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Abstract

It is still challenging to build an AI system that can per-

form tasks that involve vision and language at human level.

So far, researchers have singled out individual tasks sepa-

rately, for each of which they have designed networks and

trained them on its dedicated datasets. Although this ap-

proach has seen a certain degree of success, it comes with

difficulties of understanding relations among different tasks

and transferring the knowledge learned for a task to others.

We propose a multi-task learning approach that enables to

learn vision-language representation that is shared by many

tasks from their diverse datasets. The representation is hier-

archical, and prediction for each task is computed from the

representation at its corresponding level of the hierarchy.

We show through experiments that our method consistently

outperforms previous single-task-learning methods on im-

age caption retrieval, visual question answering, and visual

grounding. We also analyze the learned hierarchical rep-

resentation by visualizing attention maps generated in our

network.

1. Introduction

Since the recent successes of deep learning on single

modality tasks, multi-modal tasks lying on the intersection

of vision and language, such as image captioning [20, 38],

visual question answering (VQA) [13, 3], visual grounding

[29] etc., have attracted increasing attention in the related

fields. Despite the fact that each of these tasks has basically

been studied independently of others, there must be close

connections among them. For instance, each task may oc-

cupy a different level in a hierarchy of sub-tasks compris-

ing the cognitive function associated with vision and lan-

guage. To gain deeper understanding of such hidden re-

lations among these vision-language tasks, we think that

multi-task learning of these tasks will be a promising di-

rection of research.

Although we have seen significant progresses in multi-

task learning of unimodal tasks of vision [17, 30] or lan-

guage [24, 1, 33] so far, there has been only a lim-

ited amount of progress in multi-task learning of vision-

language tasks. This may be attributable to the diversity of

these tasks. In addition to differences in inputs and outputs

of the tasks, their level of complexity differs, too. Even

though these tasks share some structures in common, it is

unclear how to learn them in the framework of multi-task

learning.

A solution to this difficulty is to create and use a dataset

designed for multi-task learning, where multiple objectives

are given to identical inputs. Indeed, recent studies follow

this approach, in which they have gained early successes by

joint training of different vision-language tasks using mul-

tiple objectives, such as answer and question generation for

VQA [18], and caption and scene graph generation for im-

age captioning [19]. However, this approach cannot be em-

ployed when such dedicated datasets are not available. It

may be impossible to create such datasets for arbitrary com-

binations of vision-language tasks. To do this, we need to

limit the range of tasks, which makes it hard for the learned

results to generalize to other tasks or datasets.

In this paper, aiming to resolve these issues, we propose

a framework for joint learning of multiple vision-language

tasks. Our goal is to enable to learn vision-language rep-

resentation that is shared by many tasks from their diverse

data sources. To make this possible, we employ Dense Co-

attention layers, which were developed for VQA and shown

to perform competitively with existing methods [27]. Using

a stack of Dense Co-attention layers, we can gradually up-

date the visual and linguistic features at each layer, in which

their fine-grained interaction is considered at the level of in-

dividual image regions and words. We utilize this property

to learn hierarchical vision-language representation such

that each individual task takes the learned representation at

a different level of the hierarchy corresponding to its com-

plexity. We design a network consisting of an encoder for

computing shared hierarchical representation and multiple

task-specific decoders for making prediction from the rep-

resentation; see Fig. 1. This design enables multi-task learn-

ing from diverse data sources; to be rigorous, we train the

same network alternately on each task/dataset based on a

scheduling algorithm.
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We evaluate this method on three vision-language tasks,

image caption retrieval, visual question answering, and

visual grounding, using popular datasets, Flickr30K cap-

tions [38], MS-COCO captions [20], VQA 2.0 [13], and

Flickr30K-Entities [29]. The results show that our method

outperforms previous ones that are trained on individual

tasks and datasets. We also visualize the internal behaviours

of the task-specific decoders to analyze effects of joint

learning of the multiple tasks.

2. Related Work

Vision-language representation learning Recently,

studies of multi-modal tasks of vision and language

have made significant progress, such as image caption-

ing [2, 23], visual question answering [27, 34], visual

grounding [37, 29], image caption retrieval [26, 15], and

visual dialog [7]. In the last few years, researchers have

demonstrated the effectiveness of learning representations

shared by the two modalities in a supervised fashion.

However, these studies deal with a single task at a time.

Transfer learning A basic method of transfer learning in

deep learning is to train a neural network for a source task

and use it in some ways for a target task. This method

has been successful in a wide range of problems in com-

puter vision and natural language processing. For multi-

modal vision-language problems, early works explored sim-

ilar approaches that used pretrained models trained on some

source tasks. Plummer et al. [29] proposed to use a pre-

trained network trained on a visual grounding task to enrich

the shared representational space of images and captions,

improving accuracy of image caption retrieval. Lin et al.

[21] proposed to use pretrained models of VQA and CQA

(caption Q&A); they compute answer predictions for multi-

ple questions and then treat them as features of an image and

a caption, computing relevance between them. In this study,

instead of transferring knowledge from a source task to a

target task in a single direction (e.g., via pretrained mod-

els), we consider a multi-task learning framework in which

learning multiple tasks will be mutually beneficial to each

individual task. This is made possible by the proposed net-

work and its training methodology; it suffices only to train

our network for individual tasks with their loss functions

and supervised data.

Multi-task learning of vision-language tasks Since its

introduction [5], multi-task learning has achieved many suc-

cesses in several areas including computer vision and nat-

ural language processing. However, there have been only

a few works that explored joint learning of multiple multi-

modal tasks of vision and language. Li et al. [19] proposed

a method for learning relations between multiple regions

in the image by jointly refining the features of three dif-

ferent semantic tasks, scene graph generation, object detec-

tion, and image/region captioning. Li et al. [18] showed

that joint training on VQA and VQG (visual question gen-

eration) contributes to improve VQA accuracy and also un-

derstanding of interactions among images, questions, and

answers. Although these works have demonstrated the po-

tential of multi-task learning for the vision-language tasks,

they strongly rely on the availability of the datasets provid-

ing supervision over multiple tasks, where an input is shared

by all the tasks while a different label is given to it for each

task.

3. Learning Vision-Language Interaction

3.1. Problem Formulation

We consider multiple vision-language tasks, in each of

which an output O is to be estimated from an input pair of

I and S, where I is an image and S is a sentence. The input

pair I and S have the same formats for all the tasks (with

differences in the interpretation of S for different tasks),

whereas the output O will naturally be different for each

task. For example, in VQA, O is a set of confident scores

of answers to the input question S in a predefined answer

set; in image caption retrieval, O is a set of binary values

indicating the relevance of the input caption S; in visual

grounding, O is a set of binary variables specifying a set

of image regions corresponding to the phrases in the input

sentence S.

The input image is represented by a set of region fea-

tures, which we denote by I = [i1, ..., iT ]; in our exper-

iments, we use a bag of region features from a pretrained

Faster-RCNN [34]. The input sentence is represented by a

sequence S = [s1, ..., sN ] of word features, which are ob-

tained by first computing GloVe embedding vectors [28] of

the input words and then inputting them to a two-layer bidi-

rectional LSTM.

An overview of the proposed network architecture is

shown in Fig. 1. It consists of a single encoder shared by

all the tasks and multiple task-specific decoders. We will

describe these two components below.

3.2. Shared Encoder

To construct the shared encoder, we employ the Dense

Co-attention layer [27]. We conjecture that different tasks

require different levels of vision-language fusion. Thus, we

stack multiple Dense Co-attention layers to extract hierar-

chical, fused features of the input image I and sentence S.

We attach a decoder for each task to the layer that is the best

fit for the task in terms of the fusion hierarchy, as shown in

Fig. 1.

Starting with S0 = S and I0 = I , the shared encoder

incrementally updates the language and vision features at
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Figure 1: The proposed network consists of a shared en-

coder and task-specific decoders. The shared encoder is a

stack of L Dense Co-attention layers and computes hierar-

chical representation of the input sentence and image. Each

of M task-specific decoders receives one intermediate-layer

representation to compute prediction for its task.

each Dense Co-attention layer as

(Sl, Il) = DCLl(Sl−1, Il−1), (1)

where Sl = [sl,1, ..., sl,N ] ∈ R
d×N , Il = [il,1, ..., il,T ] ∈

R
d×T , Sl−1 = [sl−1,1, ..., sl−1,N ] ∈ R

d×N , and Il−1 =
[il−1,1, ..., il−1,T ] ∈ R

d×T ; DCLl indicates the input-

output function realized by the l-th Dense Co-attention

layer. In each Dense Co-attention layer, two attention maps

are generated in a symmetric fashion, i.e., the one over

image regions conditioned on each sentence word and the

other over sentence words conditioned on each image re-

gion, where multiplicative attention is employed. The gen-

erated attention maps are then applied to Il−1 and Sl−1 to

yield Îl−1 and Ŝl−1, respectively. Finally, the original and

attended features of image and sentence are fused by first

concatenating them and then applying a linear transform

followed by ReLU. This is done for sentence feature and

image feature, respectively, as

sl,n = ReLU

(

WSl

[

sl−1,n

îl−1,n

]

+ bSl

)

+ sl−1,n, (2)

il,t = ReLU

(

WIl

[

il−1,t

ŝl−1,t

]

+ bIl

)

+ il−1,t, (3)

where WSl
∈ R

d×2d, bSl
∈ R

d, WIl ∈ R
d×2d and bIl ∈ R

d

are learnable parameters.

3.3. Task­specific Decoders

As shown in Fig. 1, we design a task-specific decoder

for each task and attach it to the layer of the shared encoder

selected for the task. Letting l be the index of this layer, the

decoder receives (Sl, Il) and produces the final output O for

this task. We explain below its design for each of the three

tasks considered in this study.

3.3.1 Image Caption Retrieval

In this task, we calculate the relevant score for the input

pair (I , S). The decoder for this task consists of two

summary networks and a scoring layer. Let lR be the in-

dex of the layer of the shared encoder to which this de-

coder is attached. The first summary network computes

a vector vIlR ∈ R
d that summarizes the image features

IlR = [ilR,1, . . . , ilR,T ] of T regions. The second summary

network computes vSlR
∈ R

d that summarizes the sentence

features SlR = [slR,1, . . . , slR,N ] of N words.

The two summary networks have the same architecture.

Let us take the image summary network for explanation.

It consists of a two-layer feedforward network that yields

attention maps over the T image regions and a mechanism

that applies the attention maps to IlR to obtain the summary

vector vIlR .

The feedforward network has d hidden units with ReLU

non-linearity, which receives the image feature of a single

region and outputs K scores. To be specific, denoting the

feedforward network by MLPI , it maps the feature vector

of each region t(= 1, . . . , T ) to K scores as

cIt = [cI1,t, . . . , c
I
K,t] = MLPI(ilR,t), t = 1, . . . , T. (4)

These scores are then normalized by softmax across the

T regions to obtain K parallel attention maps over the T
regions, which are averaged to produce the final attention

map [αI
1, . . . , α

I
T ]; more specifically,

αI
t =

1

K

K
∑

k=1

exp(cIk,t)
∑T

t=1 exp(c
I
k,t)

, t = 1, . . . , T. (5)

The summary vector vIlR is the weighted sum of the image

feature vectors using this attention weights, i.e.,

vIlR =

T
∑

t=1

αI
t ilR,t, (6)

As mentioned above, we generate K parallel attention maps

and average them to obtain a single attention map. This is

to capture more diverse attention distribution.

We follow the same procedure to compute the summary

vector vSlR
, where a two-layer feedforward network MLPS

generating K parallel attention maps over N word features

SlR = [slR,1, . . . , slR,N ] is used. Using the two summary

vectors vIlR and vSlR
∈ R

d thus obtained, the scoring layer

computes the relevant score of an image-caption pair (I, S)
as

score(I, S) = σ(v⊤IlR
WvSlR

), (7)

where σ is the logistic function and W ∈ R
d×d is a learn-

able weight matrix.
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3.3.2 Visual Question Answering

In this task, we compute the scores of a set of predefined an-

swers for the input image-question pair. Let lQ be the index

of the layer to which the decoder is attached. We employ

the same architectural design as in the decoder for image

caption retrieval to compute the summary vectors vIlQ and

vSlQ
from the input features, i.e., SlQ = [slQ,1, . . . , slQ,N ]

and IlQ = [ilQ,1, . . . , ilQ,T ]. To obtain these summary vec-

tors, two summary networks, each of which is two-layer

feedforward network with d hidden units and ReLU nonlin-

earity, are used to compute K attention maps, and then they

are applied to the input features.

Following [27], we compute scores for a set of the pre-

defined answers by using a two-layer feedforward network

having d hidden units with ReLU non-linearity and output

units for the scores; the output units employ the logistic

function for their activation function. Denoting the network

by MLP, the scores are calculated as

(scores of answers) = σ
(

MLP
(

[

vIlQ
vSlQ

]

)

)

. (8)

3.3.3 Visual Grounding

This is a task in which given an image and a phrase (usually

one contained in a caption describing the image), we want

to identify the image region corresponding to the phrase.

Previously proposed approaches attempt to learn to score

each region-phrase pair separately; any context in the cap-

tion is not taken into account, or any joint inference about

global interaction between all phrases in the caption is not

performed. We believe that context is important for under-

standing a local phrase in a sentence, needless to mention

its necessity for higher-level tasks.

Let lG be the index of the layer of the shared en-

coder connecting to the decoder for this task. Given P =
[(b1, e1), ..., (bH , eH)] where (bh, eh) indicates the start and

end indexes of the h-th phrase in the input N word caption

(1 ≤ bh ≤ eh ≤ N ), we compute the feature ph ∈ R
d for

the h-th phrase by pooling the word features in the index

range of [bh : eh] as

ph = AvgPooling(SlG [bh : eh]). (9)

Here we use average pooling to produce a fixed-size vec-

tor representation of a phrase ph. This can also be seen as

computing an attended feature using an attention map with

equal weights on words in the phrase and zero weights on

other words.

We then compute the score for a pair of a phrase ph ∈ R
d

and an image region ilG,t ∈ R
d as

score(ph, it) = σ
(

p⊤hWilG,t

)

, (10)

where σ is the logistic function and W ∈ R
d×d is a learn-

able weight matrix.

4. Training on Multiple Tasks

We train the proposed network on the above multiple

tasks. Considering their diversity, we use a strategy to train

it on a single selected task at a time and iterate this by

switching between the tasks. (Note that we cannot simulta-

neously train the network on these tasks by minimizing the

sum of their losses, because the inputs differ among tasks.)

4.1. Task­switching schedule

It is essential for which task and how many times we

update the parameters of the network. In this study, we em-

ploy two strategies. One is a curriculum learning approach

that starts from a single task and increases the number of

tasks one by one, i.e., training first on single tasks, then

on pairs of tasks, and finally on all tasks. The other is a

scheduling method when training more than one task in this

curriculum. To be specific, we employ the strategy of peri-

odical task switching as in [8] but with different iterations

of parameter updates for each task. Following [24], we up-

date the network parameters for i-th task for Cαi iterations

before switching to a new task, where C is the number of

iterations in an updating cycle that we specify; αi is deter-

mined as explained below. Algorithm 1 shows the entire

procedure. More details are given in the supplementary ma-

terial.

4.2. Choosing Layers Best Fit for Tasks

We need to decide which layer l(i) of the shared encoder

is the best fit for each task i. We pose it as a hyperparam-

eter search, in which we also determine other parameters

for training each task i, i.e., # stepi (step size for learn-

ing rate decay), the number of iteration # iteri (used to de-

termine αi), and the batch size bsi. To choose them, we

conduct a grid search by training the network on each indi-

vidual task. After that, these hyperparameters are used in

joint learning of the tasks. Denoting the number of tasks

to be learned by M ′(= 1, 2 or 3), the step size of training

is given by # step =
∑M ′

i=1 # stepi; the total number of it-

erations is # iter =
∑M ′

i=1 # iteri; and αi is determined as

αi = # iteri/# iter. The batch size bsi and layer l(i) de-

termined as above are fixed in all the subsequent training

processes.

5. Experiments

We conducted a series of experiments to test the effec-

tiveness of the proposed approach.
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Algorithm 1: Training the proposed network on M ′

tasks. El represents a sub-network of the shared en-

coder up to l-th layer (l = 1, . . . , L); D1, . . . ,DM ′ are

M ′ task-specific decoders; θ indicates their parameters.

l(i) is the index of the layer to which the decoder for i-
th task is attached. We represent the output of this layer

for an input x as El(i).

1 num cycle = ⌊ # iter
C
⌋

2 S =
(

[1] ∗ Cα1 + ...+ [M ′] ∗ CαM ′

)

∗ num cycle

3 # Array operation in Python style:

4 # [1] * 3 + [2] * 2 = [1, 1, 1, 2, 2]

5 for task i in S do

6 1: Sample pairs of an input and output: x,y ∼ Pi

7 2: hix ← El(i)(x)
8 3: Output prediction ŷ← Di(hix)
9 4: θ ← Adam(∇θL(y, ŷ))

10 end

5.1. Datasets and Evaluation Methods

Image Caption Retrieval We use two datasets for this

task, MS-COCO and Flickr30k. MS-COCO consists of

82,783 train and 40,504 val images. Following the standard

procedure [16], we use the 1,000 val images and the 1,000

or 5,000 test images, which are selected from the original

40,504 val images. We use all of the 82,783 train images

for training. Flickr30k consists of 31,783 images collected

from Flickr. Following the standard procedure [16], we split

them into train, val, and test sets; val and test contains 1,000

images for each and train contains all the others. We report

Recall@K(K = 1, 5, 10) (i.e., recall rates at the top 1, 5,

and 10 results).

Visual Question Answering We use VQA 2.0 [13],

which is the most popular and the largest (as of now) dataset

for this task. It contains questions and answers for images

of MS-COCO. There are 443,757 train, 214,354 val, and

447,793 test questions, respectively. The train questions

are for train images of MS-COCO and val and test ques-

tions are for val and test images of MS-COCO respectively.

Following the standard approach [34], we choose correct

answers appearing more than 8 times to form the predefined

answer pool. We use the accuracy metric presented in the

original paper [3] in all the experiments.

Visual Grounding For visual grounding task, we evalu-

ate our approach on Flickr30k Entities [29], which contains

244,035 annotations to the image-caption pairs (31,783 im-

ages and 158,915 captions) of Flickr30k. It provides corre-

spondence between phrases in a sentence and boxes in an

image that represent the same entities. The train, val and

test are splitted as in the ICR task. We use 1,000 images

for val and test splits each and the rest for train split follow-

ing [29]. The task is to localize the corresponding box(es)

to each of the given phrases in a sentence. As proposed in

[29], we consider a predicted region to be a correct match

with a phrase if it has IOU ≥ 0.5 with the ground truth

bounding box for that phrase. By treating the phrase as the

query to retrieve the regions from the input image, we report

Recall@K(K = 1, 5, 10) similar to image caption retrieval

(the percentage of queries for which a correct match has

rank of at most K).

Avoiding Contamination of Training Samples As we

train the network by alternately switching the tasks, we need

to make sure that there is no contamination between training

and testing sets for all the tasks. To make a fair comparison

with previous studies of VQA, we need to train the network

using both train and val questions of VQA 2.0, as was done

in the previous studies. However, if we use val questions in

our joint learning framework, our network (i.e., the shared

encoder) can see the val set of MS-COCO, resulting in con-

tamination of training samples. To avoid this, we use the

following procedure: i) we first train the network using all

the train sets for the three tasks and test it on the test sets

for ICR and VG; ii) we then train the network (from scratch)

using the train sets for ICR and VG and train+val sets for

VQA and test it on the test sets for VQA. This procedure

was employed in the experiments of Sec. 5.4, but not em-

ployed in the experiments of Sec. 5.3, because evaluation

was done only on val sets for all the tasks.

5.2. Optimal Layers and Training Parameters

As explained in Sec. 4.2, we first train our network on

each individual task to find the layers fit for each task along

with other training parameters. The results are: lR = 3 (im-

age caption retrieval), lQ = 5 (VQA), and lG = 2 (visual

grounding). The training parameters were determined ac-

cordingly; see the supplementary material for details. We

freeze all these parameters throughout all the experiments.

We note here the training method used in all the exper-

iments. We used the Adam optimizer with the parameters

α = 0.001, β1 = 0.9, β2 = 0.99, and α decay = 0.5. We

employed a simple training schedule; we halve the learning

rate by “α decay” after each “# step” or step size, which

are determined above. All the weights in our network were

initialized by the method of Glorot et al. [12]. Dropout is

applied with probability of 0.3 and 0.1 over FC layers and

LSTM, respectively. The dimension d of the feature space

is set to 1024.

5.3. Effects of Joint Learning of Multiple Tasks

To evaluate the effectiveness of joint learning, we first

trained the model on all possible combinations out of the
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is [anyone] riding [the bike] is [anyone] riding [the bike] what is [the woman] riding what is [the woman] riding

is anyone riding the bike

matching score: 3.573e-07

is anyone riding the bike

matching score: 0.387

what is the woman riding

matching score: 0.083

what is the woman riding

matching score: 0.008

is anyone riding the bike

Pred: no, Ans: no

is anyone riding the bike

Pred: yes, Ans: yes

what is the woman riding

Pred: snowboard, Ans: snowboard

what is the woman riding

Pred: skis, Ans: skis

Figure 2: Example visualizations of behaviours of our network for two complementary image-question pairs (i.e., samples

with the same question but different images and answers) from VQA 2.0 dataset. The three rows (from top to bottom) show

the behaviours of the VG, ICR, and VQA decoders, respectively. For VG, top-1 regions corresponding to the entities (i.e.,

NP chunks) in the questions are shown. For ICR and VQA, the attention maps generated in their decoders are shown; the

brightness of image pixels and the redness of words indicate the attention weights.

three tasks and evaluated their performances. To be specific,

for each combination of tasks, we trained our model on their

train split(s) and calculating its performance for each of the

trained tasks on its val split. When training on two or more

tasks, we used the method explained in Sec. 4.1.

Table 1 shows the results. It is observed that the joint

learning of two tasks achieves better or comparable perfor-

mances than the learning on a single task; and that the joint

learning of all the three tasks yields the best performance.

These confirm the effectiveness of our method for multi-

task learning.

For ICR, we use two datasets, MS-COCO and Flickr30k;

the former is about three times larger than the latter. We

evaluated how performances vary between when using the

former and when using the latter. Table 2 shows the results.

It is observed that the joint learning with VQA and VG is

more beneficial for the smaller dataset (Flickr30k) than the

larger one (MS-COCO), e.g., from 67.16 to 72.07 vs. from

69.05 to 70.43 (ICR: image annotation). On the other hand,

the improvements of the other tasks (VQA and VG) due to

the joint training with ICR are smaller for Flickr30k than

for MS-COCO, e.g., from 65.50 to 66.09 vs. 65.50 to 66.35

(VQA).
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Table 1: Performances for different combinations of the

three tasks, VQA, VG(visual grounding), and ICR(image

caption retrieval). Accuracy (Acc) is reported for VQA, and

Recall@1 (R@1) is reported for VG and ICR; two numbers

of ICR are image annotation (upper) and image retrieval

(lower), respectively. MS-COCO dataset is used for ICR.

Task VQA (Acc) ICR (R@1) VG (R@1)

VQA 65.50 - -

ICR -
69.05

-
56.47

VG - - 58.09

VQA + ICR 66.24
69.52

-
56.74

VQA + VG 65.85 - 58.07

ICR + VG -
69.23

58.28
57.40

VQA + ICR
66.35

70.43
58.26

+ VG 57.50

Table 2: Effects of joint training when using different image

caption retrieval datasets, MS-COCO and Flickr30k. Single

means that each task is learned individually.

Task
Single MS-COCO Flickr30k

(w/o ICR) Single +VQA+VG Single +VQA+VG

VQA (Acc) 65.50 - 66.35 - 66.09

ICR (R@1)
- 69.05 70.43 67.16 72.07

- 56.47 57.50 53.17 56.42

VG (R@1) 58.09 - 58.26 - 58.03

5.4. Full Results on Test Sets

We next show the performance of our method on test sets

for the three tasks. We employ the procedure for avoiding

training data contamination explained in the last paragraph

of Sec. 5.1. We show below comparisons of our method

with previous methods on each task. Note that our method

alone performs joint learning of the three tasks and others

are trained only on each individual task.

Image Caption Retrieval Table 3 shows the perfor-

mances of previous methods and our method on Flickr30k

and MS-COCO (The numbers for MS-COCO are perfor-

mance on the 1,000 testing images. In the supplementary

material, we report the performance on the 5,000 testing

images of MS-COCO). It is seen that our method is compa-

rable with the state-of-the-art method (S-E Model) on MS-

COCO. For Flickr30k, which is three times smaller than

MS-COCO, our method outperforms the best published re-

sult (S-E Model) by a large margin (about 9.5% in average)

on all six evaluation criteria, showing the effectiveness of

our method. This demonstrates that our method can lever-

age the joint learning with other tasks to cover insufficient

amount of training data for ICR.

Visual Question Answering Table 4 shows comparisons

of our method to previous published results on VQA 2.0 in

both test-dev and test-standard sets. It is observed in Table

4 that our method outperforms the state-of-the-art method

(DCN [27]) by a noticable margin of ∼ 0.7% on the two

test sets. It is noted that the improvements are seen in all

the question types of test-standard set (Other with 0.5%,

Number with 0.2%, and Yes/No with 0.9%). Notably, its

accuracy for counting questions (Number) is on par with the

Counting Module, which is designed to improve accuracy

of this question type.

Visual Grounding Table 5 shows comparisons of our

method with previous methods on the Flickr30k Entities

dataset. Although our method shows lower performance

than RTP [29] on the R@5 and R@10 evaluation metrics,

it achieves a much better result on the hardest metric R@1.

It should be noted that our method uses only phrase-box

correspondences provided in the training dataset, and does

not use any other information, such as box size, color, seg-

mentation, or pose-estimation, which are used in previous

studies [29, 37].

5.5. Qualitative Evaluation

To analyze effects of joint learning of multiple tasks, we

visualize behaviours of our network. We use complemen-

tary image-question pairs contained in VQA 2.0 [13] for

better analyses. Figure 2 shows two examples of such vi-

sualization, each for a complementary image-question pair.

For visualization of VG, we extract NP chunks from the in-

put question and treat them as entities. We then compute

the score between each entity and all of the image regions,

as described in Sec. 3.3.3. The first row of Fig. 2 shows the

correspondences between a few entities found in the ques-

tions and their top-1 image regions. For ICR and VQA, we

visualize attention maps generated in their decoders, which

are shown in the second and third rows of Fig. 2.

It can be seen from the first row of Fig. 2 that the VG

decoder correctly aligns each entity to its corresponding im-

age region. From the second row of Fig. 2 (i.e., the attention

maps of the ICR decoder) we can observe that the ICR de-

coder is looking at the same entities as those found in the

VG decoder but with wider attention in the image and sen-

tence, implying that not only the relevant entities but their

relations are captured in the ICR decoder. It is then seen

from the third row of Fig. 2 (i.e., the attention weights on

image regions and question words of the VQA decoder) that

it narrows down its attention on the image regions and ques-

tion words that are relevant to properly answer the input
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Table 3: Results of image annotation and retrieval on the Flickr30K and MSCOCO (1000 testing) datasets.

Method

Flickr30k dataset MSCOCO dataset

Image Annotation Image Retrieval Image Annotation Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

VQA [21] 33.9 62.5 74.5 24.9 52.6 64.8 50.5 80.1 89.7 37.0 70.9 82.9

RTP [29] 37.4 63.1 74.3 26.0 56.0 69.3 - - - - - -

DSPE [35] 40.3 68.9 79.9 29.7 60.1 72.1 50.1 79.7 89.2 39.6 75.2 86.9

sm-LSTM [14] 42.5 71.9 81.5 30.2 60.4 72.3 53.2 83.1 91.5 40.7 75.8 87.4

RRF [22] 47.6 77.4 87.1 35.4 68.3 79.9 56.4 85.3 91.5 43.9 78.1 88.6

2WayNet [9] 49.8 67.5 - 36.0 55.6 - 55.8 75.2 - 39.7 63.3 -

DAN [26] 55.0 81.8 89.0 39.4 69.2 79.1 - - - - - -

VSE++ [10] 52.9 79.1 87.2 39.6 69.6 79.5 64.6 89.1 95.7 52.0 83.1 92.0

S-E Model [15] 55.5 82.0 89.3 41.1 70.5 80.1 69.9 92.9 97.5 56.7 87.5 94.8

Ours 71.6 84.6 90.8 56.1 82.9 89.4 70.2 89.2 95.9 57.4 88.4 95.6

Table 4: Results of the proposed method along with published results of others on VQA 2.0 with single model.

Method Feature
Test-dev Test-standard

Overall Other Number Yes/No Overall Other Number Yes/No

MCB [11] reported in [13]

Resnet

- - - - 62.27 53.36 38.28 78.82

MF-SIG-T3 [6] 64.73 55.55 42.99 81.29 - - - -

Adelaide-Teney-MSR [34] 62.07 52.62 39.46 79.20 62.27 52.59 39.77 79.32

DCN [27] 66.72 56.77 46.65 83.70 67.04 56.95 47.19 83.85

Memory-augmented Net [25] - - - - 62.10 52.60 39.50 79.20

VKMN [32] - - - - 64.36 57.79 37.90 83.70

Adelaide-Teney-MSR [34]

Faster

65.32 56.05 44.21 81.82 65.67 56.26 43.90 82.20

DCN [27] in our experiments

RCNN

68.60 58.76 50.85 84.83 68.94 58.78 51.23 85.27

Counting Module [39] 68.09 58.97 51.62 83.14 68.41 59.11 51.39 83.56

MLB + DA-NTN [4] 67.56 57.92 47.14 84.29 67.94 58.20 47.13 84.60

Ours 69.28 59.17 51.54 85.80 69.57 59.27 51.46 86.17

Table 5: Comparison of our method and previous ones on

the visual grounding task using Flickr30k Entities in the

same condition.

Method R@1 R@5 R@10

Structured Matching [36] 42.08 - -

DSPE [35] 43.89 64.46 68.66

GroundeR [31] 48.38 - -

MCB [11] 48.69 - -

RTP [29] 50.89 71.09 75.73

GOP [37] 53.97 - -

Ours 57.39 69.37 71.03

questions, e.g., the bikes in the images and the phrase “is

enyone” in the questions; and the snowboard and the skis in

the images and the phrase “what is”.

Other observations can be made for the results in Fig. 2.

For instance, the ICR decoder gives a very low score

(3.573e-07) for the pair of the first image and the ques-

tion “is anyone riding the bike” and a high score (0.387)

for the second image and the same question. Considering

the word attention focusing only on the phrase ”anyone rid-

ing the bike”, we may think that the ICR decoder correctly

judges the (in)consistency between the contents of the im-

ages and the phrase. These agree well with their correct

answers in VQA (i.e., “No” and “Yes”), implying the in-

teraction between ICR and VQA. Further analyses will be

provided in supplementary material.

6. Summary and Conclusion

In this paper, we have presented a multi-task learning

framework for vision-language tasks. The key component

is the proposed network consisting of the representation en-

coder that learns to fuse visual and linguistic representations

in a hierarchical fashion, and task-specific decoders that uti-

lize the learned representation at their corresponding levels

in the hierarchy to make prediction. We have shown the ef-

fectiveness of our approach through a series of experiments

on three major tasks and their datasets. The shared hierar-

chical representation learned by the encoder has been shown

to generalize well across the tasks.
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