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Abstract

We present PartNet: a consistent, large-scale dataset of

3D objects annotated with fine-grained, instance-level, and

hierarchical 3D part information. Our dataset consists of

573,585 part instances over 26,671 3D models covering 24

object categories. This dataset enables and serves as a cat-

alyst for many tasks such as shape analysis, dynamic 3D

scene modeling and simulation, affordance analysis, and

others. Using our dataset, we establish three benchmarking

tasks for evaluating 3D part recognition: fine-grained se-

mantic segmentation, hierarchical semantic segmentation,

and instance segmentation. We benchmark four state-of-

the-art 3D deep learning algorithms for fine-grained se-

mantic segmentation and three baseline methods for hierar-

chical semantic segmentation. We also propose a baseline

method for part instance segmentation and demonstrate its

superior performance over existing methods.

1. Introduction

Being able to parse objects into parts is critical for hu-

mans to understand and interact with the world. People

recognize, categorize, and organize objects based on the

knowledge of their parts [10]. Many actions that people

take in the real world require detection of parts and reason-

ing over parts. For instance, we open doors using doorknobs

and pull out drawers by grasping their handles. Teaching

machines to analyze parts is thus essential for many vision,

graphics, and robotics applications, such as predicting ob-

ject functionality [13, 14], human-object interactions [18],

shape editing [28, 16], and shape generation [25, 41].

To enable part-level object understanding by learning ap-

proaches, 3D data with part annotations are in high demand.

Many cutting-edge learning algorithms, especially for 3D

understanding [45, 44, 30, 8], intuitive physics [27], and re-

inforcement learning [48, 29], require such data to train the

networks and benchmark the performances. Researchers

are also increasingly interested in synthesizing dynamic
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Figure 1. PartNet dataset and three benchmarking tasks.

data through physical simulation engines [20, 43, 29]. Cre-

ation of large-scale animatable scenes will require a large

amount of 3D data with affordances and mobility informa-

tion. Object parts serve as a critical stepping stone to access

this information. Thus it is necessary to have a large 3D

object dataset with part annotation.

With the availability of the existing 3D shape datasets

with part annotations [5, 3, 45], we witness increasing re-

search interests and advances in 3D part-level object under-

standing. Recently, a variety of learning methods have been

proposed to push the state-of-the-art for 3D shape segmen-

tation [30, 31, 46, 19, 35, 24, 9, 39, 40, 42, 33, 7, 26, 23].

However, existing datasets only provide part annotations

on relatively small numbers of object instances [5], or on

coarse yet non-hierarchical part annotations [45], restricting

the applications that involves understanding fine-grained

and hierarchical shape segmentation.

In this paper, we introduce PartNet: a consistent, large-

scale dataset on top of ShapeNet [3] with fine-grained, hi-

erarchical, instance-level 3D part information. Collecting

such fine-grained and hierarchical segmentation is challeng-

ing. The boundary between fine-grained part concepts are

more obscure than defining coarse parts. Thus, we define a

common set of part concepts by carefully examining the 3D

objects to annotate, balancing over several criteria: well-
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Dataset #Shape #Part #Category Granularity Semantics Hierarchical Instance-level Consistent

Chen et al. [5] 380 4,300 19 Fine-grained No No Yes No

MCL [37] 1,016 7,537 10 Fine-grained Yes No No Yes

Chang et al. [4] 2,278 27,477 90 Fine-grained Yes No Yes No

Yi et al. [45] 31,963 80,323 16 Coarse Yes No No Yes

PartNet (ours) 26,671 573,585 24 Fine-grained Yes Yes Yes Yes

Table 1. Comparison to the other shape part datasets.

defined, consistent, compact, hierarchical, atomic and com-

plete. Shape segmentation involves multiple levels of gran-

ularity. Coarse parts describe more global semantics and

fine-grained parts convey richer geometric and semantic de-

tails. We organize expert-defined part concepts in hierarchi-

cal segmentation templates to guide annotation.

PartNet provides a large-scale benchmark for many part-

level object understanding tasks. In this paper, we focus

on three shape segmentation tasks: fine-grained semantic

segmentation, hierarchical semantic segmentation, and in-

stance segmentation. We benchmark four state-of-the-art

algorithms on fine-grained semantic segmentation and pro-

pose three baseline methods for hierarchical semantic seg-

mentation. We propose the task of part instance segmen-

tation using PartNet. By taking advantages of rich shape

structures, we propose a method that outperforms the exist-

ing baseline algorithm by a clear margin.

PartNet contains highly structured, fine-grained and het-

erogeneous parts. Our experiments reveal that existing al-

gorithms developed for coarse and homogeneous part un-

derstanding do not work well on PartNet. First, small and

fine-grained parts, e.g. door handles and keyboard buttons,

are abundant and present new challenges for part recogni-

tion. Second, many geometrically similar but semantically

different parts require more global shape context to distin-

guish. Third, understanding the heterogeneous variation of

shapes and parts necessitate hierarchical understanding. We

expect that PartNet could serve as a better platform for part-

level object understanding in the next few years.

In summary, we make the following contributions:

• We introduce PartNet, consisting of 573,585 fine-

grained part annotations for 26,671 shapes across 24

object categories. To the best of our knowledge, it is

the first large-scale dataset with fine-grained, hierar-

chical, instance-level part annotations;

• We propose three part-level object understanding tasks

to demonstrate the usefulness of this data: fine-grained

semantic segmentation, hierarchical semantic segmen-

tation, and instance segmentation;

• We benchmark four state-of-the-art algorithms for se-

mantic segmentation and three baseline methods for

hierarchical segmentation using PartNet;

• We propose the task of part instance segmentation on

PartNet and describe a baseline method that outper-

forms the existing baseline method by a large margin.

2. Related Work

Understanding shape parts is a long-standing problem

in computer vision and graphics. Lacking large-scale an-

notated datasets, early research efforts evaluated algorithm

results qualitatively and conducted quantitative comparison

on small sets of 3D models. Attene et al. [1] compared 5

mesh segmentation algorithms using 11 3D surface meshes

and presented side-by-side qualitative comparison. Chen et

al. [5] collected 380 surface meshes with instance-level part

decomposition and proposed quantitative metrics for evalu-

ation. Concurrently, Benhabiles et al. [2] proposed similar

evaluation criteria and methodology. Kalogerakis et al. [17]

further assigned semantic labels to the segmented compo-

nents. Shape co-segmentation benchmarks [38, 11] were

proposed to study co-segmentation among similar shapes.

Recent advances in deep learning have demonstrated the

power and efficiency of data-driven methods on 3D shape

understanding tasks. ShapeNet [3] collected a large-scale

3D CAD models from online open-sourced 3D repositories,

including more than 3,000,000 models and 3,135 object cat-

egories. Yi et al. [45] took an active learning approach to

annotate the ShapeNet models with semantic segmentation

for 31,963 shapes covering 16 object categories. In their

dataset, each object is usually decomposed into 2∼5 coarse

semantic parts. PartNet provides more fine-grained part an-

notations that contains 18 parts per shape on average.

Many recent works studied fine-grained and hierarchical

shape segmentation. Yi et al. [44] leveraged the noisy part

decomposition inputs in the CAD model designs to learn

consistent shape hierarchies. Chang et al. [4] collected

27,477 part instances from 2,278 models covering 90 ob-

ject categories and studied the part properties related to lan-

guage. Wang et al. [37] collected 1,016 3D models from 10

object categories and trained neural networks for grouping

and labeling fine-grained part components. A concurrent

work [47] proposed a recursive binary decomposition net-

work for shape hierarchical segmentation. PartNet provides

a large-scale testbed with 573,585 fine-grained and hierar-

chical shape parts to support this direction of research.

There are also many previous works that attempted to un-

derstand parts by their functionality and articulation. Hu et

al. [13] constructed a dataset of 608 objects from 15 object

categories annotated with the object functionality and intro-

duced a co-analysis method to learns category-wise object

functionality. Hu et al. [12] proposed a dataset of 368 mo-
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Figure 2. PartNet dataset. We visualize example shapes with fine-grained part annotations for the 24 object categories in PartNet.

All Bag Bed Bott Bowl Chair Clock Dish Disp Door Ear Fauc Hat Key Knife Lamp Lap Micro Mug Frid Scis Stora Table TrashVase

#A 32537 186 248 519 247 8176 624 241 1005 285 285 840 287 210 514 3408 485 268 252 247 127 2639 9906 378 1160

#S 26671 146 212 464 208 6400 579 201 954 245 247 708 250 174 384 2271 453 212 212 207 88 2303 8309 340 1104

#M 771 20 18 28 20 77 25 20 26 20 19 60 19 18 57 64 20 28 20 20 20 34 91 19 28

#PS 480 4 24 12 4 57 23 12 8 8 15 18 8 3 16 83 8 12 4 13 5 36 82 15 10

#PI 573K 664 9K 2K 615 176K 4K 2K 7K 2K 3K 8K 1K 20K 3K 50K 3K 2K 839 2K 981 77K 177K 8K 5K

Pmed 14 4 33 5 2 19 5 9 8 7 12 9 4 106 7 12 8 7 3 9 8 24 15 9 4

Pmax 230 7 169 7 4 153 32 16 12 20 14 34 5 127 10 230 8 17 6 33 9 220 214 143 200

Dmed 3 1 5 2 1 3 3 3 3 3 3 3 2 1 3 5 2 3 1 3 2 4 4 2 2

Dmax 7 1 5 2 1 5 4 3 3 3 3 3 2 1 3 7 2 3 1 3 2 5 6 2 3

Table 2. PartNet statistics. Row #A, #S, #M respectively show the number of shape annotations, the number of distinct shape instances

and the number of shapes that we collect multiple annotations. Row #PS and #PI show the number of different part semantics and part

instances that we finally collect. Row Pmed and Pmax respectively indicate the median and maximum number of part instances per shape.

Row Dmed and Dmax respectively indicate the median and maximum hierarchy depth per shape, with root node as depth 0.

bility units with diverse types of articulation and learned to

predict part mobility information from a single static seg-

mented 3D mesh. In PartNet, we assign consistent seman-

tic labels that entail such functionality and articulation in-

formation for part components within each object category,

which makes PartNet useful for such research.

3. Data Annotation

The data annotation is performed in a hierarchical man-

ner. Expert-defined hierarchical part templates are provided

to guarantee labeling consistency among multiple annota-

tors. We design a single-thread question-answering 3D GUI

to guide the annotation. We hire 66 professional annotators

and train them for the annotation. The average annotation

time per shape is 8 minutes, and at least one pass of verifi-

cation is performed for each annotation to ensure accuracy.

3.1. ExpertDefined Part Hierarchy

Shape segmentation naturally involves hierarchical un-

derstanding. People understand shapes at different granu-

larities. Coarse parts convey global semantics while fine-

grained parts provide more detailed understanding. More-

over, fine-grained part concepts are more obscure to de-

fine than coarse parts. Different annotators have different

knowledge and background so that they may name parts

differently when using free-form annotation [4]. To address

these issues, we introduce And-Or-Graph-style hierarchical

templates and collect part annotations according to the pre-

defined templates.

Since there are no standard rules of thumb for defining

good templates, it is non-trivial to design good hierarchical

part templates for a category. Furthermore, the requirement

for the designed template to cover all variations of shapes

and parts, makes the problem even more challenging. Be-

low we summarize the criteria that we used to guide our

template design:

• Well-defined: Part concepts are well-delineated such

that parts are identifiable by multiple annotators;

• Consistent: Part concepts are shared and reused

across different parts, shapes and object categories;

• Compact: There is no unnecessary part concept and

part concepts are reused when it is possible;

• Hierarchical: Part concepts are organized in a taxon-

omy to cover both coarse and fine-grained parts;

• Atomic: Leaf nodes in the part taxonomy consist of

primitive, non-decomposable shapes;

• Complete: The part taxonomy covers a heterogeneous

variety of shapes as completely as possible.

Guided by these general principles, we build an And-Or-

Graph-style part template for each object category. The

templates are defined by experts after examining a broad va-

riety of objects in the category. Each template is designed in

a hierarchical manner from the coarse semantic parts to the

fine-grained primitive-level components. Figure 3 (middle)

shows the lamp template. And-nodes segment a part into

small subcomponents. Or-nodes indicate subcategorization

for the current part. The combination of And-nodes and

Or-nodes allows us to cover structurally different shapes
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Figure 3. We show the expert-defined hierarchical template for lamp (middle) and the instantiations for a table lamp (left) and a ceiling lamp

(right). The And-nodes are drawn in solid lines and Or-nodes in dash lines. The template is deep and comprehensive to cover structurally

different types of lamps. In the meantime, the same part concepts, such as light bulb and lamp shade, are shared across the different types.

using the same template while sharing as much common

part labels as possible. As shown in Figure 3 (left) and

(right), both table lamps and ceiling lamps are explained by

the same template through the first-level Or-node for lamp

types.

Despite the depth and comprehensiveness of these tem-

plates, it is still impossible to cover all cases. Thus, we

allow our annotators to improve upon the structure of the

template and to annotate parts that are out of the scope of

our definition. We also conduct template refinements to re-

solve part ambiguity after we obtain the data annotation ac-

cording to the original templates. To systematically identify

ambiguities, we reserve a subset of shapes from each class

and collect multiple human annotations for each shape. We

compute the confusion matrix among different annotators

and address data inconsistencies. For example, we merge

two concepts with high confusion scores or remove a part

if it is frequently segmented in the wrong way. We provide

more details about this in the supplementary material.

3.2. Annotation Interface

Figure 4 (a) shows our web-based annotation interface.

Based on the template hierarchy, the annotation process is

designed to be a single-thread question-answering work-

flow, traversing the template graph in a depth-first manner,

as shown in Figure 4 (b). Starting from the root node, the

annotator is asked a sequence of questions. The answers au-

tomatically construct the final hierarchical segmentation for

the current shape instance. For each question, the annotator

is asked to mark the number of subparts (And-node) or pick

one among all subtypes (Or-node) for a given part. For each

leaf node part, the annotator annotates the part geometry in

the 3D interface. To help them understand the part defi-

nition and specification, we provide rich textual definitions

and visual examples for each part. In addition, our interface

supports cross-section and visibility control to annotate the

interior structure of a 3D model.

The collected 3D CAD models often include original

mesh subgroups and part information. Some of the group-

ing information is detailed enough to determine the final

segmentation we need. Considering this, we provide the an-

notators with the original groupings at the beginning of the

annotation, to speed up annotation. The annotators can sim-

ply select multiple predefined pieces to form a part of the

final segmentation. We also provide mesh cutting tools to

split large pieces into smaller ones following [5], when the

original groupings are coarser than the desired segmenta-

tion, as shown in Figure 4 (c). The annotators draw bound-

ary lines on the remeshed watertight surface [15] and the

mesh cutting algorithm automatically splits the mesh into

multiple smaller subcomponents.

In contrast to prior work, our UI is designed for operating

directly on 3D models and collecting fine-grained and hier-

archical part instances. Compared to Yi et al. [45] where

the annotation is performed in 2D, our approach allows the

annotators to directly annotate on the 3D shapes and thus be

able to pick up more subtle part details that are hidden from

2D renderings. Chang et al. [4] proposes a 3D UI that paints

regions on mesh surfaces for part labeling. However, their

interface is limited to existing over-segmentations on part

components and does not support hierarchical annotations.

4. PartNet Dataset

The final PartNet dataset provides fine-grained and hi-

erarchical instance-level part segmentation annotation for

26, 671 shapes with 573, 585 part instances from 24 object

categories. We select categories from ShapeNetCore [3]

that 1) are mostly seen in indoor scenes; 2) contain interest-

ing intra-class variation; and 3) provide a huge number of

parts. We add 3 new object categories that are commonly

present in indoor scenes (i.e. scissors, refrigerators, and

doors) and augment 7 of the existing categories with more
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Figure 4. We show our annotation interface with its components, the proposed question-answering workflow and the mesh cutting interface.

3D models from 3D Warehouse1.

Figure 2 and Table 2 show the PartNet data and statis-

tics. More visualization and statistics are included in the

supplemental materials. Our templates define hierarchical

segmentation a median depth of 3 and maximum depth of

7. In total, we annotate 573, 585 fine-grained part instances,

with a median of 14 parts per shape and a maximum of 230.

To study annotation consistency, we also collected multiple

annotations per shape for a subset of 771 shapes.

5. Tasks and Benchmarks

We benchmark three part-level object understanding

tasks: fine-grained semantic segmentation, hierarchical se-

mantic segmentation and instance segmentation.

Data Preparation. We only consider parts that can be fully

determined by their shape geometry2. In evaluation, we ig-

nore parts that require additional information to identify,

such as glass parts on cabinet doors which requires opac-

ity to identify, and buttons on microwaves which requires

texture or color information to distinguish it. We also re-

move infrequent parts from the evaluation due to the lack of

data samples.

We sample 10, 000 points from each CAD model with

furthest point sampling and use the 3D coordinates as the

neural network inputs for all the experiments in the paper.

The proposed dataset is split into train, validation and test

sets with the ratio 70%: 10%: 20%. The shapes with multi-

ple human annotations are not used in the experiments.

5.1. Finegrained Semantic Segmentation

Recent advances of 3D semantic segmentation [30, 31,

46, 19, 35, 24, 9, 39, 40, 42, 33, 7, 26, 23] have accom-

plished promising performance in coarse-level segmenta-

tion on the ShapeNet Part dataset [3, 45]. However, few

1https://3dwarehouse.sketchup.com
2Although 3D models in ShapeNet [3] come with face normal, textures,

material and other information, there is no guarantee for the quality of such

information. Thus, we leave this as a future work.

work focus on the fine-grained 3D semantic segmentation,

due to the lack of large-scale fine-grained dataset. With the

help of the proposed PartNet dataset, researchers can now

work on this more challenging task with little overhead.

Fine-grained 3D semantic segmentation requires recog-

nizing and distinguishing small and similar semantic parts.

For example, door handles are usually small, 77 out of

10, 000 points on average in PartNet, but semantically im-

portant on doors. Beds have several geometrically similar

parts such as side vertical bars, post bars and base legs. To

recognize the subtle part details, segmentation systems need

to understand them locally, through discriminative features,

and globally, in the context of the whole shape.

Benchmark Algorithms. We benchmark four state-of-the-

art semantic segmentation algorithms: PointNet [30], Point-

Net++ [31], SpiderCNN [42] and PointCNN [26]3. Point-

Net [30] takes unordered point sets as inputs and extracts

features for shape classification and segmentation. To bet-

ter learn local geometric features, PointNet++ [31] proposes

a hierarchical feature extraction scheme. SpiderCNN [42]

extends traditional convolution operations on 2D images

to 3D point clouds by parameterizing a family of convo-

lutional filters. To organize the unordered points into la-

tent canonical order, PointCNN [26] proposes to learn X -

transformation, and applies X -convolution operations on

the canonical points.

We train the four methods on the dataset, using the de-

fault network architectures and hyperparameters described

in their papers. Instead of training a single network for all

object categories as done in most of these papers, we train

a network for each category at each segmentation level. We

input only the 3D coordinates for fair comparison4 and train

the networks until convergence. More training details are

described in the supplementary material.

3There are many other algorithm candidates: [46, 19, 35, 24, 9, 39, 40,

33, 7, 23]. We will host an online leadboard to report the performances.
4PointNet++ [31] and SpiderCNN [42] use point normals as additional

inputs. For fair comparison, we only input the 3D coordinates.
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Avg Bag Bed Bott Bowl Chair Clock Dish Disp Door Ear Fauc Hat Key Knife Lamp Lap Micro Mug Frid Scis Stora Table Trash Vase

P1 57.9 42.5 32.0 33.8 58.0 64.6 33.2 76.0 86.8 64.4 53.2 58.6 55.9 65.6 62.2 29.7 96.5 49.4 80.0 49.6 86.4 51.9 50.5 55.2 54.7

P2 37.3 − 20.1 − − 38.2 − 55.6 − 38.3 − − − − − 27.0 − 41.7 − 35.5 − 44.6 34.3 − −

P3 35.6 − 13.4 29.5 − 27.8 28.4 48.9 76.5 30.4 33.4 47.6 − − 32.9 18.9 − 37.2 − 33.5 − 38.0 29.0 34.8 44.4

Avg 51.2 42.5 21.8 31.7 58.0 43.5 30.8 60.2 81.7 44.4 43.3 53.1 55.9 65.6 47.6 25.2 96.5 42.8 80.0 39.5 86.4 44.8 37.9 45.0 49.6

P+1 65.5 59.7 51.8 53.2 67.3 68.0 48.0 80.6 89.7 59.3 68.5 64.7 62.4 62.2 64.9 39.0 96.6 55.7 83.9 51.8 87.4 58.0 69.5 64.3 64.4

P+2 44.5 − 38.8 − − 43.6 − 55.3 − 49.3 − − − − − 32.6 − 48.2 − 41.9 − 49.6 41.1 − −

P+3 42.5 − 30.3 41.4 − 39.2 41.6 50.1 80.7 32.6 38.4 52.4 − − 34.1 25.3 − 48.5 − 36.4 − 40.5 33.9 46.7 49.8

Avg 58.1 59.7 40.3 47.3 67.3 50.3 44.8 62.0 85.2 47.1 53.5 58.6 62.4 62.2 49.5 32.3 96.6 50.8 83.9 43.4 87.4 49.4 48.2 55.5 57.1

S1 60.4 57.2 55.5 54.5 70.6 67.4 33.3 70.4 90.6 52.6 46.2 59.8 63.9 64.9 37.6 30.2 97.0 49.2 83.6 50.4 75.6 61.9 50.0 62.9 63.8

S2 41.7 − 40.8 − − 39.6 − 59.0 − 48.1 − − − − − 24.9 − 47.6 − 34.8 − 46.0 34.5 − −

S3 37.0 − 36.2 32.2 − 30.0 24.8 50.0 80.1 30.5 37.2 44.1 − − 22.2 19.6 − 43.9 − 39.1 − 44.6 20.1 42.4 32.4

Avg 53.6 57.2 44.2 43.4 70.6 45.7 29.1 59.8 85.4 43.7 41.7 52.0 63.9 64.9 29.9 24.9 97.0 46.9 83.6 41.4 75.6 50.8 34.9 52.7 48.1

C1 64.3 66.5 55.8 49.7 61.7 69.6 42.7 82.4 92.2 63.3 64.1 68.7 72.3 70.6 62.6 21.3 97.0 58.7 86.5 55.2 92.4 61.4 17.3 66.8 63.4

C2 46.5 − 42.6 − − 47.4 − 65.1 − 49.4 − − − − − 22.9 − 62.2 − 42.6 − 57.2 29.1 − −

C3 46.4 − 41.9 41.8 − 43.9 36.3 58.7 82.5 37.8 48.9 60.5 − − 34.1 20.1 − 58.2 − 42.9 − 49.4 21.3 53.1 58.9

Avg 59.8 66.5 46.8 45.8 61.7 53.6 39.5 68.7 87.4 50.2 56.5 64.6 72.3 70.6 48.4 21.4 97.0 59.7 86.5 46.9 92.4 56.0 22.6 60.0 61.2

Table 3. Fine-grained semantic segmentation results (part-category mIoU %). Algorithm P, P+, S and C refer to PointNet [30],

PointNet++ [31], SpiderCNN [42] and PointCNN [26], respectively. The number 1, 2 and 3 refer to the three levels of segmentation:

coarse-, middle- and fine-grained. We put short lines for the levels that are not defined.

Figure 5. Qualitative results for semantic segmentation. The

top row shows the ground-truth and the bottom row shows the

PointCNN prediction. The black points indicate unlabeled points.

Evaluation and Results. We evaluate the algorithms at

three segmentation levels for each object category: coarse-,

middle- and fine-grained. The coarse level approximately

corresponds to the granularity in Yi et al. [45]. The fine-

grained level refers to the segmentation down to leaf levels

in the segmentation hierarchies. For structurally deep hier-

archies, we define a middle level in between. Among 24

object categories, all of them have the coarse level, while 9

have the middle level and 17 have the fine level. Overall,

we define 50 segmentation levels for 24 object categories.

In Table 3, we report semantic segmentation results at

multiple levels of granularity on PartNet. We use the mean

Intersection-over-Union (mIoU) scores as the evaluation

metric. After removing unlabeled ground-truth points, for

each object category, we first calculate the IoU between the

predicted point set and the ground-truth point set for each

semantic part category across all test shapes. Then, we av-

erage the per-part-category IoUs to compute the mIoU for

the object category. We further calculate the average mIoU

across different levels for each object category and finally

report the average cross all object categories.

Unsurprisingly, performance for all four algorithms drop

by a large margin from the coarse level to the fine-grained

level. Figure 5 shows qualitative results from PointCNN.

The method does not perform well on small parts, such as

the door handle on the door example, and visually similar

parts, such as stair steps and the horizontal bars on the bed

frame. How to learn discriminative features that better cap-

ture both local geometry and global context for these issues

would be an interest topic for future works.

5.2. Hierarchical Semantic Segmentation

Shape segmentation is hierarchical by its nature. We

study hierarchical semantic segmentation that predicts se-

mantic part labels in the entire shape hierarchies that cover

both coarse- and fine-grained part concepts. A key problem

towards hierarchical segmentation is how to leverage the

rich part relationships on the given shape templates in the

learning procedure. Recognizing a chair base as a swivel

base significantly reduces the solution space for detecting

more fine-grained parts such as central supporting bars, star-

base legs and wheels. On the other hand, the lack of a chair

back increases the possibility that the object is a stool. In

contrast to Sec. 5.1 where we consider the problem at each

segmentation level separately, hierarchical segmentation re-

quires a holistic understanding on the entire part hierarchy.

Benchmark Algorithms. We propose three baseline meth-

ods to tackle hierarchical segmentation: bottom-up, top-

down and ensemble. The bottom-up method considers only

the leaf-node parts during training and groups the predic-

tion of the children nodes to parent nodes as defined in the

hierarchies in bottom-up inference. The top-down method

learns a multi-labeling task over all part semantic labels

on the tree and conducts a top-down inference by classi-

fying coarser-level nodes first and then finer-level ones. For

the ensemble method, we train flat segmentation at multi-

ple levels as defined in Sec. 5.1 and conduct joint inference

by calculating the average log-likelihood scores over all the

root-to-leaf paths on the tree. We use PointNet++ [31] as the
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Avg Bed Bott Chair Clock Dish Disp Door Ear Fauc Knife Lamp Micro Frid Stora Table Trash Vase

Bottom-Up 51.2 40.8 56.1 47.2 38.3 61.5 84.1 52.6 54.3 63.4 52.3 36.8 48.2 41.0 46.8 38.3 53.6 54.4

Top-Down 50.8 41.1 56.2 46.5 34.3 54.5 84.7 50.6 59.5 61.4 55.6 37.1 48.8 41.6 45.2 37.0 53.5 55.6

Ensemble 51.7 42.0 54.7 48.1 44.5 58.8 84.7 51.4 57.2 61.9 51.9 37.6 47.5 41.4 47.3 44.0 52.8 53.1

Table 4. Hierarchical segmentation results (part-category mIoU %). We present the hierarchical segmentation performances for three

baseline methods: bottom-up, top-down and ensemble. We conduct experiments on 17 out of 24 categories with tree depth bigger than 1.

backbone network5 in this work. Note that methods listed

in Sec. 5.1 can also be used. More architecture and training

details are described in the supplementary material.

Evaluation and Results. Table 4 demonstrates the perfor-

mances of the three baseline methods. We calculate mIoU

for each part category and compute the average over all the

tree nodes as the evaluation metric. The experimental re-

sults show that the three methods perform similarly with

small performance gaps. The ensemble method performs

slightly better over the other two, especially for the cate-

gories with rich structural and sub-categorization variation,

such as chair, table and clock.

The bottom-up method only considers leaf-node parts in

the training. Although the template structure is not directly

used, the parent-node semantics of leaf nodes are implicitly

encoded in the leaf-node part definitions. For example, the

vertical bars for chair backs and chair arms are two different

leaf nodes. The top-down method explicitly leverages the

tree structures in both the training and the testing phases.

However, prediction errors are accumulated through top-

down inference. The ensemble method decouples the hier-

archical segmentation task into individual tasks at multiple

levels and performs joint inference, taking the predictions

at all levels into consideration. Though demonstrating bet-

ter performances, it has more hyper-parameters and requires

longer training time for the multiple networks.

5.3. Instance Segmentation

The goal of instance segmentation is to detect every in-

dividual part instance and segment it out from the context

of the shape. Many applications in computer graphics, vi-

sion and robotics, including manufacturing, assembly, in-

teraction and manipulation, require the instance-level part

recognition. Compared to detecting objects from scenes,

parts on objects usually have stronger and more intertwined

structural relationships. The existence of many visually-

similar but semantically-different parts makes the part de-

tection problem challenging. To the best of our knowl-

edge, this work is the first to provide a large-scale shape

part instance-level segmentation benchmark.

5In our experiments, PointNet++ and PointCNN give the top ranked

performance under two different evaluation metrics: part-category mIoU

(Table 3) and shape mIoU (Table 2 in supplementary material). We choose

PointNet++ because previous works on ShapeNet mostly use shape mIoU

as the metric. We reported part-category mIoU in the main paper to make

it consistent with mIoU and mAP evaluation metrics used in ScanNet [6].

PointNet++ ...

Semantic 
Labeling

Instance
Mask 

0.72  0.93  ...  0.89  0.69
Instance

Confidence 

Figure 6. The proposed method for instance segmentation.

Given a shape point cloud as input, the task of part in-

stance segmentation is to provide several disjoint masks

over the entire point cloud, each of which corresponds to

an individual part instance on the object. We adopt the part

semantics from the defined segmentation levels in Sec. 5.1.

The detected masks should have no overlaps, but they to-

gether do not necessarily cover the entire point cloud, as

some points may not belong to any part of interests.

Benchmark Algorithms. We propose a part instance seg-

mentation network (Figure 6) inspired by [32] to address in-

stance segmentation. We use PointNet++ [31] as the back-

bone network for extracting features and predicting both

semantic segmentation for each point and K instance seg-

mentation masks {ŷi ∈ [0, 1]N |i = 1, 2, · · · ,K} over the

input point cloud of size N . Moreover, we train a sepa-

rate mask ŷother for the points without semantic labels in

the ground-truth. A softmax activation layer is applied to

encourage the mutual exclusiveness among different masks

so that ŷ1 + ŷ2 + · · · + ŷK + ŷother = 1. To train the

network, we apply the Hungarian algorithm [22] to find a

bipartite matching M : {i → M(i)|i = 1, 2, · · · , T} be-

tween the prediction masks {ŷi|i = 1, 2, · · · ,K} and the

ground-truth masks {yi|i = 1, 2, · · · , T}, and regress each

prediction ŷM(t) to the matched ground-truth mask yt. We

employ a relaxed version of IoU [21] defined as IoU(p, q) =
〈p, q〉/(‖p‖1+ ‖q‖1−〈p, q〉), as the metric for the Hungar-

ian algorithm. A separate branch is trained to predict confi-

dence scores for the predicted masks {Ci|i = 1, 2, · · · ,K}.

The loss function is defined as L = Lsem + λinsLins +
λotherLother + λconfLconf + λl21Ll21, combining five

terms: 1) a cross-entropy semantic segmentation loss

Lsem = −
∑N

i=1

∑C

k=1 tik log(sik) where C is the number

of part semantics, ti is a one-hot vector for the ground-truth

part semantics of point i and si is the post-softmax scores of

point i predicted by the semantic branch; 2) an IoU loss for

mask regression Lins =
∑T

i=1 IoU(ŷM(i), yi); 3) an IoU

loss for the unlabeled points Lother = IoU(ŷother, yother);

4) a prediction-confidence loss Lconf =
∑T

i=1(CM(i) −
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Avg Bag Bed Bott Bowl Chair Clock Dish Disp Door Ear Fauc Hat Key Knife Lamp Lap Micro Mug Frid Scis Stora Table Trash Vase

S1 55.7 38.8 29.8 61.9 56.9 72.4 20.3 72.2 89.3 49.0 57.8 63.2 68.7 20.0 63.2 32.7 100 50.6 82.2 50.6 71.7 32.9 49.2 56.8 46.6

S2 29.7 − 15.4 − − 25.4 − 58.1 − 25.4 − − − − − 21.7 − 49.4 − 22.1 − 30.5 18.9 − −

S3 29.5 − 11.8 45.1 − 19.4 18.2 38.3 78.8 15.4 35.9 37.8 − − 38.3 14.4 − 32.7 − 18.2 − 21.5 14.6 24.9 36.5

Avg 46.8 38.8 19.0 53.5 56.9 39.1 19.3 56.2 84.0 29.9 46.9 50.5 68.7 20.0 50.7 22.9 100 44.2 82.2 30.3 71.7 28.3 27.5 40.9 41.6

O1 62.6 64.7 48.4 63.6 59.7 74.4 42.8 76.3 93.3 52.9 57.7 69.6 70.9 43.9 58.4 37.2 100 50.0 86.0 50.0 80.9 45.2 54.2 71.7 49.8

O2 37.4 − 23.0 − − 35.5 − 62.8 − 39.7 − − − − − 26.9 − 47.8 − 35.2 − 35.0 31.0 − −

O3 36.6 − 15.0 48.6 − 29.0 32.3 53.3 80.1 17.2 39.4 44.7 − − 45.8 18.7 − 34.8 − 26.5 − 27.5 23.9 33.7 52.0

Avg 54.4 64.7 28.8 56.1 59.7 46.3 37.5 64.1 86.7 36.6 48.5 57.1 70.9 43.9 52.1 27.6 100 44.2 86.0 37.2 80.9 35.9 36.4 52.7 50.9

Table 5. Instance segmentation results (part-category mAP %, IoU threshold 0.5). Algorithm S and O refer to SGPN [36] and our

proposed method respectively. The number 1, 2 and 3 refer to the three levels of segmentation: coarse-, middle- and fine-grained.

GT

SGPN

Ours

Figure 7. Qualitative results for instance segmentation. Our

method produces more robust and cleaner results than SGPN.

Figure 8. Learned instance correspondences. The corresponding

parts are marked with the same color.

IoU(ŷM(i), yi))
2; and 5) a l2,1-norm regularization term

Ll21 =
∑K

i=1‖ŷi‖2 + ‖ŷother‖2 to encourage unused pre-

diction masks to vanish [34]. We use N = 10, 000, K =
200, λins = 1.0, λother = 1.0, λconf = 1.0, λl21 = 0.1.

We compare the proposed method with SGPN [36],

which learns similarity scores among all pairs of points and

detect part instances by grouping points that share similar

features. We follow most of the default settings and hyper-

parameters described in their paper. We first pre-train Point-

Net++ semantic segmentation branch and then fine-tune it

for improving the per-point feature similarity matrix and

confidence maps. We use margin values of 1 and 2 for the

double-hinge loss as suggested by the authors of [36], in-

stead of 10 and 80 in the original paper. We feed 10,000

points to the network at a time, and use a batch-size of 32

in the pre-training and 1 in the fine-tuning.

Evaluation and Results. Table 5 reports the per-category

mean Average Precision (mAP) scores for SPGN and our

proposed method. For each object category, the mAP score

calculates the AP for each semantic part category across all

test shapes and averages the AP across all part categories.

Finally, we take the average of the mAP scores across differ-

ent levels of segmentation within each object category and

then report the average over all object categories. We com-

pute the IoU between each prediction mask and the closest

ground-truth mask and treat a prediction mask as a true pos-

itive when the IoU is larger than 0.5.

Figure 7 shows qualitative comparisons for our proposed

method and SGPN. Our method produces more robust and

cleaner instance predictions. After learning for point fea-

tures, SGPN has a post-processing stage that merges points

with similar features as one component. This process in-

volves many hyper-parameter tuning. Even though most

parameters are automatically inferred from the validation

data, SPGN still suffers from predicting partial or noisy in-

stances in case of bad thresholding. Our proposed method

learns structural priors within each object category that is

more instance-aware and robust in predicting complete in-

stances. We observe that training for a set of disjoint masks

across multiple shapes gives us consistent part instances.

We show the learned part correspondence in Figure 8.

6. Conclusion

We introduce PartNet: a large-scale benchmark for fine-

grained, hierarchical, and instance-level 3D shape segmen-

tation. It contains 573, 585 part annotations for 26, 671
ShapeNet [3] models from 24 object categories. Based on

the dataset, we propose three shape segmentation bench-

marks: fine-grained semantic segmentation, hierarchical se-

mantic segmentation and instance segmentation. We bench-

mark four state-of-the-art algorithms for semantic segmen-

tation and propose a baseline method for instance segmen-

tation that outperforms the existing baseline method.
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