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Abstract

There have been a few recent methods proposed in text to

video moment retrieval using natural language queries, but

requiring full supervision during training. However, acquir-

ing a large number of training videos with temporal bound-

ary annotations for each text description is extremely time-

consuming and often not scalable. In order to cope with

this issue, in this work, we introduce the problem of learn-

ing from weak labels for the task of text to video moment

retrieval. The weak nature of the supervision is because,

during training, we only have access to the video-text pairs

rather than the temporal extent of the video to which dif-

ferent text descriptions relate. We propose a joint visual-

semantic embedding based framework that learns the no-

tion of relevant segments from video using only video-level

sentence descriptions. Specifically, our main idea is to uti-

lize latent alignment between video frames and sentence de-

scriptions using Text-Guided Attention (TGA). TGA is then

used during the test phase to retrieve relevant moments. Ex-

periments on two benchmark datasets demonstrate that our

method achieves comparable performance to state-of-the-

art fully supervised approaches.

1. Introduction

Cross-modal retrieval of visual data using natural lan-

guage description has attracted intense attention in recent

years [10, 43, 15, 12, 40, 41, 24], but remains a very chal-

lenging problem [43, 6, 21] due to the differences and am-

biguity between different modalities. The identification of

the video moment (or segment) is important since it allows

the user to focus on the portion of the video that is most rel-

evant to the textual query, and is beneficial when the video

has a lot of non-relevant portions. (See Fig. 1). The afore-

mentioned approaches operate in a fully supervised setting,

i.e., they have access to text descriptions along with the ex-

act temporal location of the visual data corresponding to

the descriptions. However, obtaining such annotations is te-

*Joint first author

Query: A man holding a camera comes into view.

29.2 sec. 41.3 sec.

Query: Old man in white finishes filming then leaves.

12.6 sec. 24 sec.

Figure 1. Illustration of text to video moment retrieval task: given

a text query, retrieve and rank videos segments based on how well

they depict the text description.

dious and noisy, requiring multiple annotators. The process

of developing algorithms which demand a weaker degree of

supervision is non-trivial and is yet to be explored by re-

searchers for the problem of video moment retrieval using

text queries. In this work, we focus, particularly on this

problem.

The text to video moment retrieval task is more chal-

lenging than the task of localizing categorical activities in

videos, which is a comparatively well-studied field [20, 38,

44, 39, 28, 31]. Although these methods show success on

activity localization, unlike text to moment retrieval, they

are limited to a pre-defined set of activity classes. In this re-

gard, there has been a recent interest in localizing moments

in a video from natural language description [9, 8, 40, 3].

Supervision in terms of text description with their tempo-

ral boundaries in a video is used to train these models.

However, acquiring such dense annotations of text-temporal

boundary tuples are often tedious, as it is difficult to mark

the start and end locations of a certain moment, which in-

troduces ambiguity in the training data.

On the contrary, it is often much easier to just describe

the moments appearing in a video with a set of natural

language sentences, than providing exact temporal bound-

aries associated with each of the sentences. Moreover,

such descriptions can often be obtained easily from cap-

tions through some sources on the web. Motivated by this,

we pose a question in this paper: is it possible to develop
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Figure 2. A brief illustration of our proposed weakly supervised framework for learning joint embedding model with Text-Guided Attention

for text to video moment retrieval. Our framework learns a latent alignment between relevant video frames and text corresponding to the

video. This alignment is utilized for attending video features based on relevance and the pooled video feature is used for learning the joint

video-text embedding. In the figure, CNN refers to a convolutional neural network, FC refers to a fully-connected neural network, and

GRU refers to gated recurrent units. Please see Sec. 3 for details of our approach.

a weakly-supervised framework for video moment localiza-

tion from the text, leveraging only video-level textual anno-

tation, without their temporal boundaries? Temporal local-

ization of moments using weak description is a much more

challenging task than its supervised counterpart. It is ex-

tremely relevant to address this question, due to the diffi-

culty and non-scalability of acquiring precise frame-wise

information with text descriptions in the fully supervised

setting, which require enormous manual labor.

Overview of the Proposed Framework. An illustration

of our proposed weakly-supervised framework presented

in Fig. 2. Given a video, we first extract frame-wise vi-

sual features from pre-trained Convolutional Neural Net-

work (CNN) architectures. We also extract features for

text descriptions using Recurrent Neural Network (RNN)

based models. Similar to several cross-modal video-text re-

trieval models [5, 15], we train a joint embedding network

to project video features and text features into the same joint

space. However, as we have text descriptions for the videos

as a whole and not moment-wise descriptions like in a fully

supervised setting, the learning procedure for text to video

moment retrieval is non-trivial.

Given a certain text description, we obtain its similar-

ity with the video features, which gives an indication of

temporal locations which may correspond to the textual de-

scription. We call this Text-Guided Attention as it helps

to highlight the relevant temporal locations, given a text

description. Thereafter, we use this attention to pool the

video features along the temporal direction to obtain a sin-

gle text-dependent feature vector for a video. We then train

the network to minimize a loss which reduces the distance

between the text-dependent video feature vector and the text

vector itself. We hypothesize that along with learning a

shared video-text embedding, hidden units will emerge in-

ternally to learn the notion of relevance between moments

of video and corresponding text description. During the

testing phase, we use TGA for localizing the moments,

given a text query, as it highlights the portion of the video

corresponding to the query.

Contributions: The main contributions of the proposed

approach are as follows.

• We address a novel and practical problem of tempo-

rally localizing video moments from text queries without

requiring temporal boundary annotations of the text descrip-

tions while training but using only the video-level text de-

scriptions.

• We propose a joint visual-semantic embedding frame-

work, that learns the notion of relevant moments from video

using only video-level description. Our joint embedding

network utilizes latent alignment between video frames

and sentence description as Text-Guided Attention for the

videos to learn the embedding.

• Experiments on two benchmark datasets: DiDeMo [9]

and Charades-STA [8] show that our weakly-supervised ap-

proach performs reasonably well compared to supervised

baselines in the task of text to video moment retrieval.

2. Related Works

Image/Video Retrieval using Text Queries. Cross-

modal language-vision retrieval methods focus on retriev-

ing relevant images/videos from a database given text de-

scriptions. Most of the recent methods for image-text re-

trieval task focus on learning joint visual-semantic embed-

ding models [13, 15, 7, 36, 6, 24, 34, 23]. Inspired by

the success of these approaches, most video-text retrieval

methods also employ a joint subspace model [42, 5, 35,

26, 21, 22]. In this joint space, the similarity of different

points reflects the semantic closeness between their corre-

sponding original inputs. These text-based video retrieval

approaches focus on retrieving an entire video from dataset

given text description. However, we focus on temporally lo-

calizing a specific moment relevant to a text query, within a
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given video. Similar to the video/image to text retrieval ap-

proaches, our proposed framework is also based on learning

joint video-text embedding models. However, instead of fo-

cusing only on aligning video and text in the joint space as

in video-text retrieval, our aim is to learn a latent alignment

between video frames and text descriptions, which is used

for obtaining the relevant moments corresponding to a given

text query.

Activity Localization. The moment retrieval aspect of

our work is related to the problem of temporal activity lo-

calization in untrimmed videos. From the perspective of

our interest, the works in literature pertaining to activity

localization can be categorized as either fully supervised

or weakly supervised. Works in fully supervised setting

include SSN [44], R-C3D [39], TAL-Net [2] among oth-

ers. Most of these works structure their framework by us-

ing temporal action proposals with activity location predic-

tors. However, in the weakly supervised setting, the exact

location of each activity is unknown, and only the video-

level labels are accessible during training. In order to deal

with that, researchers take a Multiple Instance Learning ap-

proach [38] with constraints applied for better localization

[28, 25]. Our task of video moment retrieval from text de-

scription is more challenging than the activity localization

task, as our method is not limited to a pre-defined set of

categories, but rather sentences in natural language.

Text to Video Moment Retrieval. Most relevant to our

work are the methods that focus on identifying relevant por-

tions from text description using fully-supervised annota-

tions: MCN [9], CTRL [8], EFRC [40], ROLE [19], TGN

[3]. These methods are severely plagued by the issue of

collecting training videos with temporal natural language

annotation. Temporal sliding window over videos frames

[9], or hard-coded segments containing a fixed number of

frames [8] has been used for generating moment candidate

corresponding to a text description. Moreover, unlike in im-

ages, generating temporal proposals for videos in an unsu-

pervised manner is itself a challenging task. In [40, 39],

the authors proposed an end-to-end framework where the

activity proposals are generated as one of the initial steps,

but for the much easier task of activity localization. Atten-

tion mechanism has been used in [19, 40] for the text to

video moment retrieval task. Although we also use atten-

tion, our usage is significantly different from them. ROLE

[19] uses attention over the words using video moment con-

text, which they obtain from the temporal labels. EFRC

[40] uses attention in training a temporal proposal network

as it has access to temporal boundary annotations of the sen-

tences. We use attention over the temporal dimension of the

videos as we do not have access to the temporal boundaries.

More importantly, our method is weakly-supervised, which

requires only video-level text annotation during training.

Hence, the data collection cost for our approach is substan-

tially less, and it is possible to acquire and train using larger

video-text captioning datasets.

A weakly supervised setting is considered in [1] for

the video-text alignment task, which is to assign tempo-

ral boundaries to a set of temporally ordered sentences,

whereas our task is to retrieve a portion of the video given

a sentence. Moreover, [1] assumes temporal ordering be-

tween the sentences as additional supervision. Also, their

method would require dense sentence annotations describ-

ing all portions of the video including tokens representing

background moments (if any). The task considered in this

work is a generalization of the task in [1]. We consider that

there can be multiple sentences describing different tempo-

ral portions of a single video and do not consider any tempo-

ral ordering information of the sentences. The Text-Guided

Attention mechanism used in our framework allows us to

deal with multiple sentence descriptions during training and

provide the relevant portions for each of them during test-

ing, even with weak supervision.

3. Approach

In this section, we first describe the network architecture

and input feature representation for representing video and

text (Sec. 3.1). Then, we present our proposed Text-Guided

Attention module (Sec. 3.2). Finally, we describe the frame-

work for learning joint video-text embedding (Sec.3.3).

Problem Definition. In this paper, we consider that the

training set consists of videos paired with text descriptions

composed of multiple sentences. Each sentence describes

different temporal regions of the video. However, we do

not have access to the temporal boundaries of the moments

referred to by the sentences. At test time, we use a sentence

to retrieve relevant portions of the video.

3.1. Network Structure and Features

Network Structure. The joint embedding model is

trained using a two-branch deep neural network model, as

shown in Fig. 2. The two branches consist of different ex-

pert neural networks to extract modality-specific represen-

tations from the given input. The expert networks are fol-

lowed by fully connected embedding layers which focus on

transforming the modality-specific representations to joint

representations. In this work, we keep the pre-trained im-

age encoder fixed as we have limited training data. The

fully-connected embedding layers, the word embedding, the

GRU are trained end-to-end. We set the dimensionality (D)

of the joint embedding space to 1024.

Text Representation. We use Gated Recurrent Units

(GRU) [4] for encoding the sentences. GRU has been very

popular for generating a representation for sentences in re-

cent works [6, 15]. The word embeddings are input to the

GRU. The dimensionality of the word embeddings is 300.
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Video Representation. We utilize pre-trained convolu-

tional neural network models as the expert network for en-

coding videos. Specifically, following [8] we utilize C3D

model [33] for feature extraction from every 16 frames of

video for the Charades-STA dataset. A 16 layer VGG model

[30] is used for frame-level feature extraction in experi-

ments on DiDeMo dataset following [9]. We extract fea-

tures from the penultimate fully connected layer. For both

the C3D and VGG16 model, the dimension of the represen-

tation from the penultimate fully connected layer is 4096.

3.2. Text-Guided Attention

After the feature extraction process, we have a training

set D = {{wi
j}

nwi

j=1, {v
i
k}

nvi

k=1}
nd

i=1, where nd is the num-

ber of training pairs, wi
j represents the jth sentence feature

of ith video, vi
k represent the video feature at the kth time

instant of the ith video, nwi and nvi are the number of sen-

tences in the text description and video time instants for the

ith video in the dataset. Please note that we do not consider

any ordering in the text descriptions.

Each of the sentences provides us information about a

certain part of the given video. In a fully supervised setting,

where we have access to the temporal boundaries associ-

ated with each sentence, we can apply a pooling technique

to first pool the relevant portion of the video features and

then use a similarity measure to learn a joint video segment-

text embedding. However, in our case of weakly supervised

moment retrieval, we do not have access to the temporal

boundaries associated with the sentences. Thus, we need to

first obtain the portions of the video which are relevant to a

given sentence query.

If some portion of the video frames corresponds to a

particular sentence, we would expect them to have simi-

lar features. Thus, the cosine similarity between text and

video features should be higher in the temporally relevant

portions and low in the irrelevant ones. Moreover, as the

sentence described a part of the video rather than individual

temporal segments, the video feature obtained after pooling

the relevant portions should be very similar to the sentence

description feature. We employ this idea to learn the joint

video-text embedding via an attention mechanism based on

the sentence descriptions, which we name Text-Guided At-

tention (TGA). Note that during the test phase, we use TGA

to obtain the localization.

We first apply a Fully Connected (FC) layer with ReLU

[18] and Dropout [32] on the video features at each time in-

stance to transform them into the same dimensional space as

the text features. We denote these features as v̄i
k. In order to

obtain the sentence specific attention over the temporal di-

mension, we first obtain the cosine similarity between each

temporal feature and sentence descriptions. The similarity

between the jth sentence and the kth temporal feature of

the ith training video can be represented as follows,

sikj =
wi

j

T
vi
k

||wi
j ||2||v

i
k||2

(1)

Once we obtain the similarity values for all the temporal

locations, we apply a softmax operation along the temporal

dimension to obtain an attention vector for the ith video as

follows,

aikj =
exp(sikj)Pnvi

k=1 exp(s
i
kj)

(2)

These should have high values at temporal locations

which are relevant to the given sentence vector wi
j . We

consider this as local similarity because the individual tem-

poral features may correspond to different aspects of a sen-

tence and thus each of the temporal features might be a bit

scattered away from the sentence feature. However, the fea-

ture obtained after pooling the video temporal features cor-

responding to the relevant locations should be quite similar

to the entire sentence feature. We consider this global sim-

ilarity. We use the attention in Eqn. 2 to obtain the pooled

video feature for the sentence description wi
j as follows,

f i
j =

nviX

k=1

aikjv
i
k (3)

Note that, this feature vector corresponds to the partic-

ular sentence description wi
j only. In a similar procedure,

we can extract the text-specific video feature vector corre-

sponding to the other sentences in the text descriptions of

the same video and other videos as well. Fig. 3 presents

an overview of the sentence-wise video feature extraction

procedure using the video temporal features and a set of

sentence descriptions for the video. We use these feature

vectors to derive the loss function to be optimized to learn

the parameters of the network. This is described next.

3.3. Training Joint Embedding

We now describe the loss function we optimize to learn

the joint video-text embedding. Many prior approaches

have utilized pairwise ranking loss as the objective for

learning joint embedding between visual and textual input

[15, 45, 37, 13]. Specifically, these approaches minimize

a hinge-based triplet ranking loss in order to maximize the

similarity between an image embedding and corresponding

text embedding and minimize similarity to all other non-

matching ones.

For the sake of notational simplicity, we drop the index

i, j, k denoting the video number, sentence index and time

instant. Given a text-specific video feature vector based on

TGA, f (∈ R
V ) and paired text feature vector w (∈ R

T ),

the projection for the video feature on the joint space can
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Figure 3. This figure presents the procedure of computing the Text-Guided Attention and using it to generate sentence-wise video features.

We first obtain the cosine similarity between the features at every time instant of the video vi, and its corresponding sentences wi
j , followed

by a softmax layer along the temporal dimension to obtain the sentence-wise temporal attention. Thereafter, we use these attentions to

compute a weighted average of the video features to finally obtain the sentence-wise video features.

be derived as vp = W (v)f (vp ∈ R
D). Similarly, the pro-

jection of paired text vector in the embedding space can be

expressed as tp = W (t)w(tp ∈ R
D). Here, W (v) ∈ R

D×V

is the transformation matrix that projects the video content

into the joint embedding and D is the dimensionality of

the joint space. Similarly, W (t) ∈ R
D×T maps input sen-

tence/caption embedding to the joint space.

Using these pairs of feature representation of both videos

and corresponding sentence, the goal is to learn a joint em-

bedding such that the positive pairs are closer than the neg-

ative pairs in the feature space. Now, the video-text loss

function LV T can be expressed as follows,

LV T =
X

(vp,tp)

n

X

t
−

p

max
⇥

0,∆− S(vp, tp) + S(vp, t
−

p )
⇤

+
X

v
−

p

max
⇥

0,∆− S(tp,vp) + S(tp,v
−

p )
⇤

o (4)

where t−p is a non-matching text embedding for video em-

bedding vp, and tp is the matching text embedding. This

is similar for video embedding vp and non-matching im-

age embedding v−

p . ∆ is the margin value for the ranking

loss. The scoring function S(vp, tp) measures the similar-

ity between the image embedding and text embedding in the

joint space. We utilize cosine similarity in the representa-

tion space to compute similarity. Cosine similarity is widely

used in learning joint embedding models in prior works on

image-text retrieval [45, 15, 6, 23]. Our approach does not

depend on any specific choice of similarity function.

In Eq. (4), the first term attempts to ensure that for each

visual input, the matching text inputs should be closer than

non-matching text inputs in learning the joint space. How-

ever, the second term in Eq. (4) attempts to ensure that for

each text input, the matching image input should be closer

in the joint space than the non-matching image inputs.

3.4. Batch-wise Training

We train our network using Stochastic Gradient Descent

(SGD) by dividing the dataset into batches. For a video

with multiple sentences, we create multiple video-sentence

pairs, with the same video, but different sentences in the

corresponding video’s text description. During training, our

method learns to automatically identify the relevant por-

tions for each sentence using the Text-Guided Attention.

The negative instances v−

p and t−p correspond to all the in-

stances which are not positive in the current batch of data.

4. Experiments

We perform experiments on two benchmark datasets

with the goal of comparing the performance of our weakly-

supervised approach against different supervised baselines.

As we introduce the problem in this paper, to the best of our

knowledge, our work is the first to show results on this task.

Ideally, any weakly supervised methods would attempt at

attaining the performance of the supervised methods, with

similar features and setting.

We first describe the details on the datasets and evalua-

tion metric in Sec. 4.1, followed by the training details in

Sec. 4.2. Then, we report the results of different methods

on DiDeMo and Charades-STA dataset in Sec. 4.3.

4.1. Datasets and Evaluation Metric

We present experiments on two benchmark datasets

for sentence description based video moment localization,

namely Charades-STA [8] and DiDeMo [9] to evaluate the

performance of our proposed framework.

Charades-STA. The Charades-STA dataset for text to

video moment retrieval was introduced in [8]. The dataset

contains 16,128 sentence-moment pairs with 12,408 in the

training set and 3,720 in the testing set. The Charades

dataset was originally introduced in [29] which contains
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Table 1. This table presents the results on the Charades-STA dataset, using the evaluation protocol in [8]. Following [40, 8], we also

use C3D feature for a fair comparison. The proposed weakly-supervised approach performs significantly better that visual-semantic

embedding based baselines: VSA-RNN and VSA-STV. The proposed approach also performs reasonably comparable to state-of-the-art

approaches CTRL[8] and EFRC [40], and even achieves a performance gain in several evaluation metrics.

Method
IoU=0.3 IoU=0.5 IoU=0.7

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Random - - - 8.51 37.12 - 3.03 14.06 -

VSA-RNN - - - 10.50 48.43 - 4.32 20.21 -

VSA-STV - - - 16.91 53.89 - 5.81 23.58 -

CTRL - - - 23.63 58.92 - 8.89 29.52 -

EFRC 53.00 94.60 98.50 33.80 77.30 91.60 15.00 43.90 60.90

Proposed 32.14 86.58 99.33 19.94 65.52 89.36 8.84 33.51 53.45

temporal activity annotation and video-level paragraph de-

scription for the videos. The authors of [8] enhanced the

dataset [29] for evaluating temporal localization of mo-

ments in videos given text queries. The video-level de-

scriptions from the original dataset were decomposed into

short sentences. Then, these sentences are assigned to seg-

ments in videos based on matching keywords for activity

categories. The annotations are manually verified at last.

DiDeMo. The Distinct Describable Moments (DiDeMo)

dataset [9] is one of the largest and most diverse datasets for

the temporal localization of events in videos given natural

language descriptions. The videos are collected from Flickr

and each video is trimmed to a maximum of 30 seconds.

The videos in the dataset are divided into 5-second seg-

ments to reduce the complexity of annotation. The dataset is

split into training, validation and test sets containing 8,395,

1,065 and 1,004 videos respectively. The dataset contains

a total of 26,892 moments and one moment could be asso-

ciated with descriptions from multiple annotators. The de-

scriptions in DiDeMo dataset are detailed and contain cam-

era movement, temporal transition indicators, and activities.

Moreover, the descriptions in DiDeMo are verified so that

each description refers to a single moment.

Evaluation Metric. We use the evaluation criteria fol-

lowing prior works in literature [9, 8]. Specifically, we fol-

low [9] for evaluating DiDeMo dataset and [8] for evalu-

ating Charades-STA. We measure rank-based performance

R@K (Recall at K) which calculates the percentage of test

samples for which the correct result is found in the top-K

retrievals to the query sample. We report results for R@1,

R@5, and R@10. We also calculate temporal intersection

over union (tIoU) for Charades-STA dataset and mean in-

tersection over union (mIoU) for DiDeMo dataset.

4.2. Implementation Details

We used two Telsa K80 GPUs and implemented the net-

work using PyTorch [27]. We start training with a learn-

ing rate of 0.001 and keep the learning rate fixed for 15

epochs. The learning rate is lowered by a factor of 10 every

15 epochs. We tried different values for margin α in train-

ing and found 0.1 ≤ ∆ ≤ 0.2 works reasonably well. We

empirically choose ∆ as 0.1 for Charades-STA and 0.2 for

DiDeMo in the experiments. We use a batch-size of 128 in

all the experiments. ADAM optimizer was used in training

the joint embedding networks [14]. The model was eval-

uated on the validation set on the video-text retrieval task

after every epoch. To deal with the over-fitting issue, we

choose the best model based on the highest sum of recalls.

4.3. Quantitative Results

We report the experimental results on Charades-STA

dataset [8] in Table 1 and DiDeMo dataset [9] in Table 2.

4.3.1 Charades-STA Dataset

The quantitative results on Charades-STA dataset [8] are re-

ported in Table 1. The evaluation setup in Charades-STA

dataset [8] considers a set of IoU (Intersection over Union)

thresholds. We report for IoU 0.3, 0.5 and 0.7 in Table 1.

For these IoU thresholds, we report the recalls - R@1, R@5,

and R@10 in Table 1. Following [8], we use sliding win-

dows of 128 and 256 to obtain the possible temporal seg-

ments. The segments are ranked based on the corresponding

Text-Guided Attention score.

Compared Methods. We compare our approach with

state-of-the-art text to video moment retrieval approaches,

CTRL[8], EFRC[40], and baseline approaches, VSA-

RNN[12] and VSA-STV[16]. For these methods, we di-

rectly cite performances from respective papers when avail-

able [8, 40]. We report score for VSA-RNN and VSA-STV

from [8]. If the score for multiple models is reported, we se-

lect the score of the best performing method in R@1. Here,

VSA-RNN (Visual-Semantic Embedding with LSTM) and

VSA-STV (Visual-Semantic Embedding with Skip-thought

vector) are text-based image/video retrieval baselines. We

also report results for “Random” which selects a candidate

moment randomly. Similar to these approaches, we also uti-

lize the C3D model for obtaining feature representation of

videos for fair comparison. We follow the evaluation crite-

ria utilized in [8, 40].
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Analysis of Results. We observe that the proposed

approach consistently perform comparably to the fully-

supervised approaches in all evaluation metrics. Our

weakly-supervised TGA based approach performs signif-

icantly better than supervised visual-semantic embedding

based approaches VSA-RNN and VSA-STV. We observe

that the proposed method achieves a minimum absolute im-

provement of 13.3% in R@5 and 4.5% in R@1 from VSA-

RNN. The relative performance improvement over VSA-

STV is a minimum of 17.9% in R@1 and 21.5% in R@5.

We also observe that the proposed approach achieves bet-

ter performance than state-of-the-art method CTRL [8] on

R@5 evaluation metrics with a maximum relative improve-

ment of about 13.5% in R@5 with IoU=0.7. The proposed

approach also shows reasonable performance compared to

the EFRC approach [40].

4.3.2 DiDeMo Datset

Table 2 summarizes the results on the DiDeMo dataset [9].

DiDeMo only has a coarse annotation of moments. As the

videos are trimmed at 30 seconds and the videos are di-

vided into 5-second segments, each video has 21 possible

moments. We follow the evaluation setup in [9], which is

designed for evaluating 21 possible moments from sentence

descriptions. Average of Text-Guided Attention scores of

corresponding segments is used as the confidence score for

the moments and used for ranking. Following previous

works [9, 40], the performance in the dataset is evaluated

based on R@1, R@5, and mean intersection over union

(mIoU) criteria.

Compared Methods. In Table 2, we report results for

several baselines to analyze the performance of our pro-

posed approach. We divide the table into 3 rows (2.1-2.3).

In row-2.1, we report the results of trivial baselines (i.e.,

Random and Upper-Bound) following evaluation protocol

reported in [9]. In row-2.2, we group the results of LSTM-

RGB-Local [9], EFRC [40], and our proposed approach for

a fair comparison, as these methods are trained with only

the VGG-16 RGB feature. We report the performance of

the proposed approach in both validation and test set as

LSTM-RGB-local model has been evaluated on validation

set [9]. In row-2.3, we report results for state-of-the-art ap-

proaches MCN [9] and TGN [3]. We also report results

of CCA [17] and natural language object retrieval based

baseline Txt-Obj-Retrieval [11] in row-2.3. These meth-

ods additionally use optical flow feature along with VGG16

RGB feature. We report the performance of MCN [9],

TGN [3] and EFRC [40] from the respective papers. The

results of LSTM-RGB-Local, Txt-Obj-Retrieval, Random,

and Upper-Bound are reported from [9].

Analysis of Results. Similar to the results on Charades-

STA, it is evident from Table 2 that our proposed weakly

supervised approach consistently shows comparable perfor-

Table 2. This table reports results on the DiDeMo dataset, follow-

ing the evaluation protocol in [9]. Our proposed approach per-

forms on par with several competitive fully-supervised approaches

# Method R@1 R@5 mIoU

2.1
Upper Bound 74.75 100 96.05

Random 3.75 22.5 22.64

2.2

LSTM-RGB-Local [9] 13.10 44.82 25.13

EFRC [40] 13.23 46.98 27.57

Proposed (Val. Set) 11.18 35.62 24.47

Proposed (Test Set) 12.19 39.74 24.92

2.3

CCA 18.11 52.11 37.82

Txt-Obj-Retrieval [11] 16.20 43.94 27.18

MCN [9] 27.57 79.69 41.70

TGN [3] 28.23 79.26 42.97

mance to several fully-supervised approaches. From row-

2.2, we observe that our proposed approach achieves simi-

lar performance as LSTM-RGB-Local [9] and EFRC [40].

We observe that R@5 accuracy is slightly lower for our ap-

proach compared to supervised approaches. However, R@1

accuracy and mIoU is almost similar. Comparing row-2.3,

we observe that the performance is comparable to CCA and

Txt-Obj-Retrieval baselines. The performance is low com-

pared to MCN [9] and TGN [3]. Both of the approaches use

additional optical flow features in their framework. MCN

additionally use a moment-context feature. Hence, a per-

formance drop is not unexpected. However, we have al-

ready observed from the row-2.2 that the performance of

our weakly supervised approach is comparable to the MCN

baseline model of LSTM-RGB-Local which uses the same

RGB feature in training as our method.

4.4. Qualitative Results

We provide six qualitative examples of moments pre-

dicted by the proposed approach from Charades-STA

dataset [8] in Fig. 4. In Fig. 4, case 1, 2, and 4 show some

examples where our approach was successful in retrieving

the ground truth moment with high IoU. Cases 1 and 2 are

examples where the same video has been used to retrieve

different moments based on two different text descriptions.

We see our text-aware attention module was successful in

finding the correct segment of the video in both the cases.

While our method retrieves the correct moment from

sentence description many cases, it fails to retrieve the cor-

rect moment in some cases (e.g., case 3, 5, and 6). Among

these three cases, case 3 presents an ambiguous query where

the person stands on the doorway but does not enter into the

room. The GT moment covers a smaller segment, while our

system predicts a longer one. We observe the performance

of our system suffers when important visual contents oc-

cupy only small portions in frames, e.g., case 5 and 6. In

case 6, a sandwich is mentioned in the query which occu-

pies a small portion of frames initially and our framework
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Query: A person runs down a few stairs.

6.5 sGT 0 s

5.3 sPrediction 0 s

(1)

Query: Person seems to be laughing into the blanket.

10.9 sGT 0 s

10.7 sPrediction 5.3 s

Query: A person is standing in the room holding a sandwich.

14.0 sGT 0 s

16.0 sPrediction 10.7 s

Query: Person walks through the doorway into a room.

6.3 sGT 0 s

10.7 sPrediction 0 s

Query: The person put the box on a bed.

18.6 sGT 10.8 s

16.0 sPrediction 10.7 s

(3)

(4)

(5)

(6)

Query: The person sits on a pillow on the floor.

5.3 sGT 11.7 s

5.3 sPrediction 10.7 s

(2)

Figure 4. A snapshot of six queries and test videos from Charades-STA dataset with success and failure cases. GT is a ground-truth moment

annotation and Prediction is the moment predicted by the proposed weakly-supervised approach. Queries 1, 2, and 4 show success cases

where our approach was successful in retrieving the ground truth moment with very high temporal intersection over union (IoU). However,

queries 3, 5, and 6 show three cases where our approach was not successful in retrieving the ground truth moment with high IoU.

shifted the start time of the moment to a much later time

instant than in the ground truth. Similarly, in case 5, our

system was only successful in identifying the person laugh-

ing into a blanket after the scene is zoomed in. We believe

these are difficult to capture without additional spatial atten-

tion modeling or generating region proposals. Moreover,

utilizing more cues from videos (e.g., audio, and context)

may be helpful in reducing ambiguity in these cases. We

leave these as future work.

5. Conclusions

In this paper, we introduce the novel problem of weakly

supervised text to video moment retrieval. In the weakly

supervised paradigm, as we do not have access to the tem-

poral boundaries associated with a sentence description, we

utilize an attention mechanism to learn the same using only

video-level sentences. Our formulation of the task makes it

more realistic compared to existing methods in the literature

which require supervision as temporal boundaries or tempo-

ral ordering of the sentences. Moreover, the weak nature of

the task allows it to learn from easily available web data,

which requires minimal effort to acquire compared to man-

ual annotations. Experiments demonstrate that our method

in spite of being weakly supervised performs comparably to

several fully supervised methods in the literature.
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