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Abstract

Image registration is a key technique in medical image

analysis to estimate deformations between image pairs. A

good deformation model is important for high-quality es-

timates. However, most existing approaches use ad-hoc

deformation models chosen for mathematical convenience

rather than to capture observed data variation. Recent

deep learning approaches learn deformation models di-

rectly from data. However, they provide limited control over

the spatial regularity of transformations. Instead of learn-

ing the entire registration approach, we learn a spatially-

adaptive regularizer within a registration model. This al-

lows controlling the desired level of regularity and pre-

serving structural properties of a registration model. For

example, diffeomorphic transformations can be attained.

Our approach is a radical departure from existing deep

learning approaches to image registration by embedding

a deep learning model in an optimization-based registra-

tion algorithm to parameterize and data-adapt the regis-

tration model itself. Source code is publicly-available at

https://github.com/uncbiag/registration.

1. Introduction

Image registration is important in medical image analysis

tasks to capture subtle, local deformations. Consequently,

transformation models [21], which parameterize these de-

formations, have large numbers of degrees of freedom,

ranging from B-spline models with many control points, to

non-parametric approaches [30] inspired by continuum me-

chanics. Due to the large number of parameters of such

models, deformation fields are typically regularized by di-

rectly penalizing local changes in displacement or, more in-

directly, in velocity field(s) parameterizing a deformation.

Proper regularization is important to obtain high-quality de-

formation estimates. Most existing work simply imposes

the same spatial regularity everywhere in an image. This

is unrealistic. For example, consider registering brain im-

ages with different ventricle sizes, or chest images with a

moving lung, but a stationary rib cage, where different de-
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Figure 1: Architecture of our registration approach. We jointly

optimize over the momentum, parameterizing the deformation Φ,

and the parameters, θ, of a convolutional neural net (CNN). The

CNN locally predicts multi-Gaussian kernel pre-weights which

specify the regularizer. This approach constructs a metric such that

diffeomorphic transformations can be assured in the continuum.

formation scales are present in different image regions. Pa-

rameterizing such deformations from first principles is dif-

ficult and may be impossible for between-subject registra-

tions. Hence, it is desirable to learn local regularity from

data. One could replace the registration model entirely and

learn a parameterized regression function fΘ from a large

dataset. At inference time, this function then maps a mov-

ing image to a target image [12]. However, regularity of

the resulting deformation does not arise naturally in such an

approach and typically needs to be enforced after the fact.

Existing non-parametric deformation models already yield

good performance, are well understood, and use globally

parameterized regularizers. Hence, we advocate building

upon these models and to learn appropriate localized pa-

rameterizations of the regularizer by leveraging large sam-

ples of training data. This strategy not only retains theoret-

ical guarantees on deformation regularity, but also makes it

possible to encode, in the metric, the intrinsic deformation

model as supported by the data.

Contributions. Our approach deviates from current ap-

proaches for (predictive) image registration in the following

sense. Instead of replacing the entire registration model by
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a regression function, we retain the underlying registration

model and learn a spatially-varying regularizer. We build

on top of a new vector momentum-parameterized stationary

velocity field (vSVF) registration model which allows us to

guarantee that deformations are diffeomorphic even when

using a learned regularizer. Our approach jointly optimizes

the regularizer (parameterized by a deep network) and the

registration parameters of the vSVF model. We show state-

of-the art registration results and evidence for locally vary-

ing deformation models in real data.

Overview. Fig. 1 illustrates our key idea. We start with an

initial momentum parameterization of a registration model,

in particular, of the vSVF. Such a parameterization is impor-

tant, because it allows control over deformation regularity

on top of the registration parameters. For a given source-

target image-pair (I0, I1), we optimize over the momentum

to obtain a spatial transformation Φ such that I0�Φ
�1 ⇡ I1.

As the mapping from momentum to Φ is influenced by a

regularizer expressing what transformations are desirable,

we jointly optimize over the regularizer parameters, ✓, and

the momentum. Specifically, we use a spatially-adaptive

regularizer, parameterized by a regression model (here, a

CNN). Our approach naturally combines with a prediction

model, e.g., [48], to obtain the momentum from a source-

target image pair (avoiding optimization at runtime). Here,

we numerically optimize over the momentum for simplicity

and leave momentum prediction to future work.

Organization. In §2, we review registration models, re-

lations to our proposed approach and introduce the vSVF

model. §3 describes our metric learning registration ap-

proach and §4 discusses experimental results. Finally, §5

summarizes the main points. Additional details can be

found in the supplementary material.

2. Background on image registration

Image registration is typically formulated as an optimiza-

tion problem of the form

�⇤ = argmin
γ

� Reg[Φ�1(�)]+Sim[I0�Φ
�1(�), I1]. (2.1)

Here, � parameterizes the deformation, Φ, � � 0, Reg[·]
is a penalty encouraging spatially regular deformations and

Sim[·, ·] penalizes dissimilarities between two images (e.g.,

sum-of-squared differences, cross-correlation or mutual in-

formation [20]). For low-dimensional parameterizations of

Φ, e.g., for affine or B-spline [36, 29] models, a regularizer

may not be necessary. However, non-parametric registra-

tion models [30] represent deformations via displacement,

velocity, or momentum vector fields and require regulariza-

tion for a well-posed optimization problem.

In medical image analysis, diffeomorphic transformations,

Φ, are often desirable to smoothly map between subjects or

between subjects and an atlas space for local analyses. Dif-

feomorphisms can be guaranteed by estimating sufficiently

smooth [14] static or time-varying velocity fields, v. The

transformation is then obtained via time integration, i.e., of

Φt(x, t) = v � Φ(x, t) (subscript t indicates a time deriva-

tive). Examples of such methods are the static velocity field

(SVF) [42] and the large displacement diffeomorphic metric

mapping (LDDMM) registration models [4, 44, 18, 1].

Non-parametric registration models require optimization

over high-dimensional vector fields, often with millions of

unknowns in 3D. Hence, numerical optimization can be

slow. Recently, several approaches which learn a regression

model to predict registration parameters from large sets of

image pairs have emerged. Initial models based on deep

learning [13, 24] were proposed to speed-up optical flow

computations [22, 3, 8, 7, 49, 40]. Non-deep-learning ap-

proaches for the regression of registration parameters have

also been studied [46, 45, 10, 9, 16]. These approaches typ-

ically have no guarantees on spatial regularity or may not

straightforwardly extend to 3D image volumes due to mem-

ory constraints. Alternative approaches have been proposed

which can register 3D images [35, 38, 12, 23, 2, 15] and as-

sure diffeomorphisms [47, 48]. In these approaches, costly

numerical optimization is only required during training of

the regression model. Both end-to-end approaches [12, 23,

2, 15] and approaches requiring the desired registration pa-

rameters during training exist [47, 48, 35]. As end-to-end

approaches differentiate through the transformation map, Φ,

they were motivated by the spatial transformer work [25].

One of the main conceptual downsides of current regres-

sion approaches is that they either explicitly encode reg-

ularity when computing the registration parameters to ob-

tain the training data [47, 48, 35], impose regularity as part

of the loss [23, 2, 15] to avoid ill-posedness, or use low-

dimensional parameterizations to assure regularity [38, 12].

Consequentially, these models do not estimate a deforma-

tion model from data, but instead impose it by choosing

a regularizer. Ideally, one would like a registration model

which (1) regularizes according to deformations present in

data, (2) is fast to compute via regression and which (3)

retains desirable theoretical properties of the registration

model (e.g., guarantees diffeomorphisms) even when pre-

dicting registration parameters via regression.

Approaches which predict momentum fields [47, 48] are

fast and can guarantee diffeomorphisms. Yet, no model ex-

ists which estimates a local spatial regularizer of a form that

guarantees diffeomorphic transformations and that can be

combined with a fast regression formulation. Our goal is

to close this gap via a momentum-based registration vari-

ant. While we will not explore regressing the momentum

parameterization here, such a formulation is expected to be

straightforward, as our proposed model has a momentum-
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parameterization similar to what has already been used suc-

cessfully for regression with a deep network [48].

2.1. Fluid-type registration algorithms

To capture large deformations and to guarantee diffeomor-

phic transformations, registration methods inspired by fluid

mechanics have been highly successful, e.g., in neuroimag-

ing [1]. Our model follows this approach. The map Φ is

obtained via time-integration of a sought-for velocity field

v(x, t). Specifically, Φt(x, t) = v(Φ(x, t), t), Φ(x, 0) = x.

For sufficiently smooth (i.e., sufficiently regularized) veloc-

ity fields, v, one obtains diffeomorphisms [14]. The corre-

sponding instance of Eq. (2.1) is

v⇤ = argmin
v

�

Z 1

0

kvk2L dt+ Sim[I0 � Φ
�1(1), I1], s.t.

Φ
�1
t +DΦ

�1v = 0, and Φ
�1(0) = id .

Here, D denotes the Jacobian (of Φ�1), kvk2L = hL†Lv, vi
is a spatial norm defined using the differential operator L
and its adjoint L†. A specific L implies an expected defor-

mation model. In its simplest form, L is spatially-invariant

and encodes a desired level of smoothness. As the vector-

valued momentum, m, is given by m = L†Lv, one can

write the norm as kvk2L = hm, vi.

In LDDMM [4], one seeks time-dependent vector fields

v(x, t). A simpler, but less expressive, approach is to use

stationary velocity fields (SVF), v(x), instead [35]. While

SVF’s are optimized directly over the velocity field v, we

propose a vector momentum SVF (vSVF) formulation, i.e.,

m⇤ = argmin
m0

�hm0, v0i+ Sim[I0 � Φ
�1(1), I1]

s.t. Φ�1
t +DΦ

�1v = 0

Φ
�1(0) = id, and v0 = (L†L)�1m0 ,

(2.2)

which is optimized over the vector momentum m0. vSVF

is a simplification of vector momentum LDDMM [44]. We

use vSVF for simplicity, but our approach directly translates

to LDDMM and is motivated by the desire for LDDMM

regularizers adapting to a deforming image.

3. Metric learning

In practice, L is predominantly chosen to be spatially-

invariant. Only limited work on spatially-varying regular-

izers exists [33, 31, 39] and even less work focuses on es-

timating a spatially-varying regularizer. A notable excep-

tion is the estimation of a spatially-varying regularizer in

atlas-space [43] which builds on a left-invariant variant of

LDDMM [37]. Instead, our goal is to learn a spatially-

varying regularizer which takes as inputs a momentum vec-

tor field and an image and computes a smoothed vector

field. Therefore, our approach, not only leads to spatially

varying metrics but can address pairwise registration, con-

trary to atlas-based learning methods, and it can adapt to de-

forming images during time integration for LDDMM1. We

focus on extensions to the multi-Gaussian regularizer [34]

as a first step, but note that learning more general regular-

ization models would be possible.

3.1. Parameterization of the metrics

Metrics on vector fields of dimension M are positive semi-

definite (PSD) matrices of M2 coefficients. Directly learn-

ing these M2 coefficients is impractical, since for typical

3D image volumes M is in the range of millions. We there-

fore restrict ourselves to a class of spatially-varying mix-

tures of Gaussian kernels.

Multi-Gaussian kernels. It is customary to directly spec-

ify the map from momentum to vector field via Gaussian

smoothing, i.e., v = G?m (here, ? denotes convolution). In

practice, multi-Gaussian kernels are desirable [34] to cap-

ture multi-scale aspects of a deformation, where

v =

 

N�1
X

i=0

wiGi

!

?m , wi � 0,

N�1
X

i=0

wi = 1 . (3.1)

Gi is a normalized Gaussian centered at zero with standard

deviation �i and wi is a positive weight. The class of kernels

that can be approximated by such a sum is already large2.

A naïve approach to estimate the regularizer would be to

learn wi and �i. However, estimating either the variances

or weights benefits from adding penalty terms to encourage

desired solutions. Assume, for simplicity, that we have a

single Gaussian, G, v = G ?m, with standard deviation �.

As the Fourier transform is an L2 isometry, we can write

Z

m(x)>v(x) dx = hm, vi = hm̂, v̂i

= hv̂/Ĝ, v̂i =

Z

eπ
2
2σ2k>kv(k)>v(k) dk , (3.2)

where ·̂ denotes the Fourier transform and k the frequency.

Since Ĝ is a Gaussian without normalization constant, it fol-

lows that we need to explicitly penalize small �’s if we want

to favor smoother transformations (with large �’s). Indeed,

the previous formula shows that a constant velocity field has

the same norm for every positive �. More generally, in the-

ory, it is possible to reproduce a given deformation by the

use of different kernels. Therefore, a penalty function on the

parameterizations of the kernel is desirable. We design this

penalty via a simple form of optimal mass transport (OMT)

between the weights, as explained in the following.

1We use vSVF here and leave LDDMM as future work.
2All the functions h : R>0 7! R such that h(|x � y|) is a kernel on

R
d for every d � 1 are in this class.
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OMT on multi-Gaussian kernel weights. Consider a

multi-Gaussian kernel as in Eq. (3.1), with standard devia-

tions 0 < �0  �1  · · ·  �N�1. It would be desirable to

obtain simple transformations explaining deformations with

large standard deviations. Interpreting the multi-Gaussian

kernel weights as a distribution, the most desirable configu-

ration would be wi 6=N�1 = 0, wN�1 = 1, i.e., using only

the Gaussian with largest variance. We want to penalize

weight distributions deviating from this configuration, with

the largest distance given to w0 = 1, wi 6=0 = 0. This can

be achieved via an OMT penalty. Specifically, we define

this penalty on w = [w0, . . . , wN�1] as

OMT(w) =

N�1
X

i=0

wi

�

�

�

�

log
�N�1

�i

�

�

�

�

r

, (3.3)

where r � 1 is a chosen power. In the following, we set

r = 1. This penalty is zero if wN�1 = 1 and will have its

largest value for w0 = 1. It can be standardized as

[OMT(w) =

�

�

�

�

log
�N�1

�0

�

�

�

�

�r N�1
X

i=0

wi

�

�

�

�

log
�N�1

�i

�

�

�

�

r

(3.4)

with [OMT(w) 2 [0, 1] by construction.

Localized smoothing. This multi-Gaussian approach is a

global regularization strategy, i.e., the same multi-Gaussian

kernel is applied everywhere. This leads to efficient com-

putations, but does not allow capturing localized changes

in the deformation model. We therefore introduce local-

ized multi-Gaussian kernels, embodying the idea of tissue-

dependent localized regularization. Starting from a sum of

kernels
PN�1

i=0
wiGi, we let the weights wi vary spatially,

i.e., wi(x). To ensure diffeomorphic deformations, we set

the weights wi(x) = Gσsmall
? !i(x), where !i(x) are pre-

weights which are convolved with a Gaussian with small

standard deviation. An appropriate definition for how to use

these weights to go from the momentum to the velocity is

required to assure diffeomorphic transformations. Multiple

approaches are possible. We use the model

v0(x)
def.

= (K(w) ?m0)(x)

=

N�1
X

i=0

p

wi(x)

Z

y

Gi(|x� y|)
p

wi(y)m0(y) dy ,

(3.5)

which, for spatially constant wi(x), reduces to the standard

multi-Gaussian approach. In fact, this model guarantees dif-

feomorphisms, as long as the pre-weights are not too degen-

erate, as ensured by our model described hereafter. This fact

is proven in the supplementary material (A.1). Motivated

by the physical interpretation of these pre-weights and by

diffeomorphic registration guarantees, we require a spatial

regularization of these pre-weights via TV or H1. We use

color-TV [6] for our experiments. As the spatial transfor-

mation is directly governed by the weights, we impose the

OMT penalty locally. Based on Eq. (2.2), we optimize the

following:

m⇤ = argmin
m0

�hm0, v0i + Sim[I0 � Φ
�1(1), I1] +

�OMT

Z

[OMT(w(x)) dx +

�TV

v

u

u

t

N�1
X

i=0

✓
Z

�(krI0(x)k)kr!i(x)k2 dx

◆2

,

(3.6)

subject to the constraints Φ�1
t +DΦ

�1v = 0 and Φ
�1(0) =

id; �TV,�OMT � 0. The partition of unity defining the met-

ric, intervenes in the L2 scalar product hm0, v0i.

Further, in Eq. (3.6), the OMT penalty is integrated point-

wise over the image-domain to support spatially-varying

weights; �(x) 2 R
+ is an edge indicator function, i.e.,

�(krIk) = (1 + ↵krIk)�1, with ↵ > 0 ,

to encourage weight changes coinciding with image edges.

Local regressor. To learn the regularizer, we propose a lo-

cal regressor from the image and the momentum to the pre-

weights of the multi-Gaussian. Given the momentum m and

image I (the source image I0 for vSVF; I(t) at time t for

LDDMM) we learn a mapping of the form: fθ : Rd ⇥R !
∆

N�1 , where ∆N�1 is the N�1 unit/probability simplex3.

We will parametrize fθ by a CNN in §3.1.1. The following

attractive properties are worth pointing out:

1) The variance of the multi-Gaussian is bounded by the

variances of its components. We retain these bounds and

can therefore specify a desired regularity level.

2) A globally smooth set of velocity fields is still computed

(in Fourier space) which allows capturing large-scale

regularity without a large receptive field of the local re-

gressor. Hence, the CNN can be kept efficient.

3) The local regression strategy makes the approach suit-

able for more general registration models, e.g., for LD-

DMM, where one would like the regularizer to follow

the deforming source image over time.

3.1.1 Learning the CNN regressor

For simplicity we use a fairly shallow CNN with two lay-

ers of filters and leaky ReLU (lReLU) [27] activations. In

detail, the data flow is as follows: conv(d + 1, n1) !
BatchNorm ! lReLU ! conv(n1, N) ! BatchNorm !

3We only explore mappings dependent on the source image I0 in our

experiments, but more general mappings also depending on the momen-

tum, for example, should be explored in future work.
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weighted-linear-softmax. Here conv(a, b) denotes a

convolution layer with a input channels and b output feature

maps. We used n1 = 20 for our experiments and convolu-

tional filters of spatial size 5 (5⇥ 5 in 2D and 5⇥ 5⇥ 5 in

3D). The weighted-linear-softmax activation function,

which we formulated, maps inputs to ∆
N�1. We designed

it such that it operates around a setpoint of weights wi which

correspond to the global weights of the multi-Gaussian ker-

nel. This is useful to allow models to start training from

a pre-specified, reasonable initial configuration of global

weights, parameterizing the regularizer. Specifically, we de-

fine the weighted linear softmax �w : Rk ! ∆
N�1 as

�w(z)j =
clamp0,1(wj + zj � z)

PN�1

i=0
clamp0,1(wi + zi � z)

, (3.7)

where �w(z)j denotes the j-th component of the output, z
is the mean of the inputs, z, and the clamp function clamps

the values to the interval [0, 1]. The removal of the mean

in Eq. (3.7) assures that one moves along the probability

simplex. That is, if one is outside the clamping range, then

N�1
X

i=0

clamp0,1(wi+zi�z) =

N�1
X

i=0

wi+zi�z =

N�1
X

i=0

wi = 1

and consequentially, in this range, �w(z)j = wj + zj � z.

This is linear in z and moves along the tangent plane of

the probability simplex by construction. As a CNN with

small initial weights will produce an output close to zero,

the output of �w(z) will initially be close to the desired set-

point weights, wj , of the multi-Gaussian kernel. Once the

pre-weights, !i(x), have been obtained via this CNN, we

compute multi-Gaussian weights via Gaussian smoothing.

We use � = 0.02 in 2D and � = 0.05 in 3D throughout all

experiments (§4).

3.2. Discretization, optimization, and training

Discretization. We discretize the registration model using

central differences for spatial derivatives and 20 steps in 2D

(10 in 3D) of 4th order Runge-Kutta integration in time.

Gaussian smoothing is done in the Fourier domain. The

entire model is implemented in PyTorch4; all gradients are

computed by automatic differentiation [32].

Optimization. Joint optimization over the momenta of a set

of registration pairs and the network parameters is difficult

in 3D due to GPU memory limitations. Hence, we use a cus-

tomized variant of stochastic gradient descent (SGD) with

Nesterov momentum (0.9) [41], where we split optimiza-

tion variables (1) that are shared and (2) individual between

registration-pairs. Shared parameters are for the CNN. Indi-

vidual parameters are the momenta. Shared parameters are

4Available at https://github.com/uncbiag/registration, also in-

cluding various other registration models such as LDDMM.

kept in memory and individual parameters, including their

current optimizer states, are saved and restored for every

random batch. We use a batch-size of 2 in 3D and 100 in

2D and perform 5 SGD steps for each batch. Learning rates

are 1.0 and 0.25 for the individual and the shared parameters

in 3D and 0.1 and 0.025 in 2D, respectively. We use gradi-

ent clipping (at a norm of one, separately for the gradients

of the shared and the individual parameters) to help balance

the energy terms. We use PyTorch’s ReduceLROnPlateau

learning rate scheduler with a reduction factor of 0.5 and a

patience of 10 to adapt the learning rate during training.

Curriculum strategy: Optimizing jointly over momenta,

global multi-Gaussian weights and the CNN does not work

well in practice. Instead, we train in two stages: (1) In the

initial global stage, we pick a reasonable set of global Gaus-

sian weights and optimize only over the momenta. This al-

lows further optimization from a reasonable starting point.

Local adaptations (via the CNN) can then immediately cap-

ture local effects rather than initially being influenced by

large misregistrations. In all experiments, we chose these

global weights to be linear with respect to their associated

variances, i.e., wi = �2
i /(
PN�1

j=0
�2
j ). Then, (2) start-

ing from the result of (1), we optimize over the momenta

and the parameters of the CNN to obtain spatially-localized

weights. We refer to stages (1) and (2) as global and lo-

cal optimization, respectively. In 2D, we run global/local

optimization for 50/100 epochs. In 3D, we run for 25/50

epochs. Gaussian variances are set to {0.01, 0.05, 0.1, 0.2}
for images in [0, 1]d. We use normalized cross correlation

(NCC) with � = 0.1 as similarity measure. See §B of the

supplementary material for further implementation details.

4. Experiments

We tested our approach on three dataset types: (1) 2D syn-

thetic data with known ground truth (§4.1), (2) 2D slices of

a real 3D brain magnetic resonance (MR) images (§4.2),

and (3) multiple 3D datasets of brain MRIs (§4.3). Im-

ages are first affinely aligned and intensity standardized by

matching their intensity quantile functions to the average

quantile function over all datasets. We compute deforma-

tions at half the spatial resolution in 2D (0.4 times in 3D)

and upsample Φ
�1 to the original resolution when evaluat-

ing the similarity measure so that fine image details can be

considered. This is not necessary in 2D, but essential in 3D

to reduce GPU memory requirements. We use this approach

in 2D for consistency.

All evaluations (except for §4.2 and for the within dataset

results of §4.3) are with respect to a separate testing set.

For testing, the previously learned regularizer parameters

are fixed and numerical optimization is over momenta only

(in particular, 250/500 iterations in 2D and 150/300 in 3D

for global/local optimization).
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Figure 2: Example registration results using local metric opti-

mization for the synthetic test data. Results are shown for different

values of λOMT with the total variation penalty fixed to λTV = 0.1.

Visual correspondence between the warped source and the target

images are high for all settings. Estimates for the standard devia-

tion stay largely stable. However, deformations are slightly more

regularized for higher OMT penalties. This can also be seen based

on the standard deviations (best viewed zoomed).

4.1. Results on 2D synthetic data

We created 300 synthetic 128 ⇥ 128 image pairs of ran-

domly deformed concentric rings (see supplementary mate-

rial, §C). Shown results are on 100 separate test cases.

Fig. 2 shows registrations for �OMT 2 {15, 50, 100}. The

TV penalty was set to �TV = 0.1. The estimated standard

deviations, �2(x) =
PN�1

i=0
wi(x)�

2
i , capture the trend of

the ground truth, showing a large standard deviation (i.e.,

high regularity) in the background and the center of the im-

age and a smaller standard deviation in the outer ring. The

standard deviations are stable across OMT penalties, but

show slight increases with higher OMT values. Similarly,

deformations get progressively more regular with larger

OMT penalties (as they are regularized more strongly), but

visually all registration results show very similar good cor-

respondence. Note that while TV was used to train the

model, the CNN output is not explicitly TV regularized, but

nevertheless is able to produce largely constant regions that

are well aligned with the boundaries of the source image.

Fig. 3 shows the corresponding estimated weights. They

are stable for a wide range of OMT penalties.

Finally, Fig. 4 shows displacement errors relative to the
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Figure 3: Estimated multi-Gaussian weights (blue=0; yellow=1)

for the registrations in Fig. 2 w.r.t. different λOMT’s. Weight esti-

mates are very stable across λOMT. While the overall standard de-

viation (Fig. 2) approximates the ground truth, the weights for the

outer ring differ (ground truth weights are [0.05, 0.55, 0.3, 0.1])
from the ground truth. They approximately match for the back-

ground and the interior (ground truth [0, 0, 0, 1]).
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Figure 4: Displacement error (in pixel) with respect to the ground

truth (GT) for various values of the total variation penalty, λTV (t)

and the OMT penalty, λOMT (o). Results for the inner and the

outer rings show subpixel registration accuracy for all local met-

ric optimization results (*_l). Overall, local metric optimization

substantially improves registrations over the results obtained via

initial global multi-Gaussian regularization (global).

ground truth deformation for the interior and the exterior

ring of the shapes. Local metric optimization significantly

improves registration (over initial global multi-Gaussian

regularization); these results are stable across a wide range

of penalties with median displacement errors < 1 pixel.

4.2. Results on real 2D data

We used the same settings as for the synthetic dataset. How-

ever, here our results are for 300 random registration pairs

of axial slices of the LPBA40 dataset [26].
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Figure 5: Example registration results using local metric opti-

mization for different λOMT’s and λTV = 0.1. Visual correspon-

dences between the warped source images and the target image

are high for all values of the OMT penalty. Standard deviation es-

timates capture the variability of the ventricles and increased reg-

ularity with increased values for λOMT (best viewed zoomed).

Fig. 5 shows results for �OMT 2 {15, 50, 100}; �TV = 0.1.

Larger OMT penalties yield larger standard deviations and

consequentially more regular deformations. Most regions

show large standard deviations (high regularity), but lower

values around the ventricles and the brain boundary – areas

which may require substantial deformations.

Fig. 6 shows the corresponding estimated weights. We have

no ground truth here, but observe that the model produces

consistent regularization patterns for all shown OMT values

({15,50,100}) and allocates almost all weights to the Gaus-

sians with the lowest and the highest standard deviations,

respectively. As �OMT increases, more weight shifts from

the smallest to the largest Gaussian.

4.3. Results on real 3D data

We experimented using the 3D CUMC12, MGH10, and

IBSR18 datasets [26]. These datasets contain 12, 10, and

18 images. Registration evaluations are with respect to all

132 registration pairs of CUMC12. We use �OMT = 50,

�TV = 0.1 for all tests5. Once the regularizer has been

learned, we keep it fixed and optimize for the vSVF vector

momentum. We trained independent models on CUMC12,

MGH10, and IBSR18 using 132 image pairs on CUMC12,

90 image pairs on MGH10, and a random set of 150 im-

age pairs on IBSR18. We tested the resulting three models

on CUMC12 to assess the performance of a dataset-specific

model and the ability to transfer models across datasets.

5We did not tune these parameters and better settings may be possible.
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Figure 6: Estimated multi-Gaussian weights for different λOMT

for real 2D data. Weights are mostly allocated to the Gaussian with

the largest standard deviation (see colorbars; best viewed zoomed).

A shift from w0 to w3 can be observed for larger values of λOMT.

While weights shift between OMT setting, the ventricle area is

always associated with more weight on w0 (best viewed zoomed).

Tab. 1 and Fig. 7 compare to the registration methods in [26]

and across different stages of our approach for different

training/testing pairs. We also list the performance of the

most recent VoxelMorph (VM) variant [11]. We kept the

original architecture configuration, swept over a selection of

VoxelMorph’s hyperparameters and report the best results

here. Each VoxelMorph model was trained for 300 epochs

which, in our experiments, was sufficient for convergence.

Overall, our approach shows the best results among all mod-

els when trained/tested on CUMC12 (c/c local); though

results are not significantly better than for SyN, SPM5D,

and VoxelMorph. Local metric optimization shows strong

improvements over initial global multi-Gaussian regulariza-

tion. Models trained on MGH10 and IBSR18 (m/c local

and i/c local) also show good performance, slightly lower

than for the model trained on CUMC12 itself, but higher

than all other competing methods. This indicates that the

trained models transfer well across datasets. While the top

competitor in terms of median overlap (SPM5D) produces

outliers (cf. Fig. 7), our models do not. In case of Vox-

elMorph we observed that adding more training pairs (i.e.,

using all pairs of IBSR18, MGH18 & LBPA40) did not im-

prove results (cf. Tab. 1 */c VM).

In Tab. 2, we list statistics for the determinant of the Jaco-

bian of Φ�1 on CUMC12, where the model was also trained

on. This illustrates how transformation regularity changes

between the global and the local regularization approaches.

As expected, the initial global multi-Gaussian regulariza-

tion results in highly regular registrations (i.e., determi-

nant of Jacobian close to one). Local metric optimization

achieves significantly improved target volume overlap mea-

sures (Fig. 7) while keeping good spatial regularity, clearly

showing the utility of our local regularization model. Note
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