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Abstract

Visual dialog is a challenging vision-language task,

which requires the agent to answer multi-round questions

about an image. It typically needs to address two major

problems: (1) How to answer visually-grounded questions,

which is the core challenge in visual question answering

(VQA); (2) How to infer the co-reference between questions

and the dialog history. An example of visual co-reference

is: pronouns (e.g., “they”) in the question (e.g., “Are

they on or off?”) are linked with nouns (e.g., “lamps”)

appearing in the dialog history (e.g., “How many lamps

are there?”) and the object grounded in the image. In this

work, to resolve the visual co-reference for visual dialog,

we propose a novel attention mechanism called Recursive

Visual Attention (RvA). Specifically, our dialog agent

browses the dialog history until the agent has sufficient

confidence in the visual co-reference resolution, and refines

the visual attention recursively. The quantitative and

qualitative experimental results on the large-scale VisDial

v0.9 and v1.0 datasets demonstrate that the proposed RvA

not only outperforms the state-of-the-art methods, but also

achieves reasonable recursion and interpretable attention

maps without additional annotations. The code is available

at https://github.com/yuleiniu/rva.

1. Introduction

Vision and language understanding has become

an attractive and challenging interdisciplinary field

in computer vision and natural language processing.

Thanks to the rapid development of deep neural networks

and the high quality of large-scale real-world datasets,

researchers have achieved inspiring progress in a range

of vision-language tasks, including visual relation

detection [21, 19, 39], image captioning [36, 8, 38, 3],

referring expression grounding [24, 25, 40], and visual

question answering (VQA) [6, 33, 11, 32]. However,
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Figure 1. Illustration of the intuition of Recursive Visual Attention

in visual dialog. When our dialog agent meets an ambiguous

question (e.g., “Are they on or off?”), it will recursively review

the dialog history (see the first column) and refine the visual

attention (see the third column), until it can resolve the visual

co-reference (e.g., How many lamps are there?). The attention

maps tagged with green check mark represent reasonable recursive

visual attention, while those tagged with red cross mark in the

dashed box represent false question-guided visual attention.

comprehension and reasoning in vision and natural

language are still far from being resolved, especially

when the AI agent interacts with human in a continuous

communication, such as vision-and-language navigation [4]

and visual dialog [9].

Visual dialog is one of the prototype tasks introduced in

recent years [9, 10]. It can be viewed as the generalization

of VQA, which requires the agent to answer the question

about an image [6] or video [33] after comprehending and

reasoning out of visual and textual contents. Different from

one-round VQA, visual dialog is a multi-round conversation

about an image. Therefore, one of the key challenges in

visual dialog is visual co-reference resolution, since 98%
of dialogs and 38% of questions in the large-scale VisDial

dataset have at least one pronoun (e.g., “it”, “they”, “this”,

“he”, “she”) [9]. For example, as illustrated in Figure 1,
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questions “Are they on or off?” and “What color is it?”

contain pronouns that need to be resolved before answering.

Recently, researchers have attempted to resolve the visual

co-reference using attention memory [29] at a sentence

level, or applying the neural module networks [18] at a word

level. Specifically, an attention memory [29] is established

to store the image attention map at each round, while

a reference pool [18] is utilized to keep all the entities

recognized from the dialog history. They both apply a soft

attention over all the stored visual attentions for refinement.

However, humans rarely remember all their previous visual

attentions, and only review the topic-related dialog history

when they are confused with the ambiguous question.

We expect our dialog agent to selectively review the

dialog history like us humans during the conversation. For

example, as illustrated in Figure 1, “Are they on or off?”

is an ambiguous question and the dialog agent needs to

resolve “they” before watching the image. The agent

then recursively browses the dialog history and computes

visual attention until it meets the unambiguous description

“How many lamps are there?”. One may argue that a

natural language parser can achieve this goal by detecting

whether there exists a pronoun in the question. However,

not all pronouns are needed to be resolved, e.g., “Is it

sunny?”. Some abbreviate sentences without context are

also ambiguous, e.g., “What color?”. It is thus impractical

to exhaust all cases using a natural language parser.

In this work, we formulate visual co-reference resolution

in visual dialog as Recursive Visual Attention (RvA). As

shown in Figure 1, the agent first infers whether it can

ground the visual content based on the current question.

If not, the agent will recursively review the topic-related

dialog history and refine the visual attention. The recursion

termination is that the agent feels “confident” in visual

grounding, or it has backtracked to the beginning of dialog

history. Thanks to the Gumbel-Max trick [12] and its

continuous softmax relaxation [15, 23], our agent can be

end-to-end trained when making discrete decisions. In

addition, we design two types of language features for

different purposes. The reference-aware language feature

helps with visual grounding and inference of reviewing

dialog history, while the answering-aware language feature

controls which attributes of the image feature should be

activated for question answering.

Our main contributions are concluded as follows. First,

we propose a novel Recursive Visual Attention (RvA)

strategy for the visual co-reference resolution in visual

dialog. Second, we carry out extensive experiments on

VisDial v0.9 and v1.0 [9], and achieve state-of-the-art

performances compared to other methods. Third, the

qualitative results indicate that our dialog agent obtains

reliable visual and language attention during the reasonable

and history-aware recursive process.

2. Related Work

Visual Dialog. Visual dialog is a current vision and

language task, which requires the agent to understand

the dialog history, ground visual object, and answer the

question. Recently, two popular dialog datasets were

crowd-sourced on Amazon Mechanical Turk (AMT) [7].

De Vries et al. [10] collected GuessWhat dataset from a

cooperative two-player game. Given the whole picture

and its caption, one player asks questions to locate the

selected object, while the other player replies in yes/no/NA.

However, the questions are constrained to closed-ended

questions. In comparison, Das et al. [9] collected VisDial

dataset by a different two-person chat style. During the live

chat, the “questioner” asks questions to imagine the visual

content in the picture based on the caption and chat history,

while the “answerer” watches the picture and answer in a

free-form way. We apply the second setting in this paper.

Visual Co-reference Resolution. The task of visual

co-reference resolution is to link expressions, typically

pronoun and noun phrases referring to the same entity, and

ground the referent in the visual content. Co-reference

resolution has been used to improve visual comprehension

in many tasks, such as visual grounding [14], action

recognition [27, 28], and scene understanding [17].

Recently Lu et al. [22] proposed a history-conditioned

attention mechanism to implicitly resolve the visual

co-reference. Seo et al. [29] used attention memory to store

previous image attentions at a sentence level. Furthermore,

neural module networks [5] were applied to recognize

entities in all the history at a word level [18]. Different

from recent works that proposed a soft attention mechanism

over all the memorized attention maps [29] or all the

grounded entities [18], our proposed recursion predicts

discrete attention over topic-related history, which is more

intuitive and explainable.

3. Approach

In this section, we formally introduce the visual dialog

task and our proposed Recursive Visual Attention (RvA)

approach. The task of visual dialog [9] is defined as follows.

The dialog agent is expected to answer the question qT at

round T by ranking a list of 100 candidate answers AT =

{a
(1)
T , · · · , a

(100)
T } in a discriminative manner, or producing

a sentence in a generative manner. The extra information for

visual dialog consists of the image I and the dialog history

H = { c
︸︷︷︸

h0

, (q1, a1)
︸ ︷︷ ︸

h1

, · · · , (qT−1, aT−1)
︸ ︷︷ ︸

hT−1

}, where c is the

image caption and (q, a) is any question-answer pair.

Next, we first provide an overall structure of RvA in

Section 3.1, followed by Section 3.2 introducing the INFER,

PAIR and ATT modules of RvA. The training details of RvA

are given in Section 3.3.
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Figure 2. A high-level view of Recursive Visual Attention. The

right-to-left direction (dashed blue) represents recursive call, and

the left-to-right direction (dashed red) represents visual attention

return. The cond variable controls the switch on the trunk, while

tp controls the switch on the branch (see Algorithm 1). v̂t

represents the attended feature ATT(V,Q, t).

3.1. Recursive Visual Attention

Algorithm 1 Recursive Visual Attention

1: function RVA(V,Q,H, t)
2: cond, λ ← INFER(Q, t)
3: if cond then

4: return ATT(V,Q, t)
5: else

6: tp ← PAIR(Q,H, t)
7: return (1−λ) · RVA(V,Q,H, tp)
8: +λ · ATT(V,Q, t)
9: end if

10: end function

First of all, the overall structure of the proposed

Recursive Visual Attention (RvA) method is shown in

Algorithm 1. Here Q = {q0, q1, · · · , qT } represents the

question feature set where the caption feature c is added into

the question set as q0, H = {h0,h1, · · · ,hT−1} represents

the history feature set, and V = {v1, · · · ,vK} represents

the region feature set. Given any question qt, our dialog

agent first infers whether it understands the question qt for

visual grounding. If not, our agent will pair the current

question qt with its most related history htp , and backtrack

to the paired round tp. This process will be kept executing

until the agent can understand the current traced question,

or the dialog agent has backtracked to the beginning of the

dialog. As a result, our dialog agent recursively modifies

the visual attention by adding the question-guided attended

visual attention at round t and the recursive visual attention

at paired round tp, weighted by a learnable non-negative

weight λ. For the question qT , the output visual attention is

formulated by αT =RVA(V,Q,H, T ). The attended visual

feature is further calculated by a weighted sum over all the

region features v̂T =
∑

i αivi.

In addition, we give a high-level view of Recursive

Visual Attention (RvA) in Figure 2. Intuitively, all the

switches on both the trunk and branches are initially open

(i.e., turned off). Our RvA is recursively called from

present to past, closing (i.e., turning on) the switch on

the trunk until the recursion terminates. The switch of the

question-guided visual feature vtp on the branch is closed

if the history htp is paired with the current traced question

qt. When the recursion termination condition is met, we

unroll the process from past to present and finally obtain

the recursive visual feature.

We further design three modules to achieve the recursive

visual attention algorithm, i.e., INFER , PAIR, and ATT (i.e.,

attend). In overview, INFER module asserts the recursion

termination condition and computes visual feature fusion

weight, PAIR module returns the paired round, and ATT

module calculates question-guided visual attention.

3.2. Neural Modules

Algorithm 2 INFER Module

1: function INFER(Q, t)
2: zI

t ← f I
q (qt)

3: oI
t ← GS Sampler(W IzI

t )
4: αI

t ← softmax(W IzI
t )

5: cond1 ← t
?
=0

6: cond2 ← oIt,0
?
=1

7: cond ← cond1 or cond2 ⊲ recursion termination

8: λ ← αI
t,0 ⊲ attention fusion weight

9: return cond, λ
10: end function

INFER Module. INFER module is designed to 1) determine

whether to review the dialog history, 2) provide a weight to

fuse the recursive visual attention and the question-guided

visual attention. Specifically, INFER module takes the

question feature qt as input. The outputs include 1) a

Boolean cond to decide whether to terminate the recursion,

and 2) a weight λ∈(0, 1) for visual attention fusion.

The recursion will be terminated if at least one of

the following conditions is satisfied (see lines 5-7 in

Algorithm 2). First, the review backtracks to the very

starting point: caption. Second, the question qt is predicted

to be unambiguous. In order to estimate the ambiguity of

the question, we use a non-linear transformation [34] f I
q (·),

followed by a Gumbel Sampling operation GS Sampler for

differentiable discrete decision:

zI
t = f I

q (qt); (1)

oI
t = GS Sampler(W IzI

t ) (2)

where W I denotes the learnable parameters. GS Sampler
(see Section 3.3.2) outputs a 2-dim one-hot vector oI

t

for discrete decision, where the binary element oIt,0 is

encoded as the Boolean output to determine whether qt
is ambiguous. As illustrated in Figure 3, our dialog

agent successfully learns the relation between words and

recursion termination without additional annotations.
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Figure 3. Word cloud visualization of word attention in RvA. For

questions that our dialog agent thinks to be unambiguous (left), the

word attentions are spread out a variety of nouns (e.g., “clouds”,

“drinks”). For questions that confuse the agent (right), the word

attention significantly focuses on pronouns (e.g., “it”, “they”).

Algorithm 3 PAIR Module

1: function PAIR(Q,H, t)
2: e

q
t ← fP

q (qt)
3: for i ← 0, · · · , t−1 do

4: ehi ← fP
h (hi)

5: zPt,i ← MLP([eqt , e
h
i ])

6: ∆t,i ← t−i
7: end for

8: oP
t ← GS Sampler(WP [zP

t ,∆t])
9: tp ←

∑

i o
P
t,i · i

10: return tp
11: end function

PAIR Module. We observe that an ambiguous question

often follows the latest topic. A simple idea is to directly

pair the question with its latest history, i.e., set tp as t−1 in

INFER module. However, the questioner sometimes traces

back to an earlier topic, which means that the question has

no relationship with its latest history. Therefore, we design

a PAIR module to estimate which history is most related

with the question qt.
Algorithm 3 shows the structure of PAIR module.

Specifically, PAIR module takes the question feature qt
and the history feature H = {h0, · · · ,ht−1} as input, and

predicts which history is most related to qt. The PAIR

module is formulated as:

zPt,i = MLP([fP
q (qt), f

P
h (hi)]) (3)

oP
t = GS Sampler(WP [zP

t ,∆t]) (4)

tp =
t−1∑

i=0

oPt,i · i (5)

where [·] is the concatenation operation. The PAIR module

considers 1) the matching score between the question

qt and the history hi, which is denoted as zPt,i; 2) the

“sequential distance” between qt and hi in the dialog, which

is measured by ∆t,i = t−i. Finally, GS Sampler outputs a

t-dim one-hot vector oP
t for discrete decision (i.e., pairing

the question with a single history). The question qt will be

paired with the k-th history hk if oPt,k = 1, i.e., the k-th

history hk matches the question qt better than others.

Algorithm 4 ATT Module

1: function ATT(V,Q, t)
2: e

q
t ← fA

q (qt)
3: for i ← 1, · · · ,K do

4: evi ← fA
v (vi)

5: zA
t,i ← L2Norm(eqt ◦ e

v
i )

6: end for

7: αA
t ← softmax(WAZA

t )
8: return αA

t

9: end function

ATT Module. ATT module takes visual features of regions

V = {v1, · · · ,vK} and the question feature qt as input,

and outputs question-guided visual attention. As shown

in Algorithm 4, the question-guided visual attention is

formulated as:

zA
t,i = L2Norm(fA

q (qt) ◦ f
A
v (vi)) (6)

αA
t = softmax(WAZA

t ) (7)

where fA
q (·) and fA

v (·) represents non-linear trans-

formations to embed visual and language features into

the same space, and ◦ denotes Hadamard (element-wise)

product for multi-modal feature fusion.

3.3. Training

As mentioned in Section 3.2, our Recursive Visual

Attention takes visual and language representations as

input, and applies Gumbel sampling for differentiable

discrete decision. The details are given as follows.

3.3.1 Feature Representation

Language Feature. Let Wq
t = {wq

t,1, · · · ,w
q
t,m} be the

word embeddings of the question qt. The word embeddings

are passed through the bidirectional LSTM (bi-LSTM):

−→
h

q
t,i = LSTMq

f (w
q
t,i,

−→
h

q
t,i−1) (8)

←−
h

q
t,i = LSTMq

b(w
q
t,i,

←−
h

q
t,i+1) (9)

h
q
t,i = [

−→
h

q
t,i,

←−
h

q
t,i] (10)

where
−→
h

q
t,i and

←−
h

q
t,i represent forward and backward

hidden state of the i-th word respectively, LSTMq
f and

LSTMq
b represent the forward and backward LSTMs.

We use the concatenation of last hidden states e
q
t =

[
−→
h

q
t,m,

←−
h

q
t,1] as the encoding of the whole question qt.

Similarly, we can encode the history hi as ehi using the

same bi-LSTM with different parameters. In PAIR module,

we denote e
q
t as qt and ehi as hi to calculate the matching

score between the question qt and the history hi.
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Figure 4. A qualitative example of question attentions. The

reference-aware (ref ) question attention mainly emphasizes nouns

(i.e., “tablet”) and pronouns (i.e., “it”) for recursion termination

estimation and visual grounding. The answering-aware (ans)

question attention highlights property words (i.e., “what color”,

“big”) to record question type and activate specific attributes

of visual representation for question answering. Darker color

indicates higher weight.

Note that the words contribute differently to the question

representation for various purposes. An example is

illustrated in Figure 4. On one hand, the words “tablet”

and “it” should be emphasized for recursion termination

estimation and visual grounding. On the other hand,

the phrase “what color” and the word “big” should be

highlighted to activate specific attributes of the visual

representation for question answering. Therefore, we

encode each question using self-attention mechanisms [35]

into two forms: reference-aware question feature q
ref
t and

answering-aware question feature qans
t . Different from

prior attention mechanism that uses linear transformation

followed by hyperbolic tangent (tanh) activation, we

formulate the self-attention mechanism as:

z
q,∗
t,i = L2Norm(fq,∗

q (hq
t,i)) (11)

α
q,∗
t = softmax(W q,∗Z

q,∗
t ) (12)

q∗
t =

m∑

i=1

αq,∗
t,i w

q
i (13)

where fq,∗
q (·) is a non-linear transformation function, W q,∗

is the learnable parameters, and ∗ ∈ {ref, ans}. The

attended question features q
ref
t and qans

t are calculated

by a weighted sum overall the words. In INFER and ATT

modules, we denote q
ref
t as qt for recursion termination

estimation and visual grounding.

Visual Feature. Spatial image features with attention

mechanism have been widely used in many vision and

language tasks, such as image captioning and visual

question answering. Recently, a bottom-up attention

mechanism [3] is proposed based on the Faster R-CNN

framework. The ResNet model is utilized as backbone and

trained on Visual Genome [19] dataset to predict attributes

and classes. In this paper, we apply the bottom-up attention

mechanism and select top-K region proposals from each

image, where K is simply fixed as 36.

After obtaining the visual feature v̂T using Recursive

Visual Attention, we further refine the visual feature using

the answering-aware question feature qans
T . The motivation

is that only question-related attributes of visual content are

useful for answering questions (e.g., “What color is the

tablet?”, “Does it look big?” in Figure 4). Motivated by

the gating operations within LSTMs and GRUs, we further

refine visual feature as:

ṽT = v̂T ◦ fv
q (q

ans
T ) (14)

where the output of non-linear transformation fv
q (·)

works as a “visual feature filter” to deactivate the

information unrelated to answering questions in the visual

representation v̂t.

Joint Embedding. Considering that the dialog history

reflects prior knowledge of visual content, we obtain the

“fact” embedding by attending to all the history as

zh
T,i = L2Norm(fh

q (e
q
T ) ◦ f

h
h (e

h
i )) (15)

αh
T = softmax(WhZh

T ) (16)

h
f
T =

T−1∑

i=0

αh
T,ie

h
i (17)

where fh
h and fh

q are non-linear transformation functions.

The “fact” embedding h
f
T is calculated by a weighted sum

over all the history encodings.

Since we have obtained the filtered visual feature ṽT ,

the answering-aware question feature qans
T , and the fact

embedding h
f
T for question qT , we concatenate these

features and use a linear transform followed by a tangent

activation to obtain the final joint embedding:

eJT = tanh(W J [ṽT , q
ans
T ,hf

T ]) (18)

where [·] denotes the concatenation operation. The joint

embedding is further fed into the answering decoder.

3.3.2 Gumbel Sampling

Our dialog agent needs to make a discrete decision in some

cases, e.g., estimating whether to review the history and

which history should be paired. In addition, we hope

that the gradients can be back propagated through discrete

decision making for end-to-end training. In order to achieve

these goals, we utilize the Gumbel-Max trick [12] with its

continuous softmax relaxation [15, 23]. Specifically, the

samples z can be drawn from a categorical distribution with

π={π1, · · · , πc} as:

z = one hot

(

argmax
k∈{1,...,c}

(log(πk) + gk)

)

(19)

where g=−log(−log(u)) with u∼unif[0, 1].
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The softmax relaxation of Gumbel-Max trick is to

replace non-differentiable argmax operation with the

continuous softmax function:

ẑ = softmax ((log(π) + g)/τ) (20)

where the temperature of the softmax function τ is

empirically set as 1 in our work. During the training stage,

we obtain an one-hot vector z as the discrete sample from

Eq. 19 for forward propagation, and compute gradients

w.r.t. π in Eq. 20 for back propagation. At the test stage,

we greedily draw the sample with the largest probability

without Gumbel samples g.

4. Experiments

Our proposed model is evaluated on two real-world

datasets: VisDial v0.9 and v1.0 [9]. In this section,

we first introduce the datasets, evaluation metrics, and

implementation details. We then compare our method with

the state-of-the-art models and provide qualitative results.

4.1. Datasets and Setup

The VisDial v0.9 [9] dataset was collected based on

MS-COCO [20] images and captions. In a two-player chat

game, one player attempts to learn about an unseen image

and asks questions based on the previous dialog, while the

other player watches the image and replies with free-form

answers. The whole chat lasts for 10 rounds for each

image. As a result, the VisDial v0.9 dataset contains 83k

dialogs on MS-COCO training images and 40k dialogs on

validation images. Recently, the VisDial v1.0 [9] dataset

was released, including additional 10k dialogs on Flickr

images. The collection of dialogs on Flickr images is

similar to that on MS-COCO images. Overall, the new

train split consists of 123k dialogs on MS-COCO images,

which is the combination of train and validation splits from

VisDial v0.9. The validation and test splits have 2k and 8k

dialogs on Flickr images, respectively. Different from val

split in VisDial v0.9 where each image is associated with a

10-round dialog, the dialogs in VisDial v1.0 test split have

a random length within 10 rounds.

4.2. Metrics

As in [9], we evaluated the responses at each round in

VisDial v0.9 and the last round in VisDial v1.0 in a retrieval

setting. Specifically, at test stage, each question is linked

with a list of 100 candidate answers. The model is expected

to rank over the candidates and return a ranked list for

further evaluation. The metrics for retrieval performance

evaluation are: 1) mean rank of human response (Mean);

2) recall@k (R@k), which is the existence of the human

response in the top-k responses; 3) mean reciprocal rank

(MRR) of the human response in the returned ranked list.

As for VisDial v1.0, we also used the newly introduced

normalized discounted cumulative gain (NDCG), which

penalizes the lower rank of answers with high relevance.

4.3. Implementation Details

Language Model. We pre-processed the text data as

follows. As in [9], we first lowercased all questions

and answers, converted digits to words, and removed

contractions, before tokenizing using the Python NLTK

toolkit [1]. The captions, questions, and answers were then

padded or truncated to 40, 20 and 20, respectively. We kept

words to those that occur at least 5 times in the training split,

resulting in a vocabulary of 9,795 words for VisDial v0.9

and 11,336 words for VisDial v1.0. Our word embeddings

are 300-dim vectors, initialized with pre-trained GloVe

[26] embeddings and shared across captions, questions and

answers. The dimension of hidden states in all LSTMs is

set to 512 in this work.

Training Details. We minimized the standard cross-

entropy loss for the discriminative training, and the

maximum likelihood estimation (MLE) loss for generative

training. We used Adam [16] with the learning rate of

1×10−3, multiplied by 0.5 after every epoch, decreasing

to 5×10−5. We also applied Dropout [31] with a ratio of

0.5 before each fully-connected layer. Other settings are

default in PyTorch [2].

4.4. Comparing Methods

We compared our proposed Recursive Visual Attention

(RvA) model with the state-of-the-art methods in both

discriminative and generative settings. Based on the design

of encoders, these methods can be grouped into:

Fusion-based Models. Early methods simply fuse image,

question, and history features at different stages. These

early methods include LF [9] and HRE [9].

Attention-based Models. Furthermore, some methods

establish attention mechanisms over image, question, and

history. The attention-based methods include HREA [9],

MN [9], HCIAE [22], and CoAtt [37].

VCoR-based models. Recent works have focused on

explicit visual co-reference resolution (VCoR) in visual

dialog. We compared our method with VCoR-based models

including AMEM [29] and CorefNMN [18].

Ablative Models. In addition, we evaluate the individual

contribution of following features and components in our

method: 1) RPN: we replaced the region proposal network

with VGG-16 [30] model, and used the spatial grids of

pool5 feature map as regions. 2) Bi-LSTM: we replaced

bidirectional LSTM with the vanilla LSTM. 3) Rv: we only

considered the termination condition of RvA, and replaced

the recursive attention with question-guided attention. 4)

FL: we withdrew the “visual feature filter” fv
q (·) in Eq. 14,

which controls the activation of visual attributes.
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Figure 5. Qualitative results of our RvA model on VisDial dataset. The number in the bracket is the rank of ground-truth (GT) answer in

the returned sorted list. Our model successfully obtains interpretable reference-aware question attention (represented by the highlight color

of words, darker color indicates higher weight), reliable recursive image attention (represented by the attention map below the question),

and reasonable recursions (represented by the recursion tree). The root nodes in the recursion tree represent the questions to be answered,

the red nodes denote the questions terminating recursions, and the leaf nodes represent question-guided visual attention.

Model MRR R@1 R@5 R@10 Mean

LF [9] 0.5807 43.82 74.68 84.07 5.78

HRE [9] 0.5846 44.67 74.50 84.22 5.72

HREA [9] 0.5868 44.82 74.81 84.36 5.66

MN [9] 0.5965 45.55 76.22 85.37 5.46

HCIAE [22] 0.6222 48.48 78.75 87.59 4.81

AMEM [29] 0.6227 48.53 78.66 87.43 4.86

CoAtt [37] 0.6398 50.29 80.71 88.81 4.47

CorefNMN [18] 0.641 50.92 80.18 88.81 4.45

RvA w/o RPN 0.6436 50.40 81.36 89.59 4.22

RvA w/o Rv 0.6551 51.81 82.35 90.24 4.07

RvA w/o FL 0.6598 52.35 82.76 90.54 3.98

RvA 0.6634 52.71 82.97 90.73 3.93

Table 1. Retrieval performance of discriminative models on the

validation set of VisDial v0.9. RPN, Rv and FL indicate the usage

of region proposal network, recursive image attention, and visual

feature filter, respectively.

4.5. Quantitative Results

Table 1 reports the retrieval performances of our model

and the comparing methods under the discriminative setting

on VisDial v0.9. Overall, our RvA model outperforms

the state-of-the-art methods across all the metrics.

Specifically, our RvA model achieves approximately 2

points improvement on R@k, and 2% increase on MRR. In

addition, the performance of our model drops significantly

without recursive attention (i.e., Rv) or region proposal

network (i.e., RPN), which demonstrates their substantial

contributions to visual dialog. The similar conclusions can

also be drawn on VisDial v1.0 in Table 2. Furthermore,

Model MRR R@1 R@5 R@10 Mean NDCG

LF [9] 0.5542 40.95 72.45 82.83 5.95 0.4531

HRE [9] 0.5416 39.93 70.45 81.50 6.41 0.4546

MN [9] 0.5549 40.98 72.30 83.30 5.92 0.4750

CorefNMN† [18] 0.615 47.55 78.10 88.80 4.40 0.547

RvA w/o RPN 0.6060 46.25 77.88 87.83 4.65 0.5176

RvA w/o Rv 0.6226 47.95 79.75 89.08 4.37 0.5319

RvA w/o FL 0.6294 48.68 80.18 89.03 4.31 0.5418

RvA 0.6303 49.03 80.40 89.83 4.18 0.5559

Table 2. Retrieval performance of discriminative models on the

test-standard split of VisDial v1.0. † indicates that the model uses

ResNet-152 features.

Table 3 shows a more comprehensive ablation (the

component-wise and the feature-wise). It can be seen

that by using the proposed recursive attention, any ablative

method can be improved regardless of the usage of visual

and language representations. Furthermore, our dialog

agent could occupy the third place based on the VisDial v1.0

leaderboard1, while the team DL-61 [13] has achieved the

best NDCG record 0.5788 in a two-stage fashion.

We also evaluated the retrieval performance of our model

under generative setting on VisDial v0.9. As shown in

Table 4, our approach obtains an approximately 2 points

higher R@k compared to the visual co-reference solution

model CorefNMN [18]. In addition, our RvA model

outperforms nearly all state-of-the-art methods except

CoAtt [37], which is trained using reinforcement learning.

1https://evalai.cloudcv.org/web/challenges/

challenge-page/103/leaderboard/298
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RPN Bi-LSTM Rv MRR R@1 R@5 R@10 Mean

0.6377 49.67 80.86 89.14 4.35

� 0.6418 50.17 81.17 89.37 4.29

� 0.6396 49.83 81.16 89.34 4.30

� � 0.6436 50.40 81.36 89.59 4.22

� 0.6534 51.78 82.28 90.21 4.09

� � 0.6626 52.69 82.97 90.71 3.95

� � 0.6551 51.81 82.35 90.24 4.07

� � � 0.6634 52.71 82.97 90.73 3.93

Table 3. Ablations of discriminative models on the validation set

of VisDial v0.9. RPN, Bi-LSTM and Rv indicate the usage of

region proposal network, bidirectional LSTM, and recursive image

attention, respectively.

Model MRR R@1 R@5 R@10 Mean

LF [9] 0.5199 41.83 61.78 67.59 17.07

HRE [9] 0.5237 42.29 62.18 67.92 17.07

HREA [9] 0.5242 42.28 62.33 68.17 16.79

MN [9] 0.5259 42.29 62.85 68.88 17.06

CorefNMN [18] 0.535 43.66 63.54 69.93 15.69

HCIAE [22] 0.5386 44.06 63.55 69.24 16.01

CoAtt [37] 0.5411 44.32 63.82 69.75 16.47

CoAtt‡ [37] 0.5578 46.10 65.69 71.74 14.43

RvA w/o RPN 0.5417 43.75 64.21 71.85 11.18

RvA 0.5543 45.37 65.27 72.97 10.71

Table 4. Retrieval performance of generative models on the

validation set of VisDial v0.9. ‡ indicates that the model is trained

using reinforcement learning.

4.6. Qualitative Results

The qualitative results shown in Figure 5 and 6

demonstrate the following advantages of our RvA model:

Reasonable Recursions. Our RvA model achieves

reasonable recursions represented by the recursive trees.

These recursions can also be regarded as topic-aware dialog

clips. Thanks to the reference-aware language feature, our

RvA model is able to handle unambiguous sentences with

pronouns (e.g., “Is it sunny outside?”) and ambiguous

sentences without pronouns (e.g., “How many are there?”).

Note that it is hard to exhaust all these special cases using a

natural language parser.

Reliable Visual Attention. Our dialog agent successfully

focuses on the correct region using recursive visual

attention. In contrast, the question-guided visual attention

sometimes fails due to the ambiguous question. On

the validation set of VisDial v1.0, we observed that:

1) 56% of question-guided visual attention and 89% of

recursive attention are reasonable for ambiguous questions;

2) 62% of dialogs require at least one accurate co-reference

resolution. Since the recursive visual attention relies

heavily on historical visual attention, our dialog agent needs

to establish a robust visual attention mechanism. If it

were otherwise, the agent would distrust historical visual

attention and tend to learn more bias from generic language

information, which would hurt the visual dialog system.

History-aware Skipping Pairing. One may argue that

PAIR module can be replaced with referring all the

%"�	'
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Figure 6. An qualitative example of the history-aware recursion

using PAIR module to resolve “it” in Q3. (a) represents the

recursion obtained by our model using the ground-truth history.

Our dialog agent skips the unrelated second history, and pairs the

ambiguous question Q3 with the first history. (b) represents the

recursion obtained by our model with the fake history, where the

second answer “No” is replaced with “Yes”. In this case, our

dialog agent pairs the third question with its last history.

ambiguous questions to their last history (i.e., setting tp
as t− 1 in INFER module) for simplicity. However, our

PAIR module is able to skip the irrelevant dialog history and

produce history-aware recursions. As illustrated in Figure 6

(a), the dialog agent concludes from the dialog history that

“there is no cord” in the image. Therefore, the agent skips

the second history when pairing the ambiguous question

“Is it black?”. If we replace the second answer “no” with

“yes” to make a fake history (see Figure 6 (b)), the third

question will be directly paired with its last history. The

visual attention and predicted answer are also influenced.

5. Conclusions

In this paper, we formulated the visual co-reference

resolution in visual dialog as Recursive Visual Attention

(RvA), which consists of three simple neural modules that

determine the recursion at run-time. Our dialog agent

recursively reviews topic-related history to refine visual

attention, and can be end-to-end trained when making

discrete decisions of module assembling. Experimental

results on the large-scale real-world datasets VisDial v0.9

and v1.0 demonstrate that our proposed model not only

achieves state-of-the-art performance, but also obtains

explainable recursion and attention maps. Moving forward,

we are going to incorporate in-depth language parsing

modules into RvA for more accurate recursive decisions.
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and Dhruv Batra. Visual dialog. In Proceedings

of IEEE Conference on Computer Vision and Pattern

Recognition, pages 326–335, 2017. 1, 2, 6, 7, 8

[10] Harm De Vries, Florian Strub, Sarath Chandar,

Olivier Pietquin, Hugo Larochelle, and Aaron

Courville. Guesswhat?! visual object discovery

through multi-modal dialogue. In Proceedings of

IEEE Conference on Computer Vision and Pattern

Recognition, pages 5503–5512, 2017. 1, 2

[11] Akira Fukui, Dong Huk Park, Daylen Yang, Anna

Rohrbach, Trevor Darrell, and Marcus Rohrbach.

Multimodal compact bilinear pooling for visual

question answering and visual grounding. arXiv

preprint arXiv:1606.01847, 2016. 1

[12] Emil Julius Gumbel. Statistical theory of extreme

values and some practical applications: a series of

lectures, volume 33. US Government Printing Office,

1954. 2, 5

[13] Dalu Guo, Chang Xu, and Dacheng Tao.

Image-question-answer synergistic network for

visual dialog. arXiv preprint arXiv:1902.09774,

2019. 7

[14] De-An Huang, Shyamal Buch, Lucio Dery, Animesh

Garg, Li Fei-Fei, and Juan Carlos Niebles. Finding

“it”: Weakly-supervised reference-aware visual

grounding in instructional videos. In Proceedings

of IEEE Conference on Computer Vision and Pattern

Recognition, pages 5948–5957, 2018. 2

[15] Eric Jang, Shixiang Gu, and Ben Poole. Categorical

reparameterization with gumbel-softmax. arXiv

preprint arXiv:1611.01144, 2016. 2, 5

[16] Diederik P Kingma and Jimmy Ba. Adam: A

method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014. 6

[17] Chen Kong, Dahua Lin, Mohit Bansal, Raquel

Urtasun, and Sanja Fidler. What are you talking

about? text-to-image coreference. In Proceedings

of IEEE Conference on Computer Vision and Pattern

Recognition, pages 3558–3565, 2014. 2
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