataset with

six categories of prohibited items. Challenges include large vari-

ety in object scale and viewpoint, object overlapping and complex

backgrounds (please zoom in for details).

more and more important to fast, automatically and accu-

rately recognize prohibited items in X-ray scanned images.

Recent years, the rapid development of deep learning [19]

in particular convolutional neural networks has brought an

evolution to image processing and visual understanding, in-

cluding discovering and recognizing objects in X-ray im-

ages [23] [27] [24]. Different from natural images and

other X-ray scans [36], security inspection often deals with

a baggage or suitcase where objects are randomly stacked

and heavily overlapped with each other. Therefore, in the

scanned images, the objects of interest may be mixed with

arbitrary and meaningless clutters and thus can be ignored

even by human inspectors, Fig. 1.

To provide a public benchmark for research in this field,

in this paper, we present a dataset named Security Inspec-

tion X-ray (SIXray), which is 100 times larger than the ex-

isting largest image collection for prohibited item discovery,

i.e., the baggage group in the GDXray dataset [25]. SIXray

contains more than one million X-ray images in which only

less than 1% images have positive labels (i.e., prohibited

items are annotated). It mimics a similar testing environ-

ment to the real-world scenarios where inspectors often aim
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Figure 2. An X-ray image is composed of a set of overlapping

images, each of which is transparent. (Best viewed in color).

at recognizing prohibited items appearing in a very low fre-

quency (e.g., 1 in 1,000). Unlike GDXray which only con-

tains grayscale images in simple backgrounds, our dataset

is much more challenging. Although a color-X-ray scanner

assigns various colors to different materials, objects in the

containers often suffer a considerable variety in scale, view-

point, and style, yet a prohibited item may be mixed and

overlapped with arbitrary numbers and types of safe items,

as shown in Fig. 1.

We formulate this problem into an optimization task

which, provided a dataset D = {(xn,y
∗
n)}

N

n=1, aims at

minimizing the expected loss function between ground-

truth and prediction |y∗
n − f(xn;θ)|

2
. Here xn denotes im-

age data and y∗
n is a C-dimensional vector with each index

indicating whether a specific class is present in xn. Based

on this framework, we point out a clear difference between

natural images and X-ray images. A natural image xn can

always be divided into regions and each of them contains

only one class cn, thus can be sampled from a distribution

P(x | cn). However, an X-ray image is often composed of

a set of overlapping images which, provided a multi-class

label y∗
n (C dimensions), can be formulated using a mix-

ture distribution xn =
∑

cy
∗
n,c · xn,c where xn,c is sampled

from a hidden distribution P(x | c), as shown in Fig. 3.

We present an approach in the context of deep neural

networks to deal with this complex scenario. The key idea

is to combine two sources of information, namely, using

mid-level features xn (most often sampled from a mixture

distribution) to determine high-level semantics yn, and re-

versely filtering irrelevant information out of xn by refer-

ring to the information contained in yn. To this end, we

formulate the high-level supervision signals into reversed

network connections. To alleviate data imbalance, we in-

troduce a loss-balancing term based on this hierarchy. This

leads to the complete pipeline named class-balanced hier-

archical refinement (CHR). With yn being unobserved, an

iterative process is required in optimization, which is com-

putationally expensive in practice. To accelerate, we switch

off iteration so that more training data are processed in a

unit time period. In testing, CHR fuses visual information

from different stages towards higher recognition accuracy,

yet remains efficient in computation.

We evaluate CHR on the SIXray with different ratios

of positive/negative samples2. CHR reports significantly

higher classification performance over various baselines,

i.e., different network backbones, demonstrating the effec-

tiveness of using high-level cues to assist mid-level fea-

tures. In addition, we verify the necessity of adding the

class-balanced loss term as we observe more significant im-

provement on less balanced training data. Last but not least,

we provide annotations of prohibited items at the bounding

box level in the testing set, and apply the class activation

mapping (CAM) algorithm [39] as a baseline for weakly-

supervised object localization.

The major contributions of this work are two-fold. (1)

We provide a benchmark for future research in this chal-

lenging vision task. (2) We present an approach named

CHR, which integrates multi-level visual cues and achieves

class balance in the hierarchical structure.

2. Related Work

• X-ray Images and Benchmarks

X-ray images are captured by irradiating the objects with

X-ray and rendering them with pseudo colors according to

their spectral absorption rates. Therefore, in X-ray images,

objects made of the same material are assigned with very

similar colors, e.g., metals are often shown in blue while

impenetrable objects are often shown in red. Besides, the

most significant difference between X-ray and natural im-

ages lies in object overlapping, because X-ray is often ap-

plied in the scenarios that some objects may heavily oc-

clude others, e.g., in a baggage, personal items are often

stacked randomly. This property brings a new challenge to

computer vision algorithms, while the traditional difficul-

ties persist, e.g., scale and viewpoint variance, intra-class

variance and inter-class similarity, etc., as widely observed

in other object localization benchmarks like PascalVOC [9]

and MS-COCO [21].

Researchers designed much work to deal with these dif-

ficulties and also approach the promising commercial value

after them [1] [10] [26] [30] [34]. But unfortunately, very

few X-ray datasets have been published for research pur-

poses. A recently released benchmark, GDXray [25], con-

tains three major categories of prohibited items includ-

ing gun, shuriken and razor blade. However, images in

GDXray were provided with few background clutters as

well as overlaps, thus, it becomes considerably easy to rec-

ognizing these images and/or detecting the objects within.

In addition, the relatively small number of negative samples

(images not containing prohibited items) ease the algorithm

in both training and testing stages. ChestXray8 [36] is a

large-scale chest X-ray corpus for medical imaging analy-

2Throughout this paper, images with at least one prohibited item are

called “positive”, otherwise called “negative”.
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sis. Different from our scenario, objects in these images are

rarely overlapping with each other.

• X-ray Images and Benchmarks

The research field of object recognition has been dom-

inated by deep learning approaches. With the availability

of large-scale datasets [18] and powerful computational re-

sources, researchers are able to design and optimize very

deep neural networks [18] [31] [16] [4] [13] [14] to learn

visual patterns in a hierarchical manner. In the scenario

that each image may contain more than one objects, there

are typically two types of localization methods. The first

one worked on the image level which produces a score for

each class indicating its presence or absence [39]. The sec-

ond one instead worked on the object level, and produced

a bounding box as well as a class label for each object in-

dividually [12] [11] [29] [22] [28]. The former type of-

ten encounters the issues of multi-object classification and

training data imbalance [36], for which binary cross entropy

(BCE) loss [5] as well as class-balancing techniques [36]

[15] were explored. The second type, on the other hand,

was often based on a pipeline that first extracts a number of

proposals in the image [12] [11] [29], and then determines

the class of each proposal.

This paper studies image-level recognition, as per-object

annotation is missing for training data, while our approach

has the ability of object-level localization. This is related

to the research in weakly-supervised object localization [3]

[6] [33], or a series of work in localizing objects using

top-down class activation [8] [7] [40]. There were also

efforts about formulating the object localization in multi-

ple instance learning frameworks where convolutional fil-

ters behave as detectors which activate regions of interest

on the feature maps [3] [37] [33] [35].

In the context of object recognition in X-ray images,

researchers realized that these images often contain fewer

texture information, yet shape information stands out to be

more discriminative. Therefore, in the era of bag-of-visual-

word models [34] [2], the topic of designing effective and

efficient handcrafted features is explored in depth [30] [26].

As deep learning becomes a standard tool of optimizing

complex functions, researchers started to apply it to either

extracting compact visual features for X-ray image repre-

sentation [1] or fine-tuning a pre-trained model on X-ray

images so that knowledge learned from natural images can

be borrowed. This paper mainly focuses on the second ap-

proach.

3. The SIXray Benchmark

3.1. Data Acquisition

We collected a dataset named Security Inspection X-ray

(SIXray), which contains a total of 1,059,231 X-ray images,

and is more than 100 times larger than the only existing pub-

The SIXray Dataset (1,059,231)

Positive (8,929)
Negative

Gun Knife Wrench Pliers Scissors Hammer

3,131 1,943 2,199 3,961 983 60 1,050,302
Table 1. The class distribution of the SIXray dataset. There is

another hammer class with 60 items, but it is not used due to the

small number of samples.
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Figure 3. Distributions of object view angle, aspect ratio and area

in the SIXray test set.

lic dataset for the same purpose, i.e., the baggage group of

the GDXray dataset [25]. These images were collected from

several subway stations with the original meta-data indicat-

ing the presence or absence of prohibited items. There are

six common categories of prohibited items, namely, gun,

knife, wrench, pliers, scissors, and hammer. The hammer

class with merely 60 samples is not used in our experiments.

The distribution of these objects aligns with the real-

world scenario, in which there are much fewer positive sam-

ples compared to negative samples. A statistics on this

dataset is shown in Tab. 1. Each image was scaned by secu-

rity inspection machine , which assigned different colors to

objects made of different materials. All images were stored

in JPEG format with an average size of 100K pixels.

To study the impact brought by training data imbalance,

we construct three subsets of this dataset, and name them as

SIXray10, SIXray100 and SIXray1000, respectively, with

the number indicating the ratio of negative samples over

positive samples. In SIXray10 and SIXray100, all 8,929
positive images are included, and there are exactly 10× and

100× negative images. SIXray100 has a very close distri-

bution to the real world scenario. To maximally explore

the ability of our algorithm to deal with data imbalance,

we construct the SIXray1000 dataset by randomly choos-

ing only 1,000 positive images each class but mixing them

with all the 1,050,302 negative images. Each subset is fur-

ther partitioned into a training set and a testing set, with the

former containing 80% of the images and the latter contain-

ing 20% (the ratio training/testing images is 4 : 1).

On the entire dataset, we use the image-level annotations

provided by human security inspectors, i.e., whether each

type of prohibited items is present. In addition, on the test

sets, we manually add a bounding-box for each prohibited

item to evaluate the performance of object localization.
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3.2. Dataset Properties

The SIXray dataset has several properties which bring

difficulties to visual recognition. First, these images were

mostly obtained from X-ray scans on personal luggage,

e.g., bags or suitcases, in which objects are often randomly

stacked. When these items passed an X-ray scan, the pene-

tration property makes it possible to see even the occluded

items in the image. This leads to the most important prop-

erty of this dataset, which we call it overlapping. Second,

prohibited items can appear in many different scales, view-

points, styles and even subtypes, all of which cause con-

siderable intra-class variation and increase the difficulty of

recognition, Fig.3. Third, the images can be heavily clut-

tered yet it is almost impossible to assign all objects es-

pecially those non-prohibited ones with a clear class label.

Thus, there is noise coming from an open set of objects,

which makes it difficult to expect what appears in the back-

ground regions. Fourth and last, as mentioned above, the

positive images (with at least one prohibited item) only oc-

cupy a small fraction of this dataset. Without a special treat-

ment, it is easy for the training stage to bias towards the

negative class, as simply guessing a negative label yields

sufficiently high accuracy. This raises a challenge to train-

ing stability.

In the following section, we present our approach which

takes these properties into consideration, especially the first

and fourth properties which are specific to this dataset.

4. Our Approach

4.1. Motivation and Formulation

As observed in the previous section, a significant charac-

teristic of X-ray images lies in that objects are overlapped

with each other. Note that overlapping is different from oc-

clusion in which the rear object is invisible. Instead, as X-

ray is penetrable, both front and rear objects are visible in

the image. This is named the penetration assumption, based

on which we use a mixture model to formulate these data.

Let there be C classes of possible items appearing in the

dataset, with an index set of {1, 2, . . . , C}. Among them,

C ′ classes are considered prohibited, e.g., in the SIXray

dataset, C ′ = 5. Without loss of generality, we assign them

with the class index of 1, 2, . . . , C ′. Let the dataset D con-

tain N images. For each input image xn, our goal is to

obtain a C-dimensional vector yn for each xn, each dimen-

sion in which, yn,c, is either 0 or 1, with 1 indicating the

specified prohibited item is present in this image and 0 vice

versa. Note that the ground-truth of y�
n only exists for the

first C ′ dimensions, while others remain unobserved.

To obtain a mathematical formulation of xn, we assume

that it is composed of C sub-images xn,c, each of which

corresponds to a specified class c and is sampled from a

conditional distribution Pc
.
= P(x | c). Then, based on the

penetration assumption, each image can be written as:

xn ≈

C
∑

c=1

yn,c · xn,c, xn,c ∼ Pc. (1)

This formulation is of course not accurate as we ignore the

overlapping relationship between objects as well as the or-

der that objects are stacked, but it serves as an approximate

formulation of how overlapping impacts image data.

Our goal is to learn a discriminative function yn =
f(xn;θ) to predict the image label. Since the object of inter-

est may appear in various scales. In order to recognize and

further detect it, a popular choice [17] [20] is to combine

multi-stage visual information. Here we simply consider

feature vectors extracted from L different layers, the l-th of

which is denoted as x
(l)
n . A regular solution is to train a clas-

sifier beyond each layer, y
(l)
n = h(l)

(

x
(l)
n ; ξ(l)

)

, using the

ground-truth signal y�
n as supervision. In the testing stage,

we fuse all y
(l)
n as the final output, i.e., yn =

∑L

l=1y
(l)
n .

However, we note a significant weakness of this model,

which comes from the penetration assumption, i.e., Eqn (1),

applied to mid-level features3. This is to say, each x
(l)
n

is the composition of sub-images sampled from differ-

ent classes, including those items of no interest, and thus

h(l)
(

x
(l)
n ; ξ(l)

)

may be distracted. A reasonable idea is to

refine x
(l)
n to get rid of these irrelevant information. This

is achieved by a function g(l)
(

x
(l)
n ,yn; τ

(l)
)

, which shares

the same dimensionality with x
(l)
n . Summarizing these con-

tents yields the following optimization problem:

θ�, ξ�, τ � = arg min
θ,ξ,τ

Exn∈D

L
∑

l=1

L(l)
n , where (2)

L(l)
n = L

{

y�
n,h

(l)
(

x̃(l)
n ; ξ(l)

)}

, (3)

x̃(l)
n = g(l)

(

x(l)
n ,yn; τ

(l)
)

, and (4)

yn =
1

L
·

L
∑

l=1

h(l)
(

x̃(l)
n ; ξ(l)

)

. (5)

Here L{·, ·} is a loss function which is discussed in de-

tails later. The above formulate define a recurrent model, in

which yn cannot be observed even in the training stage. The

standard way of optimization involves iteration, in which

we start with an xn sampled from D and any yn (in the

training process, yn always has C ′ dimensions). the first C ′

dimensions are provided by ground-truth and other C − C ′

3Eqn (1) fits mid-level features best, because low-level features (e.g.,

raw image pixels) are often largely impacted by small noise, in both case

it is learning the class-conditional distribution Pc

.
= P(x | c) suffers a

higher difficulty. Similarly, the very last layers (e.g., containing class-

specific logits) are less likely to be additive as in Eqn (1).
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Figure 4. The overall architecture of the proposed class-balanced hierarchical refinement (CHR) approach (best viewed in color). The

network backbone f(xn;θ) is shown on the leftmost column, from which L layers are chosen as feature extractors. For simplicity,

we show an example with L = 3. Each x
(l)
n , l > 1, is up-sampled and concatenated with x

(l−1)
n and fed into a refinement function that

simulates x̃
(l−1)
n = g

(

x
(l−1)
n ,x

(l)
n ; τ (l−1)

)

, and x̃
(l−1)
n is sent into h(l−1)

(

x̃
(l−1)
n ; ξ(l−1)

)

for classification. GAP denotes global average

pooling. A class-balancing loss is built upon the same hierarchy, on which mid-level negative samples are filtered out using high-level cues.

dimensions can be randomly initialized) We first compute

x
(l)
n for each l accordingly, and use it to compute the first

version of y
(l)
n = h(l)

(

x
(l)
n ; ξ(l)

)

. In each round, we com-

pute yn and use it to compute g(l)
(

x
(l)
n ,yn; τ

(l)
)

so that

x
(l)
n is updated as x̃

(l)
n . Within this process, parameters ξ(l)

and τ (l) are updated accordingly with ground-truth y�
n and

gradient back-propagation. This iteration continues until

convergence or a maximal number of rounds is achieved4.

4.2. Approximation with Hierarchical Refinement

In practice, however, the above formulation has two ma-

jor drawbacks. The first one lies in the inaccuracy of gen-

erative models. We expect a model g(l)(·) to eliminate

the components in x
(l)
n that correspond to the non-targeted

classes in yn. This is increasingly difficult especially when

the x
(l)
n is far from yn. So, we assume that x

(l)
n only

receives supervision signals from x
(l+1)
n , which is much

closer than y, while x
(l+1)
n continues to receive information

from x
(l+2)
n and this process continues until yn is reached.

In implementation, this implies that reversed connections

only emerge between neighboring feature layers. Here an

exception happens at the last feature layer, x
(L)
n , which is

connected to yn via a classifier h(L)(·). Since direct su-

pervisions have already been provided by this classifier,

we ignore the connection between yn and x
(L)
n , leaving

a total of L − 1 connections between x
(l)
n and x

(l+1)
n , for

4Here are some side notes. It has been widely believed that a deep net-

work is able to fit training data sampled from one-class distributions, e.g.,

each sample contains only one object in class cn, so that xn is sampled

from Pcn . In such scenarios, yn as a one-hot vector is relatively easy

to estimate and thus iteration is not required. This is the reason that deep

networks produced satisfying performance in the GDXray dataset [25] in

which most images contain only one object.

l = 1, 2, . . . , L− 1. This is to say, g
(

x
(l)
n ,yn; ξ

(l)
)

is re-

placed by g
(

x
(l)
n ,x

(l+1)
n ; ξ(l)

)

. Nevertheless, x
(l)
n can still

obtain supervision signals from yn in an indirect manner,

i.e., via a few intermediate steps. This is named the hierar-

chical refinement strategy.

Implementation details are illustrated in Fig. 4. We

start with x̃
(L)
n ≡ x

(L)
n , the feature extracted from the

top layer. It is concatenated with the feature at the

previous stage, x
(L−1)
n , before which it is up-sampled

if necessary. The concatenated feature is then fed into

g(L−1)
(

x
(L−1)
n ,x

(L)
n ; τ (L−1)

)

to produce x̃
(L−1)
n . This

process continues until x̃
(l)
n is obtained. g(L−1)(·) means

that up-sample x
(L)
n and feed it into a function with x

(L−1)
n .

Each x̃
(l)
n , l = 1, 2, . . . , L, is sent into the corresponding

classifier h(l)
(

x̃
(l)
n ; ξ(l)

)

to obtain y
(l)
n . All y

(l)
n are aver-

aged into the final output and supervised by y�.

The second drawback is the slowness of an iterative opti-

mization. To accelerate, we switch off iteration so that each

case xn ∈ D is forward-propagated and back-propagated

only once, and the updated parameters θ, ξ(l) and τ (l) are

directly applied to another case sampled from D. This can

be understood as stochastic gradient descent on D. In prac-

tice, this allows us to sample more data in the same period

of time, and thus improve training efficiency.

4.3. Class-Balanced Loss

Here we study the impact of the loss function, i.e.,

Eqn (3), in the training process. In this specific prob-

lem, i.e., prohibited item discovery, there are much fewer

positive training samples (at least one prohibited item

is labeled) than negative ones. This makes regular

loss functions such as the Euclidean loss L{y�
n,yn} =
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|y�
n − yn|

2
and the Binary Cross-Entropy (BCE) loss

L{y�
n,yn} = −

[

y�⊤
n logyn + (1− y�

n)
⊤
log(1− yn)

]

less effective, because the network can heavily bias towards

negative examples (because simply guessing all training

samples to be negative leads to a very low loss function)

and, consequently, the recall becomes considerably low. A

reasonable solution is to slightly change the loss function

so as to equivalently reduce the number of negative training

data [36]. Here we combine this approach in the context of

hierarchical refinement which once again takes advantage

of high-level supervision to guide mid-level features.

The proposed loss function works in a mini-batch B ⊂
D. For each case xn with yn, we have a few stages defined

previously, each of which produces a feature x
(l)
n followed

by a prediction y
(l)
n . We add a binary weight vector, denoted

by w
(l)
n , measuring whether each class in y

(l)
n contributes to

the loss function. Thus, Eqn (3) becomes:

L(l)
n = w(l)⊤

n ·E
(

y�
n,y

(l)
n

)

, (6)

where E
(

y�
n,y

(l)
n

)

is the loss vector, E
(

y�
n,y

(l)
n

)

=

−
[

y�
n ⊙ logy

(l)
n + (1− y�

n)⊙ log
(

1− y
(l)
n

)]

, and ⊙ de-

notes element-wise multiplication.

It remains to define w
(l)
n for each y

(l)
n . In the highest

(L-th) level, w
(L)
n directly measures whether each class, or

each dimension in y
(l)
n , has to be considered. This condi-

tional variable is always true for each class with a positive

label, while for that with a negative label, it is true only if

the prediction is smaller than a fixed threshold ε. In each of

the lower levels, a class is considered if the above judgment

returns true, as well as all the higher levels support this –

in other words, if a class is switched off at some level, it

will never be considered in each of the lower levels. This

is based on the assumption that high-level features are more

reliable in determining which classes are present and which

are absent, while low-level features may produce false pos-

itives due to various reasons.

Replacing Eqn (3) with Eqn (6) gives the complete class-

balanced hierarchical refinement (CHR) approach. In the

training process, each L
(l)
n is computed individually and av-

eraged for gradient back-propagation. In the testing stage,

all y
(l)
n ’s are averaged for prediction.

5. Experiments

5.1. Setting and Baselines

We use all three subsets, namely, SIXray10, SIXray100

and SIXray1000, to evaluate different approaches. In each

subset, all models are optimized on 80% training data, and

evaluated on the remaining 20% testing data. These data

splits are random but consistent for all competitors.

We evaluate both image-level classification mean Aver-

age Precision and object-level localization accuracy, for the

second goal we manually labeled all prohibited items with

bounding-box in the testing images. For image classifi-

cation, we apply the evaluation metric in the PascalVOC

image classification task [9], which works on each class

individually – all testing images are ranked by the confi-

dence of containing the specified object, and the mean av-

erage precision (mAP) is computed. For object localiza-

tion, we follow [38] to compute the accuracy of pointing

localization. A hit is counted if the pixel of the maximum

response falls within one of the ground-truth bounding-

boxes of the specified object, otherwise a missed is counted.

Thus, each class has a localization accuracy computed by
#Hits

#Hits+#Misses . For both tasks, we also report the overall

performance which is the average over all five classes.

We investigate five popular backbones, including

ResNets [13] with 34, 50 and 101 layers, Inception-v3 [32],

and DenseNet with 121 layers. We follow the conventions

to setup all these networks, and CHR is applied to each of

them using L = 3 – three pooling layers with different spa-

tial resolutions (e.g., in ResNets, 28×28, 14×14, and 7×7)

are used as features. It is of course possible to increase L

by adding more features, yet in practice we find L = 3 is

sufficient to provide complementary information.

5.2. Classification: Quantitative Results

We first investigate the overall (averaged over five

classes) image classification results which are summarized

in Tab. 2. CHR achieves consistent mean Average Precision

gain beyond all network backbones as well as in all differ-

ent subsets, i.e., SIXray10, SIXray100 and SIXray1000. We

observe that CHR works better in deeper networks, which

is also observed in experiments, e.g., on top of Inception-v3

and DenseNet, the absolute improvement over SIXRay1000

is 8.22% and 9.08%, respectively.

We next observe five types of objects individually. The

benefit brought by CHR is different from class to class.

Take the DenseNet as an example. When it is aimed at

finding gun, classification performance is not boosted in all

subsets, while we observe significant gains over all the other

classes, especially for scissors, the accuracy is improved by

an impressive amount of 30%. We can see in Table 1 that

the training samples of scissors is the least among all five

prohibited items, for which reason the baseline suffers sig-

nificant bias in the training stage. CHR, by introducing hier-

archical signals for supervision, largely alleviates this bias.

Finally, we study the issue of data imbalance over differ-

ent subsets. Recall that the ratio of negative over positive

images is 10, 100 and 1000, respectively. From Fig. 5, we

can see that the performance gain goes up with data imbal-

ance, which, as analyzed in Sec. 5.4, comes from our special

treatment towards class balancing.
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Method Gun Knife Wrench Pliers Scissors mean

ResNet34 [13] 89.71 83.06 72.05 85.46 78.75 56.42 62.48 30.49 16.47 83.50 55.24 14.24 52.99 16.14 7.12 74.83 52.74 33.26
ResNet34+CHR 87.16 81.96 73.35 87.17 77.70 60.46 64.31 36.85 23.72 85.79 64.56 17.98 61.58 14.49 18.19 77.20 55.11 38.74
ResNet50 [13] 90.64 84.75 74.19 87.82 77.92 59.82 63.62 28.49 16.03 84.80 50.53 16.59 57.35 19.39 2.87 76.85 52.22 33.90
ResNet50+CHR 87.55 82.64 73.43 86.38 79.60 61.32 69.12 41.19 18.88 85.72 58.02 12.32 60.91 27.89 19.03 77.94 57.87 37.00
ResNet101 [13] 87.65 82.83 76.04 84.26 76.16 63.53 69.33 35.59 13.65 85.29 54.82 15.57 60.39 20.63 11.28 77.38 54.01 36.01
ResNet101+CHR 85.45 83.25 75.38 87.21 77.53 64.80 71.23 42.02 15.27 88.28 68.01 19.02 64.68 32.33 16.21 79.37 60.63 38.14
Inception-v3 [32] 90.05 81.18 75.52 83.80 77.28 56.33 68.11 32.47 24.01 84.45 66.89 16.75 58.66 22.63 20.72 77.01 56.09 38.67
Inception-v3+CHR 88.90 79.22 76.91 87.23 73.48 61.29 69.47 37.20 29.60 86.37 69.01 19.11 65.50 31.81 47.56 79.49 58.15 46.89
DenseNet [14] 87.36 83.23 75.00 87.71 77.24 65.55 64.15 37.72 23.57 87.63 62.69 18.09 59.95 24.89 14.18 77.36 57.15 39.28
DenseNet+CHR 87.05 82.06 74.87 85.89 78.75 71.23 70.47 43.22 29.79 88.34 66.75 21.57 66.07 28.80 44.27 79.56 59.92 48.36

Table 2. Classification mean average precision (%) on the subsets of SIXray (each cell, left to right: SIXray10, SIXray100, SIXray1000).

Method Gun Knife Wrench Pliers Scissors mean

ResNet34 [13] 71.60 50.62 53.93 51.28 55.38 38.97 43.32 26.74 22.46 68.88 34.54 13.69 22.16 7.95 6.82 51.45 35.05 27.17
ResNet34+CHR 75.62 60.19 70.41 55.38 63.08 26.15 52.41 35.83 37.97 58.44 53.70 25.10 19.32 0.00 2.27 52.23 42.56 32.38
ResNet50 [13] 63.89 47.53 42.32 57.44 52.82 48.72 49.73 28.34 19.79 68.88 39.85 19.77 17.05 1.70 2.84 51.40 34.05 26.69
ResNet50+CHR 68.83 57.72 60.67 58.46 49.23 37.44 54.01 41.18 22.46 77.04 49.91 20.91 15.91 15.34 13.64 54.85 42.67 31.02
ResNet101 [13] 73.77 73.15 70.41 65.13 64.10 60.00 28.34 25.13 15.51 62.24 31.50 14.07 21.02 11.36 5.68 50.10 41.05 33.13
ResNet101+CHR 80.86 79.32 79.03 73.85 69.23 61.54 52.41 27.81 21.93 9.30 48.39 17.11 40.34 6.25 19.32 51.35 46.20 39.78
Inception-v3 [32] 79.94 64.81 71.16 75.38 65.64 52.31 59.36 40.11 7.49 59.58 32.83 18.63 40.34 26.14 1.70 62.92 45.91 30.26
Inception-v3+CHR 78.70 67.59 73.41 74.36 63.08 41.54 52.41 23.53 23.53 59.96 54.27 7.60 52.27 39.20 11.36 63.54 49.53 31.49
DenseNet [14] 74.38 71.60 58.05 71.28 62.05 56.92 59.89 24.60 26.20 71.54 55.60 20.53 35.23 9.66 11.36 62.46 44.70 34.61
DenseNet+CHR 79.01 78.40 76.78 76.92 62.56 57.95 59.36 41.71 39.04 72.49 63.76 39.92 40.34 5.11 5.68 65.62 50.31 43.87

Table 3. Localization accuracy (%) on the subsets of SIXray (each cell, left to right: SIXray10, SIXray100, SIXray1000).
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Figure 5. The overall accuracy gain of CHR becomes more signif-

icant in the subsets with larger negative-positive ratios.

5.3. Localization: Quantitative Results

To verify that CHR is not over-tuned to image classifi-

cation, we attach the class activation map (CAM) [39], an

weakly supervised approach for object localization, on top

of the features extracted at different stages. CAM produces

one heatmap for each class individually, and on each of

these maps. We first rescale the maps to the original image

size. If the maximal response across scales falls within one

of the ground truth bounding boxes of the specified object,

the predicted location is considered a valid localization.

Tab. 3 summarizes localization results. CHR based on

DenseNet outperforms DenseNet by 5.61% (50.31% vs

44.70%) for SIXray100 and 9.26% (43.87% vs 34.61%)

for SIXray1000. In particular, for the wrench class in
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Figure 6. Examples of object localization based on DenseNet,

Which shows CHR is effective in complex background and over-

lapping images. (best viewed in color).

SIXray1000, Inception-v3+CHR outperforms Inception-v3

by 16.04% (23.53% vs 7.49%). Again, we observe signif-

icant accuracy gain on deeper networks (which produces

more powerful features) and larger negative-over-positive

ratios. more localization results are shown in Fig. 6.
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5.4. Ablation Studies

In this part, we investigate the impact brought by hi-

erarchical refinement and class-balanced loss, respectively.

All experiments are performed on three subsets of SIXray,

which have different ratios of negative-positive samples.

Results are summarized in Tab. 4.

First, we study the performance of hierarchical refine-

ment, namely, the reversed connections in the network. It

can be seen that the top-down refinement (ResNet34+HR)

improves the classification and localization accuracies by

about 1% and 6.52% on SIXray100, and 3.15% and 2.13%
on SIXray1000. We note that ResNet34+HR outperforms

ResNet34+H, the direct way incorporating hierarchical in-

formation, because the ResNet34+HR allows low-level fea-

tures to be refined with high-level semantic cues.

Second, we study the impact of different loss func-

tions. ResNet34+CH, with the designed class-balanced

loss, improves classification and localization accuracies by

1.00% and 3.77% on SIXray100, and 3.09% and 3.44% on

SIXray1000. By combining hierarchical refinement with

the class-balance loss, ResNet34+CHR further improves

the classification and localization accuracies by +2.37%
and +7.51% on SIXray100, and +5.48% and +5.11% on

SIXray1000, over the baseline. This shows the usefulness

of class balance in imbalanced scenarios.

CHR achieves accuracy gain with a relatively small

amount of extra computation. For example, ResNet34 re-

quires 7.68ms to process each testing image and ResNet34-

CHR requires 8.28ms, both tested on a Tesla V100 GPU.

This is to say, CHR requires 7.81% extra time.

5.5. ILSVRC2012 Classification

Last but not least, we evaluate CHR on ILSVRC2012, a

large-scale image classification dataset. This is to observe

how CHR generalizes to natural image data, provided that

it achieves significant accuracy gain on overlapping image

data. ILSVRC2012 is a popular subset of the ImageNet

databased, which has 1,000 classes and each of them con-

tains a well-defined concept in WordNet. There are 1.3M
training images and 50K validation images, both of which

are roughly uniformly distributed over all classes.

We follow the standard training and testing pipelines, in-

cluding the policies of model initialization, data augmen-

tation, learning rate decay, etc. Since ILSVRC2012 is not

an imbalanced dataset, we switch off the weight terms in

the loss function which was designed for this purpose. The

top-1 error of CHR based on ResNet18 is 27.01% [13],

which slightly lower than the baseline by 0.87% (27.01%
vs 27.88%). Besides, the top-1 and top-5 errors of CHR

based on ResNet50 [13] are 22.00% and 6.22%. which are

lower than the baseline by 0.85% (22.00% vs 22.85%) and

0.49% (6.22% vs 6.71%), respectively. This slight but con-

sistent accuracy gain delivers two-fold messages. The re-

Method SIXray10 SIXray100 SIXray1000

ResNet34 74.83 51.45 52.74 35.05 33.26 27.17

ResNet34+H 74.43 49.91 53.59 38.70 34.78 28.68

ResNet34+CH 76.28 48.01 54.59 42.47 37.87 32.12

ResNet34+HR 75.87 50.19 53.72 41.57 36.41 29.30

ResNet34+CHR 77.20 52.23 55.11 42.56 38.74 32.38

Table 4. Classification and localization accuracies (%) on the

SIXray subsets using different options (refinement method, loss

function, etc.) of CHR. The backbone is ResNet34. For the expla-

nation of different options, see the main texts in Sec. 5.4.

versed connections in our approach which carries high-level

supervision to mid-level features do not conflict with natu-

ral images – although it aligns with overlapping image data

much better. Given that the additional computational costs

are almost negligible, it is worth investigating its extension

in the natural image domains.

6. Conclusions

In this paper, we investigate prohibited item discovery in

X-ray scanned images, which is a promising application in

industry yet remains fewer studied in computer vision. To

facilitate research in this field, we present SIXray, a large-

scale dataset consisting of more than one million X-ray im-

ages, all of which were captured in real-world scenarios and

therefore covered complicated scenarios. We manually an-

notated six types and more than 20,000 prohibited items,

which is at least 100 times larger than all existing datasets.

In methodology, we formulate X-ray images as the overlap

of several sub-images, therefore sampled from a mixture

distribution. Motivated by filtering irrelevant information,

we present an algorithm to refine mid-level features in a hi-

erarchical and iterative manner. In practice, we switch off

iteration to optimize the network weights in an approximate

but efficient manner. A novel loss function is also built upon

the hierarchical architecture to deal with heavy data imbal-

ance between positive and negative classes. Beyond a few

popular network backbones, our approach produces consis-

tent gain in both classification and localization accuracy, es-

tablishing a strong baseline for the proposed task.

The future research mainly lies in two directions. First,

the formulation of overlapping images from the penetration

assumption is not accurate in many aspects – we look for-

ward to more effective approaches based on a better phys-

ical model. Second, the connection between overlapping

images and natural images, e.g., object occlusion, remains

unclear – studying this topic may imply some ways of ex-

tending these approaches to a wider range of applications.
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