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Abstract

Exploiting multi-level context information to cost vol-

ume can improve the performance of learning-based stereo

matching methods. In recent years, 3-D Convolution Neu-

ral Networks (3-D CNNs) show the advantages in regular-

izing cost volume but are limited by unary features learning

in matching cost computation. However, existing methods

only use features from plain convolution layers or a sim-

ple aggregation of multi-level features to calculate cost vol-

ume, which is insufficient because stereo matching requires

discriminative features to identify corresponding pixels in

rectified stereo image pairs. In this paper, we propose a

unary features descriptor using multi-level context ultra-

aggregation (MCUA), which encapsulates all convolutional

features into a more discriminative representation by intra-

and inter-level features combination. Specifically, a child

module that takes low-resolution images as input captures

larger context information; the larger context information

from each layer is densely connected to the main branch of

the network. MCUA makes good usage of multi-level fea-

tures with richer context and performs the image-to-image

prediction holistically. We introduce our MCUA scheme for

cost volume calculation and test it on PSM-Net. We also

evaluate our method on Scene Flow and KITTI 2012/2015

stereo datasets. Experimental results show that our method

outperforms state-of-the-art methods by a notable margin

and effectively improves the accuracy of stereo matching.

1. Introduction

Stereo matching, also known as disparity estimation,

aims to find corresponding points in a pair of rectified stereo

images. It serves as an essential subclass of computer vision

[26, 28]. Cost volume plays a vital role for Convolution

Neural Networks (CNNs) based stereo matching methods,

∗Yue Liu (liuyue@bit.edu.cn) is the corresponding author.

which has been validated by [28]. Traditional 1-D correla-

tion along the disparity line enables to generate a 3-D stereo

cost volume [14, 15], but it loses lots of information due to

its multiplicative approximation to the volume. As an im-

provement, a simple concatenation, instead of 1-D corre-

lation, is implemented to combine the unary features from

left and right inputs across each disparity level to generate

a 4-D cost volume, and then 3-D CNNs are incorporated in

the context to regularize this 4-D cost volume [9]. 4-D cost

volume based methods [9, 2] usually outperform 3-D cost

volume [14, 11] based methods, because 4-D cost volume

can preserve the feature dimensions.

Skip connection [7, 17] in CNNs encourages the inte-

gration of hierarchical representations, and may also con-

tribute to stereo matching for the improvement of the cost

volume [29, 4]. Stereo matching is a regression problem

which aims to achieve pixel-wise dense prediction, but it

usually generates discontinuity in the occluded areas, and it

suffers from aperture problem in texture-less regions such

as sky or other flat areas [9], so it is more concerned with

the merge of multi-level context information. In DenseNets

[8] and DLA [25], large receptive fields are achieved at deep

stages of a network, but they only refer to intra-level com-

bination of features and enable not to obtain large receptive

field at shallow stages. Therefore, it lacks enough global in-

formation for more context information when using dense

connection or DLA scheme on the matching cost calcula-

tion in the stereo matching task. This problem makes these

two architectures be limited when learning context informa-

tion.

To solve this problem, we improve the discriminative

ability of unary features for matching cost calculation by in-

troducing Multi-level Context Ultra-Aggregation (MCUA)

scheme which combines the features at the shallowest,

smallest scale and deeper, larger scales using just “shallow”

skip connections. Except for intra-level combination in-

spired by DenseNets [8] and DLA [25], MCUA contains an

independent child module which introduces the inter-level
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Figure 1. DenseNets and DLA belong to the family of Higher Order RNNs. (a) Dense connection scheme; (b) DLA scheme between

neighboring groups (red box), consisting of HDA (combining stages in groups) and IDA (combining groups); (c) Higher Order RNNs

framework. The orange solid lines indicate the skip connections between each two stages.

combination scheme. The main contributions of this pa-

per include i) we propose MCUA for both intra- and inter-

level features aggregation and formulate it as a Higher Or-

der RNN; ii) the experimental results show that MCUA im-

proves matching cost calculation significantly.

2. Related Work

Stereo matching can be implemented using multistage

techniques [1] which typically include four main steps,

i.e., matching cost computation, cost aggregation, dispar-

ity computation and optimization, and disparity refinement

[20]. Early learning-based methods adopted neural net-

works to replace one or more stages in the traditional stereo

pipeline [27, 26, 19, 14, 21]. Some approaches achieve bet-

ter performance by integrating all steps into a whole net-

work for joint optimization. Mayer et al. [15] introduced

a 1-D correlation layer to integrate the unary features along

the disparity line, which can provide a 3-D cost volume for

end-to-end training. Pand et al. [18] proposed a cascaded

CNN architecture by first obtaining an initial disparity map,

and then employing residual learning for refinement. Liang

et al. [11] presented feature constancy to measure the cor-

respondence between two input images, which is then used

to refine the disparity. EdgeStereo, developed by song et

al. [23], introduces a multi-task architecture to generate the

final disparity map by integrating a one-stage stereo net-

work and a proposed edge detection network. SegStereo,

proposed in [24], introduces two incorporation strategies of

semantic cues, including semantic information embedding

and semantic loss regularization added to softmax loss.

Since 1-D correlation is a multiplicative approximation

to the stereo cost volume, it will lose some useful informa-

tion and is thus harmful to context learning. GC-Net [9]

introduces the 4-D cost volume to incorporate context in

cost volume regularization. This method does not collapse

the feature dimension when generating stereo cost volume.

Recently, PSM-Net [2] exploit the context information for

stereo matching by applying an SPP module [6] on cost vol-

ume calculation and utilizing three stacked 3-D hourglass

networks to regularize this 4-D cost volume. StereoNet [10]

is a real-time end-to-end network for stereo matching, in

which a cost volume with meager resolution but encoding

all information is first used to obtain an initial disparity map,

and then a learned upsampling function is used for refine-

ment. In our work, we apply a novel aggregation pattern,

MCUA, to generate the unary features with better context

support. The experimental results demonstrate the effec-

tiveness of MCUA in stereo matching.

3. Reviewing Feature Aggregation Schemes

In this section, we first review DenseNets [8] and DLA

[25], and formulate these two aggregation schemes with

Higher Order RNNs [22, 12, 3]. Then, we discuss the

limitations of features aggregation when applying these

schemes into stereo matching.

3.1. DenseNets

DenseNets [8] apply a dense connection scheme on the

group in which feature maps generated by all stages have

the same resolution and scale. As shown in Fig. 1(a), the

signal “hk” indicates k-th stage of this block, it receives the

feature maps from all preceding stages, h0, ..., hk−1, and

shares its feature maps with all its subsequent stages. It can

be formulated as follows:

hk = rk[fk−1
t=0 q

k
t (h

t)] (1)

where qkt (h
t) is the feature extraction function, rk(·) is the

transmit function to transform the gathered information be-

fore this information flowing into the k-th stage, and f de-

notes the concatenation operation for data fusion.

Fig. 1(c) shows the framework of Higher Order RNNs,

where the signal “hk” indicates the hidden state of the
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Figure 2. The diagrammatic sketch of our proposed network (EMCUA). It is constructed based on PSM-Net [2] by applying MCUA on the

architecture of matching cost calculation and adding a residual module at the end. A pair of stereo images (i.e., Left, Right) pass through

the network for disparity prediction (i.e., Output3). Fig. 3 shows the detail of the updated architecture of matching cost calculation.

RNNs at k-th step, rk(·) indicates a transform function, the

symbol “z−1” indicates a time-delay unit, and “f ” denotes

the operation for aggregation (e.g., summation, concatena-

tion, etc.). In the Higher Order RNNs, all functions share

the same weights, i.e., ∀t, k, qkt (·) ≡ qt(·) and ∀k, rk(·) ≡
r(·). When the signals share parameters [3], DenseNets can

be represented as Higher Order RNNs, which shows that

DenseNets belong to the family of Higher Order RNNs.

DenseNets cannot merge features across scales and reso-

lutions, which loses lots of low-level information. In this

paper, we develop a general feature aggregation scheme to

solve this problem.

3.2. DLA

As shown in Fig. 1(b), a network with nine stages is de-

signed as the backbone, on which we apply DLA scheme.

Due to different scales of output features, stages of this

backbone can be divided into three groups (represented by

red boxes): h0, . . . , h3 for the first group, h4, . . . , h7 for the

second group, and h8 for the third group. DLA consists of

two aggregation schemes [25]: (i) the Iterative Deep Aggre-

gation (IDA) merges features across scales and resolutions,

in which the outputs of aggregation nodes are downsampled

before merging with other features. (ii) the Hierarchical

Deep Aggregation (HDA) merges the outputs of the aggre-

gation nodes into the backbone serving as the inputs to the

next sub-tree. This makes each stage only selectively use a

subset of outputs from all previous stages, as illustrated in

Fig. 1(b), deleting the short connections with gray dashed

lines by taking qkt (·) = 0. We follow DenseNets shown in

Eq. (1) to describe DLA as follows:

hk =



















rk[
∑k−1

t=0
qkt (h

t)], k = 4n

rk[qkk−1
(hk−1)], k = 4n+ 1

rk[qkk−2
(hk−2) + qkk−1

(hk−1)], k = 4n+ 2

rk[qkk−1
(hk−1)], k = 4n+ 3

(2)

where n = 0, 1, 2, . . . indicates the index of the group. Sim-

ilarly, the DLA scheme can also be represented as the form

of Higher Order RNNs. However, the fusion in DLA only

refers to the intra-level combination. To overcome this dis-

advantage, we introduce an independent child module to

fuse features with the inter-level combination, where large

receptive fields can be obtained at shallow stages.

4. Network Architecture

In this section, we introduce each part of the proposed

network which is developed from PSM-Net [2]. An overall

illustration is shown in Fig. 2.

4.1. MCUA Scheme

We apply the proposed MCUA scheme (in Fig. 3) to

PSM-Net [2] for matching cost computation. The branch

(a) of MCUA can be regarded as the backbone. It is a

2D-CNN which is the same as the matching cost compu-

tation network in PSM-Net. We divide the backbone into

nine stages based on the layer definitions in [2]: The first

seven stages, F0, . . . , F6, correspond to conv0 1, conv0 2,

conv0 3, conv1 x, conv2 x, conv3 x, and conv4 x, respec-

tively; The eighth stage, F7, contains the SPP module fol-
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Figure 3. Illustration of MCUA scheme. Branch (a) is the backbone, while branch (b) is the independent child module. Each colored

block represents the feature map generated by one stage, while each green block denotes the receptive field that the next stage has. The

intra-level combination is described by dashed gray lines, while the inter-level combination is depicted by solid color lines. The unary

features generated by F8 is the final output of this architecture. Tab. 1 shows the layer-wise definition of MCUA.

lowed by a 3 × 3 convolution operation; The ninth stage,

F8, is a 1× 1 convolution operation which aims to fuse the

combined features. We use the output of the last layer of

each stage as the feature information for other operations.

This design is natural since the deepest layer of each stage

should have the most reliable features. According to the

sizes of feature maps, the backbone can be divided into two

groups: Stages F0, . . . , F3 belong to the first group, whose

output feature maps have a size of 1

2
× scale, and stages

F4, . . . , F8 belong to the second group whose output fea-

ture maps have a size of 1

4
× scale.

Fig. 3 and Tab. 1 illustrates the details of MCUA. MCUA

allows each stage to receive the features from all previous

stages and enables its outputs to pass through all subsequent

stages. In details, features (i.e., h1, h2, . . .) from the pre-

vious stages are first aggregated by element-wise summa-

tion, and then pre-activated before passing through the next

stage. We formulate MCUA as follows:

hk
1 = rk[

k−1
∑

t=0

qkt (h
t
1)](0 ≤ k ≤ m), (3)

hk
2 = rk[

m−1
∑

t=0

qkt (αh
t
1) + qm+1

m (hm
1 )](k = m+ 1), (4)

hk
2 = rk[

m−1
∑

t=0

qkt (αh
t
1) + qm+1

m (hm
1 ) +

k−1
∑

t=m+1

qkt (h
t
2)]

(m+ 2 ≤ k ≤ n),
(5)

where m = 4, n = 8, “hk
1” denotes the output of stage Fk

with the feature maps scale of 1

2
× input size, and “hk

2” de-

notes the output of stage Fk with the scale of 1

4
× input size.

Among all n + 1 stages, Fm is a special stage which re-

ceives the feature maps with 1

2
× input size and outputs the

feature maps with 1

4
× input size. α (α > 1) is the expand-

ing factor to control the ratio of the increased area, so that

one bigger receptive field captures more information than a

smaller one.

4.1.1 Intra-level Combination

The intra-level combination fuses feature maps in each

group, in which dense connection, described by dashed

lines in Fig. 3, are applied between each of the two stages.

In details, features are transformed by a linear function,

qkt (x) = βx where β is defined as a linear coefficient. This

transformation is achieved by a 1 × 1 convolution opera-

tion [13] to make the feature maps match with each other

in dimensions. The transformed features from previous

stages are integrated by element-wise summation and pre-

activated, and then, flow to the next stage. For instance, the

number of channels of the feature map generated by stage

F4 is 64, while that generated by stage F5,6,7 is 128. Before

merging and flowing to stage F8, the feature map of stage

F4 needs to be linearly transformed into an immediate map

with 128 channels.

4.1.2 Inter-level Combination

As shown in Fig. 3, we use an independent child module

to introduce inter-level aggregation which is represented by

the solid color lines. The independent child module first

adopts an average pooling operation, P0, to reduce the size

of input by half, and then uses four stages (i.e., F0, . . . , F3)

to learn unary features. Each of these four stages shares the

same internal architecture with the first group of backbone,

and parameters of corresponding layers are tied. Generally,

large receptive fields are usually achieved at deep stages of

a network. By using the independent child module, it can

obtain large receptive fields at shallow stages, which can
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be explained by Fig. 4: the receptive field with a size of

H1 ×W1 enables to capture more visual information from

the downsampled inputs (i.e., Fig. 4 (b)) than that on raw in-

puts (i.e., Fig. 4 (a)). Since the child module shares parame-

ters with backbone, we have ht
2 = αht

1 in Eq. (5), in which

α (α > 1) indicates the spatial information increased by ap-

plying a fixed-size receptive field on a different area of fea-

ture maps. Besides, linear transformations are also applied

in dense path. We set the parameter β, which adopts the

same strategy as features intra-level combination, to make

features adapt to the dimensions of subsequent stages. For

stereo matching, the independent child module can provide

more context information for the features to calculate cost

volume, which usually occurs at shallow stages. In Sec. 6.2,

we will show the importance of the independent child mod-

ule for learning contextual information and improving the

performance of stereo matching.

4.2. Disparity Regression

The soft argmin is a valid operation to regress values over

probability volumes regularized by 3-D CNNs [9], because

it is fully differentiable and enables back-propagation train-

ing. The regressed value for each pixel is calculated by a

weighted average of all modes, which can be shown as

Dh,w =

Dmax
∑

d=0

d× σ(−cd,h,w) (6)

where cd,h,w, σd,h,w and d correspond to the cost value,

softmax operation for each pixel, and the disparity value,

respectively.

4.3. Outputs

As shown in Fig. 2, MCUA contains three hourglass net-

works, each of which generates a disparity map. These three

outputs are used to calculate loss when training the network,

and the last output is used for testing. The output of the

third hourglass network is considered as an initial dispar-

ity map. To refine the foreground of initial prediction, a

Table 1. Architecture of MCUA

Stage Type K S P D N R Output Dim. I/O Input

IN input 3 –/1 IN

Backbone

F0 Conv. 3 1 1 1 1 3 C01 3/32 1/2 input

F1 Conv. 3 1 1 1 1 5 C02 32/32 2/2 C01

F2 Conv. 3 1 1 1 1 7 C03 32/32 2/2 C01 + C02

F3 Conv. 3 1 1 1 3 13 C1x 32/32 2/2
C01 + C02 +

C03

Independent Child Module (i.e., Branch(b))

P0 AvgP 2 2 0 0 1 2 P20 3/3 1/2 IN

F0 Conv. 3 1 1 1 1 6 C201 3/32 2/4 P20

F1 Conv. 3 1 1 1 1 11 C202 32/32 4/4 C201

F2 Conv. 3 1 1 1 1 16 C203 32/32 4/4 C201 + C202

F3 Conv. 3 1 1 1 3 31 C21x 32/32 4/4
C201 + C202 +

C203

Backbone

F4 Conv. 3 1 1 1 16 45 C2x 32/64 2/4
C01 + C02 +

C03 + C1x

F5 Conv. 3 1 1 1 3 51 C3x 64/128 4/4

C201 + C202 +

C203 + C21x +

C2x

F6 Conv. 3 1 1 1 3 57 C4x 128/128 4/4

C201 + C202 +

C203 + C21x +

C2x + C3x

–

AvgP

Conv.

Ups.









64

32

16

8









1

–









64

32

16

8









1

–

0

1

–

1

1

–

1

1

–

–

–

–

B1

B2

B3

B4

128/32 4/4

C201 + C202 +

C203 + C21x +

C2x + C3x +

C4x

– ConC – – – – – – M1 128/128 4/4
B1, B2, B3, B4,

C2x, C4x

F7 Conv. 3 1 1 1 1 59 FSPP 320/128 4/4 M1

F8 Conv. 1 1 0 1 1 59 fusion 128/32 4/4

C201 + C202 +

C203 + C21x +

C2x + C3x +

C4x + FSPP

K, S, P, D, N, R: kernel size, stride, padding, dilation, number, and recep-

tive field of convolutional layer; Dim.: dimension of input/output feature

maps; I/O: scale of input/output feature maps; Symbol “+/-”: element-

wise summation/subtraction operation; ConC: concatenation operation.

residual module is added at the end of the network. It first

generates a residual map and then combine with the initial

disparity map using element-wise summation to obtain the

final output, i.e., Output3. As shown in Fig. 2, the residual

module contains three convolution layers with a kernel size

of 5 and stride of 2. The layer definitions of the residual

module is shown in supplementary materials. The whole

network is named EMCUA, which is slightly different from

MCUA in the last output.

4.4. Loss Function

We train the whole network end-to-end with supervised

learning by adopting Smooth L1 Loss which creates a cri-

terion that uses a squared term if the absolute element-wise

error falls below 1 and an L1 term otherwise. This loss is
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Table 2. KITTI2015 Results

Mod.
All (%) Noc (%)

D1-bg D1-fg D1-all D1-bg D1-fg D1-all

SegStereo 1.88 4.07 2.25 1.76 3.70 2.08
iResNet 2.25 3.40 2.44 2.07 2.76 2.19
CRL 2.48 3.59 2.67 2.32 3.12 2.45
GC-Net [9] 2.21 6.16 2.87 2.02 5.58 2.61

PSM-Net 1.86 4.62 2.32 1.71 4.31 2.14
MCUA 1.69 4.38 2.14 1.55 3.90 1.93
EMCUA 1.66 4.27 2.09 1.50 3.88 1.90

“All” and “Noc” : percentage of outliers averaged over ground

truth pixels of all/non-occluded regions. “D1-bg”, “D1-fg”, and

“D1-all”: percentage of outliers averaged only over background

regions, foreground regions, and all ground truth pixels.

less sensitive to outliers than L1 Loss and in some cases

prevents exploding gradients. The loss is defined as:

Loss(x, y) =
1

n

∑

i

zi (7)

zi =

{

0.5(xi − yi)
2, if |xi − yi| < 1

|xi − yi| − 0.5, othervise
(8)

where xi and yi denote the ground truth and predicted dis-

parities for each pixel i, respectively. The loss weights for

the three intermediate supervision are 0.5, 0.7 and 1.0, re-

spectively, which are the same with PSM-Net [2].

5. Experiments

We test our proposed model on three datasets and com-

pare it with the state-of-the-art architectures.

5.1. Implementation Details

We implement our proposed model using PyTorch and

conduct experiments on four NVIDIA TITAN Xp GPUs.

Datasets We adopted three publicly available datasets for

training and testing: The Scene Flow datasets [15] con-

tain stereo images in 960× 540 pixel resolution with 35454

for training and 4370 for testing, and all image pairs are

rendered from various synthetic sequences, i.e., FlyingTh-

ings3D, Driving, and Monkaa. KITTI2015/2012 datasets

consist of KITTI2015 dataset [16] (200 training and 200

test scenes in 1242× 375 pixel resolution) and KITTI2012

dataset [5] (194 training and 195 test scenes in 1242× 375
pixel resolution). These images were captured by driving

in rural areas and on highways. For both KITTI training

sets, we use 160 image pairs for training and the remains

for validation.

Training The training process of EMCUA contains two

steps. The first step is to train the updated model that

(a) Ours (b) PSM-Net
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Figure 5. Results of our model and PSM-Net in KITTI2015 dataset

MCUA scheme is applied on the architecture of match-

ing cost computation in PSM-Net. Before inputting to the

network, each raw image is first processed by color nor-

malization and then randomly cropped into patches with

256 × 512 resolution. The network is optimized end-to-

end using Adam (Adaptive Moment Estimation) with β1 of

0.9 and β2 of 0.999. The batch size and maximum dis-

parity (D) set to 8 and 192 pixels, respectively. We first

train MCUA on Scene Flow datasets with a fixed learning

rate of 0.001 for 20 epochs, then we fine-tune the network

on KITTI2015/2012 dataset with stepped learning rates of

0.001 for 600 epochs and 0.0001 for another 400 epochs.

Furthermore, for Scene Flow dataset, we extend the train-

ing to 70 epochs to get the final results. The second step

refers to training the EMCUA in which a residual module

is added at the end of MCUA. We first train EMCUA on

Scene Flow datasets by 1 epoch using the trained param-

eters from MCUA on KITTI2015/2012 datasets, then con-

tinue to fine-tune EMCUA on KITTI2015/2012 datasets, re-

spectively. The parameter settings in EMCUA training are

as same as that in MCUA training.

Validating/Testing As shown in Fig. 2, Output3, the

last of three outputs, is selected as the final result of

the whole network, and we estimate the performance of

both MCUA and EMCUA on both Scene Flow test and

KITTI2015/2012 validating sets. To implement estimation,

based on groundtruth we calculate the end-point-error of

the results of each epoch for Scene Flow test set, while

three-pixel-error of that for KITTI2015/2012 validating

sets, respectively. After finishing the estimation, we use

the trained parameters with the lowest error to predict the
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Table 3. KITTI2012 Results

Mod
> 2px > 3px > 4px > 5px ME(px)

Noc All Noc All Noc All Noc All AN AA

SegStereo 2.66 3.19 1.68 2.03 1.25 1.52 1.00 1.21 0.5 0.6

iResNet 2.69 3.34 1.71 2.16 1.30 1.63 1.06 1.32 0.5 0.6

GC-Net 2.71 3.46 1.77 2.30 1.36 1.77 1.12 1.46 0.6 0.7

PSM-net 2.44 3.01 1.49 1.89 1.12 1.42 0.90 1.15 0.5 0.6

MCUA 2.07 2.64 1.30 1.70 0.98 1.29 0.80 1.04 0.5 0.5

EMCUA 2.02 2.56 1.26 1.64 0.95 1.24 0.76 0.99 0.4 0.5

“Noc” and “All”: percentage of erroneous pixels in non-occluded

areas, and in total. “AN” and “AA”: average disparity/end-point

error in non-occluded areas, and in total. “ME”: mean error.

(a) Ours (b) PSM-Net
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Figure 6. Results of our model and PSM-Net in KITTI2012 dataset

Table 4. Performance comparison on Scene Flow test set

Mod. EPE Mod. EPE Mod. EPE

MCUA 0.56 PSM-Net [2] 1.09 StereoNet [10] 1.10
CRL. [18] 1.32 iResNet [11] 1.40 SegStereo [24] 1.45

Mod.: model; EPE: end-point-error;

disparity maps for KITTI2015/2012 test sets and submit the

results to the KITTI evaluation server for competition. The

batch size is set to 4 when validating and testing the perfor-

mance of both MCUA and EMCUA.

5.2. Performance on KITTI2015/2012 Datasets

Compared with Scene Flow datasets [15] which only

consist of synthetic scenes, KITTI2015/2012 datasets [16,

5] contain real-world image data collected from scenes

such as urban, rural, and highways, which has higher

credit for the algorithm evaluation. As a result, we choose

KITTI2015/2012 datasets to evaluate the contribution of ap-

plying MCUA scheme and the additional residual module to

the improvement of performance.

We compare both EMCUA and MCUA with PSM-

Net and other recently published approaches on KITTI

2015/2012 test sets. The evaluated results (reported by

KITTI server) are illustrated in Tab. 2 and Tab. 3, re-

spectively. EMCUA has the overall three-pixel-error of

2.09%/1.64% on KITTI2015/2012 dataset, and achieves

9.9%/13.2% decrease compared to PSM-Net, while MCUA

has that of 2.14%/1.70%, and achieves 7.8%/10.1% de-

crease compared to PSM-Net. The results show that

both EMCUA and MCUA outperform the state-of-the-art

method (i.e., SegStereo), and the performance gain mainly

comes from MCUA scheme. Furthermore, as shown in

Tab. 2, EMCUA has the overall three-pixel-error of fore-

ground/background of 4.27%/1.66% on KITTI2015 dataset,

which achieves 2.5%/1.8% decrease compared to MCUA.

It shows that the residual module is mainly used to improve

the performance of the accuracy of the foreground. Further-

more, Fig. 5 and Fig. 6 illustrate some examples of final

results generated by EMCUA on KITTI2015/2012 datasets,

respectively.

5.3. Performance on Scene Flow Datasets

As we know, EMCUA is the updated model that is

adding a residual module at the end of MCUA, which aims

to enhance the performance of MCUA. To show the effect

of applying MCUA scheme, we only compare MCUA with

PSM-Net and other four existing approaches on Scene Flow

test set. As shown in Tab. 4, the end-point-error of MCUA is

0.56 pixels, which has a 50% increase over PSM-Net, and

outperforms the state-of-the-art approach. Two of testing

examples are illustrated in Fig. 7, as shown in blue boxes,

applying ultra-aggregation scheme helps the model to learn

robust context information and accurately predicts disparity

especially for overlapped objects.

6. Model Design Analysis

In this section, we qualitatively evaluate MCUA scheme.

We first train models on the Scene Flow training datasets

with 20 epochs, and then fine-tune on the KITTI2015 train-

ing set with 1000 epochs. We evaluate the resulting models

on the Scene Flow validation set and KITTI2015 validation

set.

6.1. Aggregation Schemes

The first experiment in Tab. 5 compares MCUA with

DenseNets [8] and DLA [25] for stereo matching by re-

placing the 2-D CNNs branch of PSM-Net with three ag-

gregation schemes. From Tab. 5, we can see that MCUA

performs significantly better than DenseNets and DLA. We

also observe that MCUA enables to learn contextual infor-

mation effectively and improve the sharpness and accuracy

for the disparity map (Fig. 7). Moreover, MCUA outper-
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MCUAGround truthInputs PSM-Net

Figure 7. MCUA produces the state-of-the-art performance on Scene Flow Datasets. The left column shows the left image of the stereo

images. The second shows the ground truth disparity. The third shows the prediction of our method. The fourth shows the disparity

produced by PSM-Net [2].

Table 5. Ablation study

Mod.
Scene Flow KITTI2015

Para.
> 1px > 3px > 5px EPE VE (%)

Compare of aggregation patterns

PSM-Net – – – 1.119 1.83 5.22M
DenseNets 8.526 3.329 2.286 0.794 1.698 5.27M
DLA 8.586 3.337 2.280 0.806 1.685 5.32M
MCUA 7.885 3.108 2.148 0.758 1.579 5.31M

Compare of architecture components

UChi 8.185 3.153 2.147 0.755 1.635 5.39M
Chi 8.133 3.242 2.226 0.777 1.642 5.29M
DenPool 8.187 3.187 2.179 0.761 1.628 5.31M
MCUA 7.885 3.108 2.148 0.758 1.579 5.31M

> tpx: EPE; VE: three-pixel-error; Para.: number of parameters.

forms the plain model by aggregating much richer contexts

without significantly increasing computation burden.

6.2. Effect of MCUA

Tab. 5 shows the results of several control experiments,

which are used to evaluate each part of MCUA scheme. In

the first ablation study, we untie the relationship between

child module and branch (a) in MCUA, which means that

the branch (a) do not share parameters with child module.

This new model is denoted as UChi. As shown in Tab. 5,

although the number of parameters for Uchi increases by

0.08M after untying, the performance has no significant im-

provement compared with the original MCUA.

The second ablation model, Chi, only applies the intra-

level combination on the network for the matching cost

calculation in PSM-Net by removing the dashed lines but

remaining the color lines in Fig. 3. As shown in Tab. 5,

the performance of Chi decreases compared with the origi-

nal MCUA, which indicates that the inter-level combination

through child module makes an important contribution to

the whole model.

The third ablation model densely connect all stages in

the backbone itself. We use pooling operation to match fea-

tures with different scales. The resulting architecture is rep-

resented as DenPool. It is clear from Tab. 5 that, using an

independent child module (i.e., MCUA) is better than with-

out using it (i.e., DenPool). Hence intra-level feature ag-

gregation is insufficient to capture enough contextual infor-

mation. However, our independent child module introduces

inter-level feature aggregation, enlarges the receptive fields,

captures more context information, improves the cost vol-

ume, and thus achieves better stereo matching results.

7. Conclusion

In this paper, we propose a general feature aggregation

scheme, MCUA, which contains both intra- and inter-level

feature aggregation, while DenseNets and DLA contain

only intra-level aggregation. We formulates these models

as Higher Order RNNs to clearly show this difference. We

use an independent child module to introduce inter-level ag-

gregation, which enlarges the receptive fields and captures

more context information. The experimental results demon-

strate the effectiveness of MCUA scheme for the context

learning. Our approach outperforms the state-of-the-art

methods on the Scene Flow datasets and KITTI2015/2012

benchmarks. In the future, we plan to make exploration on

the improvement of soft argmin operation which is another

limitation in stereo matching.
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