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Abstract

Efficient and reliable methods for training of object de-

tectors are in higher demand than ever, and more and more

data relevant to the field is becoming available. How-

ever, large datasets like Open Images Dataset v4 (OID) are

sparsely annotated, and some measure must be taken in or-

der to ensure the training of a reliable detector. In order to

take the incompleteness of these datasets into account, one

possibility is to use pretrained models to detect the presence

of the unverified objects. However, the performance of such

a strategy depends largely on the power of the pretrained

model. In this study, we propose part-aware sampling, a

method that uses human intuition for the hierarchical rela-

tion between objects. In terse terms, our method works by

making assumptions like “a bounding box for a car should

contain a bounding box for a tire”. We demonstrate the

power of our method on OID and compare the performance

against a method based on a pretrained model. Our method

also won the first and second place on the public and pri-

vate test sets of the Google AI Open Images Competition

2018.

1. Introduction

With recent advances in automation technologies that are

dependent on the method of extracting information from the

images, the task of object detection has been becoming in-

creasingly important in the field of artificial intelligence.

Also growing with the interest for the methods of ob-

ject detection is the size of the dataset that is available for

training purpose. Recently published Open Images Dataset

v4 (OID) features up to 500 categories and 1.6M images

with 14M objects to be detected [11]. It is a dataset on an

unprecedented scale in terms of the number of annotated

images, and each image in the dataset on average contains

∼ 7 categories that were verified by humans (verified cate-

gories) . As a human-annotated dataset, however, the com-

pleteness of OID is inevitably somewhat questionable. As

claimed in their work, the annotation recall is 43%, which

means that more than half the objects in the images are

missing annotations.

The major problem with this kind of a dataset is that a

network would suffer from incorrect training signals due to

objects missing annotations. One naive but sure way to deal

with such case is to simply exclude regions surrounding ob-

jects missing annotations during the evaluation of the objec-

tive function. This task, however, is easier said than done,

because the validity of this approach depends on our ability

to detect the unverified object that is actually present. One

option is to train a pretrained model and use it as an oracle

to tell the presence of unverified object [26]. Nevertheless,

the performance of such an approach is limited by the power

of the pretrained model.

A more intuitive approach is to utilize the intuition that

we are born with. If ”car” is present in the image, ”tire”

should be present in the bounding box of ”car” with high

probability. If ”door” is present in the image, ”door han-

dle” should be present in the bounding box of ”door” as

well. Therefore, leaving some pathological cases side, if

”car” is verified but ”tire” is not, then it probably repre-

sents the dangerous case that we are concerned with—that

is, ”tire” is an unverified but present object in the image,

and we should not include the cost regarding the ”tire” in

the objective function. Better yet, if ”car” is present, then

we should simply not question the presence of an object of

a part category like ”tire” in the bounding box of ”car”.

This is in fact exactly what our part-aware sampling

method does. Given a verified object in the image and a set

of all sub-bounding boxes contained in the bounding box of

the object, we refrain from asking the detector to detect in

the sub-boxes the objects that are, based on our intuition,

part of the object captured by the parent bounding box.

In order to find the better way to detect unannotated ob-

jects, we compared our approach against the method based

on the pretrained model. The method using a pretrained

model is optimized to work well for sparsely annotated

dataset by us. We call the method pseudo label-guided sam-

pling, and verified its effectiveness on OID and artificially

created sparsely annotated data based on MS COCO [14].

Our part-aware sampling leads to an average 0.7 AP im-
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Figure 1: Example annotations in Open Images Dataset v4.

The positively and negatively verified labels are displayed

on the right of the images in green and red, respectively.

Many human part categories are absent in the verified la-

bels of the top image. Such missing annotations create false

training signals for a normal object detector.

provement across all categories and 9.2 AP improvement on

part categories. In particular, for human part categories like

human ear and human hand, we confirmed an improvement

of 22.7 AP on average. Based on our part-aware sampling,

we achieved the 1st and 2nd places on the public and private

test sets of Google AI Open Images Competition 2018.

2. Related Works

An object detector is commonly trained with standard

cross-entropy loss for classifying the category of each

bounding box and robust loss for regressing the size of

the detection box [18, 15, 7, 17, 19]. Some recent work

has, however, begun to address modifications of the loss

function when training an object detector in order to im-

prove performance. Shrivastava et al. [21] proposed online

hard example mining (OHEM) that only backpropagates

losses of hard examples, thus making the network focus

on discriminating difficult cases. Focal loss [13] is another

method that proposes to attenuate the loss the more confi-

dent the network is about a prediction, which also leads to

a similar effect as OHEM. Contrary to these methods, our

proposed part-aware sampling fully ignores losses of prob-

able unannotated false negatives during training. Loss at-

tenuation methods can be applied jointly with our method,

making our approach orthogonal to these previous works.

Prediction results of a network are used to train an

object detector with limited annotation in many previous

works [20, 22, 2, 3, 23]. Yan et al. [26] uses pseudo la-

bels to tackle the problem where a subset of a dataset is

annotated with bounding boxes and the rest of the dataset

without annotations. Inoue et al. [10] works on learning an

object detector on a domain with no bounding box annota-

tion by using pseudo labels generated by a model trained

on another domain with shared categories. Wu et al. [25]

proposes score-based soft sampling, which uses pseudo la-

bels to complement sparse annotations. The method is stud-

ied only in PASCAL VOC, which is quite small in today’s

standard. Although they conclude the technique to be un-

reliable, their conclusion assumes that performance of an

object detector is weak, which may not be true in the case

when a large network is trained on a large dataset.

The work of Zhang et al. [27] targets the task of fine-

grained object classification. In their method, they train

a weakly supervised network for detecting discriminative

local parts that can be used for fine-grained classification.

Their approach is similar to ours in that it is part-aware, al-

though it differs in the fact that while they learn a network

to detect parts as an auxiliary task during training, we lever-

age the relationship between parts in order to prevent false

negative due to missing ground truths.

Fang et al. [5] propose a framework for training an ob-

ject detector that utilizes an external knowledge graph, ex-

ploiting knowledge about what types of objects commonly

occur together. While their approach aims to learn knowl-

edge possibly not in the training set, such as that a cat often

sits on a table, our approach directly aims to tackle the issue

of missing ground truth annotations in an image, which de-

teriorates object detection performance by increasing false

negatives.

3. Problems

Open Images Dataset v4 (OID) is a recently introduced

object detection dataset on an unprecedented scale in terms

of the numbers of annotated images and bounding boxes as

well as the number of categories supported. The dataset is

different from its predecessors not only in terms of its size

but also in terms of its requirement on an annotation by al-

lowing a subset of categories to be not annotated even if the

categories are present in an image. For each image, anno-

tation only covers a set of categories called verified cate-

gories, which is a subset of categories that annotators check

for existence in an image. In some images, verified cate-

gories do not span all categories present in an image, re-

26511



(a) Human annotations on ”human” and ”car”. (b) RoI proposals that are used for training. (c) Blue: Proposals that ignore parts of ”person”,

such as ”footwear” and ”human face”. Green:

Proposals that ignore parts of ”cars”, such as ”li-

cense plate” and ”tire”.

Figure 2: Description of part-aware sampling. In the left and the middle images, the ground truths and RoI proposals are

displayed. These are the inputs to the algorithm. On the right, we display a subset of the RoI proposals that are ignored for

classification loss of certain part categories based on part and subject relationships.

sulting in a subset of present instances not annotated. Ver-

ified categories consist of positively verified and negatively

verified categories. Positively verified categories exist in

an image, and negatively verified categories are checked by

human annotators not to exist in the image. Figure 1 demon-

strates two example images containing people with different

verified categories. Since a much larger set of human part

categories are verified in the bottom image, the annotations

of these categories are denser.

In OID, there are on average 7.4 categories in verified

categories for each image, which is much fewer than the 500
categories supported by the dataset. Moreover, although

the number of supported categories are more than six times

larger than COCO, OID contains on average almost the

same number of positively verified categories (i.e., 3.4 and

2.9 categories per image for OID and COCO, respectively)

implying that the annotations of OID are much more sparse

than COCO. In fact, the authors of OID reported that the

recall of positively verified categories is only 43% [11].

4. Methods

We explore two methods of determining objects that are

unannotated in a sparsely annotated dataset. First, we pro-

pose part-aware sampling, which ignores classification loss

for part categories when an instance of them is inside an

instance of their subject categories. Second, we use pseudo

labels generated from a pretrained model to exclude regions

that are likely not to be annotated. Despite the idea of

pseudo labels being widely recognized [26, 25], there is not

much consensus on how to utilize it, especially for object

detection. We propose a pipeline to filter unreliable pseudo

labels using cues that are available from the structure of

the problem. We call the method pseudo label-guided sam-

pling.

4.1. Basic Architecture

We use a proposal-based object detector like Faster R-

CNN [18] in this work. The detection pipeline consists

of a region proposal network that produces a set of class-

agnostic region proposals around instances and the main

network that classifies each proposal into categories and re-

fines it to better localize an instance. A proposal is clas-

sified to the background category or one of the foreground

categories. During training, a category is assigned to each

proposal, and this assignment is used to calculate classifi-

cation loss and localization loss like Faster R-CNN [18]. In

this work, the classification loss is calculated as the sum of

sigmoid cross entropy loss for each proposal and each cate-

gory as:

Lcls = −
∑

i

∑

c

lic log pic

lic ∈ {−1, 0, 1} ,

(1)

where lic = 1 and lic = −1 when the i-th proposal is as-

signed or not assigned to category c, respectively. Also, lic
can be set to 0, which means that the classification loss for

category c is ignored for the i-th proposal. We explore later

in this section how to determine ignored categories for each

RoI proposal, which plays a critical role in diminishing in-

correct training signals created by missing annotations.

4.2. Part­Aware Sampling

For certain pairs of categories, one is a part or a posses-

sion of the other in most of the images where they co-occur.
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We call the categories in such kind of a pair as part category

and subject category. For instance, human parts like faces

are usually parts of people, and tires are often parts of cars.

Also, accessories and clothes are in many cases possessed

by people in the images of the OID dataset. Furthermore,

for these pairs of categories, we find that annotation is often

lacking for part categories.

In Table 1, we show statistics that supports our observa-

tion of part and subject relationships. First, we measure the

ratio of a bounding box of a part category to be included in a

subject category as shown in row included. We determine if

a box b1 is included in another box b2 when asymmetric in-

tersection over union (aiou(b1, b2) =
area(b1∩b2)
area(b1)

) is higher

than a certain threshold τ . The ratio included is formally

computed as

#{bp ∈ Bp | ∃bs ∈ Bs, aiou(bp, bs) > τ}

#Bp
, (2)

where Bp and Bs are the sets of bounding boxes of a part

category p and a category s, which is the subject category

of p. Note that we only consider bounding boxes in a set of

images Ip ∩ Is, where Ic is the set of images that contain

category c. Furthermore, in row co-occur of Table 1, we

show the ratio of images that contain annotations of both

part and subject categories, which is formulated as
#Ip∩Is

#Is

.

From row included, We can observe that a part cate-

gory is included in its subject category in more than 90%
of bounding boxes for 39 out of 47 pairs. Thus, the part and

subject relationships are reflected in spatial relationships of

objects in OID. From row co-occur, the percentages are too

small for many pairs of categories based on our common

sense, implying that annotation is severely missing for part

categories. For instance, the percentage of human eyes is

only 2.8%.

To reduce false training signals, we introduce part-aware

sampling that selects categories to ignore for classification

loss from RoI proposals. The main idea behind this tech-

nique is that given the high likelihood that instances of part

categories are included in subject categories, it is safer to ig-

nore classification loss for part categories for RoI proposals

included in a subject category. The technique is used only

when part categories are not included in verified categories.

Figure 2 illustrates the technique by visualizing a subset of

RoI proposals that are ignored for classification loss of parts

of people and cars.

In our work, we use statistics collected as in Table 1 and

prior knowledge of category relationships to design a map-

ping P , which maps a label to its part categories. Algo-

rithm 1 summarizes this method.

Algorithm 1 Framework of Part-Aware Sampling

Input: RoI proposals {ri}
N
i=1, ground truth boxes

{bj}
M
j=1, ground truth labels {lj}

M
j=1, verified labels V , and

a set P that maps a subject category to the list of its part

categories.

Initialize: Set I ← {{}i}
N
i=1

1: for i = 1 to N do

2: for j = 1 to M do

3: if aiou(ri, bj) > τ and lj in P then

4: for p in P[lj ] do

5: if p not in V then

6: Append p to Ii

Output: Set of categories I, which are ignored when cal-

culating classification loss for each RoI proposal.

4.3. Pseudo Label­Guided Sampling

Alternatively to part-aware sampling, we also present

pseudo label-guided sampling to tackle the sparse annota-

tion problem. For this method, we train a network twice

and use the pseudo labels generated from the first model to

guide the training of the second model.

We filter prediction results of a trained model to generate

pseudo labels to complement sparse annotation for unanno-

tated regions. We first ignore all prediction results with the

categories included in verified labels. Second, we ignore

predicted boxes with high IoU with any of the actual ground

truths because these predicted boxes are likely the result of

misclassifying an annotated instance. Third, prediction re-

sults with scores below a score threshold are rejected. The

score threshold T is determined for each category based

on the precision on the withheld dataset at different score

thresholds. The minimum precision is specified as a hy-

perparameter that is used to determine the score threshold

T by setting it as the minimum threshold that achieves the

precision.

The algorithm is summarized in Algorithm 2. Figure 3

shows examples of pseudo labels generated by the algo-

rithm.

5. Experiments

We conduct experiments on sparse COCO and Open Im-

ages Dataset v4 (OID). Sparse COCO is a dataset created

from MS COCO [14] that contains sparse annotation. Since

the size of sparse COCO is much smaller than OID and has

access to complete annotations for all objects for analysis,

we use this dataset to study pseudo label-guided sampling

and the negative effect of missing annotations in general

before experimenting on OID. Since part and subject rela-

tionships are not common in sparse COCO, we were only

able to experiment part-aware sampling with OID.
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Table 1: Statistics of part and subject categories. See the text for definitions of included and co-occur.

Subject Person

Part Arm Ear Nose Mouth Hair Eye Beard Face Head Foot Leg Hand Glove Hat Dress Fedora

Included (%) 91.3 94.0 93.1 94.7 89.2 94.7 99.2 91.8 88.1 87.9 90.5 90.3 95.0 93.7 97.5 94.5

Co-occur (%) 4.87 0.98 3.40 2.90 6.75 2.81 0.30 39.7 5.76 0.05 1.98 2.40 0.05 0.99 3.77 0.33

Subject Person

Part Footwe. Sandal Boot Sports. Coat Sock Glasse. Belt Helmet Jeans High h. Scarf Swimwe. Earrin. Bicycl. Shorts

Included (%) 84.6 89.8 90.8 95.0 92.9 85.5 96.6 96.7 93.7 91.2 93.0 97.4 92.1 96.7 94.8 92.2

Co-occur (%) 15.2 0.07 0.08 0.07 0.37 0.02 5.04 0.02 0.82 3.67 0.09 0.20 0.36 0.02 0.55 0.79

Subject Person Car Door

Part Baseba. Minisk. Cowboy. Goggles Jacket Shirt Sun ha. Suit Trouse. Brassi. Tie Licens. Wheel Tire Handle

Included (%) 96.1 98.6 93.3 95.6 94.8 97.9 91.8 96.7 90.8 98.2 98.5 91.3 80.6 79.2 95.3

Co-occur (%) 0.17 0.01 0.21 0.79 1.51 0.59 0.48 5.38 0.54 0.11 0.91 2.52 39.97 14.5 1.65

Algorithm 2 Framework of Pseudo Label-Guided Sam-

pling

Input: RoI proposals {ri}
N
i=1, ground truth boxes

{bj}
M
j=1, ground truth labels {lj}

M
j=1, and verified labels V .

Also, output of a pre-trained model that includes bounding

boxes {b̂k}
L
k=1, labels {l̂k}

L
k=1, and scores {ŝk}

L
k=1. Also,

T is a set of score thresholds for each category.

Initialize: Set I ← {{}i}
N
i=1

1: K = {1, · · · , L}
2: for k = 1 to L do

3: if ŝk < T [l̂k] or l̂k in V then

4: Remove k from K; Continue

5: for j = 1 to M do

6: if iou(bj , b̂k) > 0.8 then

7: Remove k from K; Break

8: for i = 1 to N do

9: for k in K do

10: if iou(bi, b̂k) > 0.5 then

11: Append l̂k to Ii

Output: Set of categories I, which are ignored when cal-

culating classification loss for each RoI proposal.

5.1. Implementation Details

We use Feature Pyramid Networks [12] for our exper-

iments. The feature extractor is ResNet50 [8] for experi-

ments using sparse COCO and SE-ResNeXt50 [9] for ex-

periments using OID. The larger network is selected for

Open Images Dataset because the capacity of the base ex-

tractor needs to be large enough to learn such a large dataset.

The initial bias for the final classification layer is set to

a large negative number to prevent the training from get-

ting unstable in the beginning. We set the initial weight

of the base extractor with the weights of an image clas-

sification network trained on the ImageNet classification

task [4]. We use stochastic gradient descent with momen-

(a) (b)

Figure 3: Examples of pseudo labels. Red bounding boxes

are the ground truths annotations and green bounding boxes

are pseudo labels. (a): ”Bottle” is annotated. ”Windows”

and ”cars” are included in the pseudo labels. (b): ”French

fry” and ”wine glass” are annotated. ”Wine”, ”cocktail” and

”plate” are included in the pseudo labels.

tum set to 0.9 for optimization. The base learning rate is

set to 0.00125× batchsize. We use a warm-up learning rate

schedule to stabilize training in the beginning. For sparse

MS COCO, we trained for 90000 iterations with 16 images

in each batch. The learning rate is multiplied by 0.1 at the

60000-th and the 80000-th iterations. For OID, we trained

for 12 epochs. The learning rate is scheduled by a cosine

function η = η0
cos (% of progress×π)+1

2 , where η and η0 are the

learning rate and the initial learning rate. We scale images

during training so that the length of the smaller edge is be-

tween [650, 1056]. Also, we randomly flip images horizon-

tally to augment training data. We use Chainer [24, 1, 16]

as our deep learning framework.

5.2. Sparse COCO

Sparse COCO is a dataset artificially created by ran-

domly deleting labels in images of MS COCO. For each

category in MS COCO, among the set of images contain-
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Table 2: Statistics of sparse COCO for different probabili-

ties α of deleting annotations.

0 0.3 0.5 0.7

number of boxes per image 2.90 5.03 3.60 2.17

number of distinct categories per image 7.19 2.03 1.45 0.87

ing the category, we delete all annotations of the category

for the images selected from the set by probability α. This

means that for each image in the artificially created dataset,

the instances of the labeled categories are annotated exhaus-

tively as in the original MS COCO dataset, but there could

be categories with no annotation even if instances of the cat-

egories exist. Table 2 shows the statistics of the dataset cre-

ated artificially with different probabilities (0.3, 0.5, 0.7).

We use the training set of COCO 2017 object detection

challenge to create sparse COCO for training networks and

tuning hyper parameters. The validation split is used with-

out deleting annotations for validation. We evaluate models

using mmAP used in the COCO competition.

We first evaluate different methods with different level

of missing annotations. Among the methods we tried, we

fixed every setting except the way different RoI proposals

are evaluated as positive, negative or ignored samples for

training the classification network. Note that we do not

compare with part-aware sampling since COCO categories

do not include part categories. Here are the methods:

• Baseline: This method follows the standard training

procedure that assumes a dataset with an exhaustive

annotation. RoIs around instances that are not anno-

tated are evaluated falsely as negative samples for this

method.

• Oracle ignore: This method uses the ground-truth that

are deleted in order to evaluate how much performance

loss can be recovered by labeling RoIs using oracle

information. For any RoI proposals that have IoU with

the deleted ground-truth higher than 0.5, this method

ignores classification loss calculated from them.

• Oracle positive: Similarly to ”oracle ignore” de-

scribed above, this method also uses the ground-truth

that is deleted. Instead of ignoring RoIs overlap-

ping with the deleted ground-truth during training, this

method uses those RoIs as positive samples. The dif-

ference between this method and training on a fully

annotated dataset is that during the sampling of RoIs

that are actually used for training, this method does

not use the deleted ground-truth to oversample regions

around the ground-truth, thus making the comparison

with other methods fair.

• Pseudo label-guided sampling: The method is de-

scribed in Section 4.3. Score thresholds are selected

by training another model with the default training

scheme using 80% of the training data and using the

remaining 20% of the training data to calculate pre-

cisions at different score thresholds. We also experi-

mented assigning positive labels to RoIs that overlap

with highly confident pseudo labels.

• Overlap-based soft sampling [25]: This method mul-

tiplies weights on the loss computed using negative

samples. The weights are determined based on over-

laps with annotated bounding boxes. The method is

designed based on the assumption that regions close

to annotated ground truth can be confidently assigned

to the background. The method is demonstrated to

work well with PASCAL VOC according to the au-

thors. We use the same values for all hyper parame-

ters of the nonlinear function that takes overlap as in-

put and weight multiplied on the loss as output. Since

the scale of the total loss changes from the rest of the

methods, for a fair comparison, we choose the optimal

learning rate by searching over a set of learning rates

that are × 1
2 ,×1,×2,×3,×4 of the learning rate used

by the rest of the methods.

Table 3 summarizes the main result from sparse COCO.

The model trained using full annotation obtains 36.75

mmAP on the validation set, and this can be considered as

the maximum score that any methods can obtain. We have

the following observations. First, the performance recov-

ers from the baseline by using oracle information to ignore

proposals. The amount of negative effect caused by miss-

ing annotation increases as the ratio of missing annotation

increases. The difference between Baseline and Oracle ig-

nore is 0.70 mmAP and 1.67 mmAP when α = 0.3 and

α = 0.7, respectively.

Second, by using pseudo-ground truths to decide in-

stances that are falsely annotated as negatives, the result

matches the method using oracle information to ignore sam-

ples. The pseudo labels cover regions included in oracle in-

formation and also regions that a network falsely detected.

The result suggests that training may work better when ig-

noring regions that are unannotated, but susceptible to mis-

takingly recognizing as the foreground.

Third, despite making extra efforts to tune parameters,

overlap-based soft sampling [25] performs worse than the

baseline on sparse COCO. Unlike the other methods, this

method discourages contribution of negative samples unan-

imously based on their distance from the closest ground

truth bounding box. Perhaps, this method discourages too

many negative samples from contribution to the loss for this

dataset.

Table 4 shows an ablative study of methods using pseudo

labels. We make the following observations. First, perfor-

mance improves by selecting score thresholds for each cat-

66515



Table 3: Comparison of different methods on sparse MS

COCO. A model trained on COCO with complete annota-

tion achieves 36.75 mmAP.

0.3 0.5 0.7

Baseline 34.22 31.69 27.31

Oracle Ignore 34.92 32.73 28.98

Pseudo Label-guided (Ours) 35.00 32.79 29.03

Overlap-based soft [25] 33.98 31.39 27.30

Oracle Positive 35.66 34.17 32.19

Table 4: Comparison of different score thresholds for

pseudo label-guided sampling. If pseudo labels are not used

to select positive RoI proposal samples, the second column

is left empty. Uniform (x) indicates that the constant thresh-

old x is used for all categories. Prec (> y) indicates that

thresholds are selected for each class differently based on

the minimum tolerable precision y.

ignore threshold positive threshold mmAP

uniform (0.3) 34.76

uniform (0.5) 34.71

prec(> 0.3) 34.94

prec(> 0.5) 35.00

prec(> 0.7) 34.93

prec(> 0.5) prec(> 0.8) 34.59

egory based on category-wise precision compared to uni-

formly setting the values. Second, the performance is rel-

atively robust to different precision thresholds, but the pre-

cision threshold at 0.5 works the best. Third, performance

drops by using pseudo labels to assign positive labels to RoI

proposals. This is contrary to our expectation that a network

learns better by assigning proposals to positives instead of

ignoring them when pseudo-labels are created highly con-

fident prediction results. We think that the object detector

is not robust to false positives because the false positives

play a big role due to the number of positive samples being

small.

5.3. Open Images Dataset v4

Open Images Dataset v4 (OID) is a newly introduced

dataset that can be used for object detection. We use the

split of the data and the subset of the categories that were

used for the competition held in 2018 hosted by dataset

authors. 1 The training and the validation split contain

1, 643, 042 and 100, 000 images, respectively. There are

500 distinct categories annotated with bounding boxes in

OID. These categories have clearly defined spatial extents

and considered as important concepts by the dataset authors.

Table 5 summarizes the main results using OID. The

baseline follows the standard training procedure and does

1https://storage.googleapis.com/openimages/web/

challenge.html

Table 5: Results on the validation set of Open Images

Dataset v4.

validation mAP

Baseline 64.49

Pseudo label-guided sampling 64.84

Part-aware sampling 65.18

not use any special technique to tackle missing annotation.

We use the precision threshold at 0.5 for pseudo label-

guided sampling. Both pseudo label-guided sampling and

part-aware sampling improve upon the baseline. Although

pseudo label-guided sampling performs competitively even

on results using oracle information for sparse COCO, part-

ware sampling achieves better results on OID. Since the ra-

tio of missing annotation is sometimes lower than 10% as

suggested from Table 1, we suggest that it is difficult to train

a pretrained model for some categories in OID.

In Table 6, we take a closer look at evaluation results by

examining category-wise AP for part categories. The part-

aware sampling leads to on average 0.7 AP improvement

across all categories and 9.2 AP improvement on part cat-

egories. In particular, for human part categories, such as

”human face” and ”human ear”, we see a significant im-

provement of 22.7 AP on average.

Figure 4 shows the averages of APs at different score

thresholds for all categories and the subset of categories

that are used as part categories. The difference between the

baseline and part-aware sampling is already large for part

categories with low score threshold, but the gap widens as

the score threshold increases.

In Figure 5 shows a qualitative comparison of models

trained with and without part-aware sampling. For the mod-

els with part-aware sampling, part categories are detected

with a relatively high score threshold. For instance, in the

right image, tires and license plates are only detected by the

model trained with part-aware sampling.

Open Images Competition 2018: Based on the model

trained with part-aware sampling, we integrate context

head [28], longer training time, a stronger feature extrac-

tor [9], an additional number of anchors, and test-time aug-

mentation for our submission to the object detection track of

Google AI Open Images Competition 2018. For evaluation,

the test set is split into the public and private sets. During

the period of the competition, scores on the public set were

always available to the competitors, but scores on the pri-

vate set were not disclosed until the end of the competition.

Our best single model achieves 55.81 mAP and 53.43 mAP

on public and private sets. Our ensemble of models achieves

1st and 2nd best scores on the public and private sets with

62.88 mAP and 58.63 mAP. Table 7 summarizes the result

of ours and other top competitors.
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Table 6: Ablative study of part-aware sampling on categories that can be ignored by the technique. The scores are AP

calculated on the validation set of OID.

Arm Ear Nose Mouth Hair Eye Beard Face Head Foot Leg Hand Glove Hat Dress Fedora

Baseline 40.9 17.5 34.7 21.4 63.8 27.3 55.5 82.7 55.1 50.7 41.6 32.3 63.4 64.9 70.6 67.0

Part-aware 55.2 62.6 69.6 55.2 74.7 64.0 76.8 91.4 78.9 59.5 54.4 53.6 60.8 69.0 73.9 70.3

Footwe. Sandal Boot Sports. Coat Sock Glasse. Belt Helmet Jeans High h. Scarf Swimwe. Earrin. Bicycl. Shorts

Baseline 61.9 53.6 61.6 52.9 58.0 70.6 74.9 66.8 80.2 62.7 76.6 71.6 63.4 82.0 75.1 69.7

Part-aware 68.5 58.9 57.9 61.2 73.3 67.1 85.4 61.9 82.4 77.6 78.8 75.8 63.4 86.1 75.8 75.4

Baseba. Minisk. Cowboy. Goggles Jacket Shirt Sun ha. Suit Trouse. Brassi. Tie Licens. Wheel Tire Handle Average

Baseline 67.2 62.5 65.0 79.3 69.5 70.9 61.3 83.7 62.5 82.6 84.7 72.1 48.3 49.4 41.1 61.1

Part-aware 62.2 58.7 73.3 86.7 74.3 81.6 66.4 87.0 69.8 74.5 91.5 74.6 66.4 69.6 46.2 70.3

(a) (b)

Figure 4: mAP on OID at different score thresholds for the

baseline and part-aware sampling.
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Figure 5: The visualization of outputs of models trained

without part-aware sampling (top-row) and with it (bottom-

row) on OID. The score thresholds are kept the same for all

images.

Table 7: Results on the test set of OID. Unlike the other

results, test-time augmentation is used.

public test private test

Single best (Ours) 55.81 53.43

Ensemble (Ours) 62.88 58.63

Private LB 1st place 61.71 58.66

Private LB 3rd place [6] 62.16 58.62

6. Discussions and Future works

In this paper, we proposed part-aware sampling and

pseudo label-guided sampling to train object detectors on

datasets with sparse annotation. On Open Images Dataset

v4, our part-aware sampling significantly improved results

over the baseline for part categories. The success of our

method suggests the importance of choosing a right mea-

sure to determine the presence of unverified objects.

Indeed, our study provides no guarantee that our method

is the best method for this purpose. Trivially, if one can

prepare a perfect pretrained model that can detect the pres-

ence of unverified objects with 100% accuracy, the method

based on such model will perform optimally. However, the

presence of such a model completely defeats the purpose

for training the model, and we need to seek methods that

work in a more realistic situation. To understand the prob-

lem better, we made an extensive empirical study of detect-

ing unannotated objects using a pretrained model that can

actually be obtained on large-scale datasets [14, 11]. For

sparse COCO, we found the method to work very well out-

performing preexisting methods [25] and matching methods

with access to actual ground truths. The method, however,

underperformed against part-ware sampling for OID. This

shows that a method based on a simple prior performs bet-

ter when it is difficult to obtain a reliable detector. It is our

hope that our study will instigate further exploration for the

method of detecting the presence of unverified objects.
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