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Abstract

Event-based cameras can measure intensity changes

(called ‘events’) with microsecond accuracy under high-

speed motion and challenging lighting conditions. With the

active pixel sensor (APS), the event camera allows simul-

taneous output of the intensity frames. However, the output

images are captured at a relatively low frame-rate and often

suffer from motion blur. A blurry image can be regarded as

the integral of a sequence of latent images, while the events

indicate the changes between the latent images. Therefore,

we are able to model the blur-generation process by as-

sociating event data to a latent image. In this paper, we

propose a simple and effective approach, the Event-based

Double Integral (EDI) model, to reconstruct a high frame-

rate, sharp video from a single blurry frame and its event

data. The video generation is based on solving a simple

non-convex optimization problem in a single scalar vari-

able. Experimental results on both synthetic and real im-

ages demonstrate the superiority of our EDI model and op-

timization method in comparison to the state-of-the-art.

1. Introduction

Event cameras (such as the Dynamic Vision Sensor

(DVS) [17] and the Dynamic and Active-pixel Vision Sen-

sor (DAVIS) [3]) are sensors that asynchronously measure

the intensity changes at each pixel independently with mi-

crosecond temporal resolution1. The event stream encodes

the motion information by measuring the precise pixel-by-

pixel intensity changes. Event cameras are more robust

to low lighting and highly dynamic scenes than traditional

cameras since they are not affected by under/over exposure

or motion blur associated with a synchronous shutter.

Due to the inherent differences between event cameras

and standard cameras, existing computer vision algorithms

designed for standard cameras cannot be applied to event

1If nothing moves in the scene, no events are triggered.

cameras directly. Although the DAVIS [3] can provide the

simultaneous output of the intensity frames and the event

stream, there still exist major limitations with current event

cameras:

• Low frame-rate intensity images: In contrast to the

high temporal resolution of event data (≥ 3µs frame

rate), the current event cameras only output low frame-

rate intensity images (≥ 5ms time resolution).

• Inherent blurry effects: When recording highly dy-

namic scenes, motion blur is a common issue due to

the relative motion between the camera and the scene.

The output of the intensity image from the APS tends

to be blurry.

To address these above challenges, various methods have

been proposed by reconstructing high frame-rate videos.

The existing methods can be in general categorized as 1)

Event data only solutions [1, 27, 2], where the results

tend to lack the texture and consistency of natural videos,

as they fail to use the complementary information con-

tained in the low frame-rate intensity image; 2) Low frame-

rate intensity-image-only solutions [11], where an end-to-

end learning framework has been proposed to learn regres-

sion between a single blurry image and a video sequence,

whereas the rich event data are not used; and 3) Jointly ex-

ploiting event data and intensity images [29, 32, 4], building

upon the interaction between both sources of information.

However, these methods fail to address the blur issue asso-

ciated with the captured image frame. Therefore, the recon-

structed high frame-rate videos can be degraded by blur.

Although blurry frames cause undesired image degrada-

tion, they also encode the relative motion between the cam-

era and the observed scene. Taking full advantage of the

encoded motion information would benefit the reconstruc-

tion of high frame-rate videos.

To this end, we propose an Event-based Double Inte-

gral (EDI) model to resolve the above problems by recon-

structing a high frame-rate video from a single image (even
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(a) The Blurry Image (b) The Events (c) Tao et al. [35] (d) Pan et al. [22]

(e) Jin et al. [11] (f)
Scheerlinck et al. [29]

(events only)
(g) Scheerlinck et al. [29] (h) Ours

Figure 1. Deblurring and reconstruction results of our method compared with the state-of-the-art methods on our real blurry event dataset.

(a) The input blurry image. (b) The corresponding event data. (c) Deblurring result of Tao et al. [35]. (d) Deblurring result of Pan et

al. [22]. (e) Deblurring result of Jin et al. [11]. Jin uses video as training data to train a supervised model to perform deblur, where the

video can also be considered as similar information as the event data. (f)-(g) Reconstruction results of Scheerlinck et al. [29], (f) from only

events, (g) from combining events and frames. (h) Our reconstruction result. (Best viewed on screen).

blur) and its event sequence, where the blur effects have

been reduced in each reconstructed frame. Our EDI model

naturally relates the desired high frame-rate sharp video,

the captured intensity frame and event data. Based on the

EDI model, high frame-rate video generation is as simple

as solving a non-convex optimization problem in a single

scalar variable.

Our main contributions are summarized as follows.

1) We propose a simple and effective model, named the

Event-based Double Integral (EDI) model, to restore a

high frame-rate sharp video from a single image (even

blur) and its corresponding event data.

2) Using our formulation of EDI, we propose a stable and

general method to generate a sharp video under various

types of blur by solving a single variable non-convex op-

timization problem, especially in low lighting and com-

plex dynamic conditions.

3) The frame rate of our reconstructed video can theoreti-

cally be as high as the event rate (200 times greater than

the original frame rate in our experiments).

2. Related Work

Event cameras such as the DAVIS and DVS [3, 17]

report log intensity changes, inspired by human vision.

Although several works try to explore the advantages of

the high temporal resolution provided by event cameras

[41, 13, 26, 43, 42, 8, 15, 30], how to make the best use

of the event camera has not yet been fully investigated.

Event-based image reconstruction. Kim et al. [12] recon-

struct high-quality images from an event camera under a

strong assumption that the only movement is pure camera

rotation, and later extend their work to handle 6-degree-of-

freedom motion and depth estimation [13]. Bardow et al.

[1] aim to simultaneously recover optical flow and inten-

sity images. Reinbacher et al. [27] restore intensity images

via manifold regularization. Barua et al. [2] generate image

gradients by dictionary learning and obtain a logarithmic

intensity image via Poisson reconstruction. However, the

intensity images reconstructed by the previous approaches

suffer from obvious artifacts as well as lack of texture due

to the spatial sparsity of event data.

To achieve more image detail in the reconstructed im-

ages, several methods trying to combine events with inten-

sity images have been proposed. The DAVIS [3] uses a

shared photo-sensor array to simultaneously output events

(DVS) and intensity images (APS). Scheerlinck et al. [29]

propose an asynchronous event-driven complementary fil-

ter to combine APS intensity images with events, and obtain

continuous-time image intensities. Brandli et al. [4] directly

integrate events from a starting APS image frame, and each

new frame resets the integration. Shedligeri et al. [32] first

exploit two intensity images to estimate depth. Then, they

use the event data only to reconstruct a pseudo-intensity se-

quence (using [27]) between the two intensity images and

use the pseudo-intensity sequence to estimate ego-motion

using visual odometry. Using the estimated 6-DOF pose

and depth, they directly warp the intensity image to the in-

termediate location. Liu et al. [18] assume a scene should
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have static background. Thus, their method needs an extra

sharp static foreground image as input and the event data

are used to align the foreground with the background.

Image deblurring. Traditional deblurring methods usually

make assumptions on the scenes (such as a static scene) or

exploit multiple images (such as stereo, or video) to solve

the deblurring problem. Significant progress has been made

in the field of single image deblurring. Methods using gra-

dient based regularizers, such as Gaussian scale mixture [7],

l1\l2 norm [14], edge-based patch priors [34, 39] and l0-

norm regularizer [37], have been proposed. Non-gradient-

based priors such as the color line based prior [16], and the

extreme channel (dark/bright channel) prior [22, 38] have

also been explored. Another family of image deblurring

methods tends to use multiple images [5, 10, 31, 23, 24].

Driven by the success of deep neural networks, Sun et

al. [33] propose a convolutional neural network (CNN) to

estimate locally linear blur kernels. Gong et al. [9] learn

optical flow from a single blurry image through a fully-

convolutional deep neural network. The blur kernel is then

obtained from the estimated optical flow to restore the sharp

image. Nah et al. [21] propose a multi-scale CNN that re-

stores latent images in an end-to-end learning manner with-

out assuming any restricted blur kernel model. Tao et al.

[35] propose a light and compact network, SRN-DeblurNet,

to deblur the image. However, deep deblurring methods

generally need a large dataset to train the model and usually

require sharp images provided as supervision. In practice,

blurry images do not always have corresponding ground-

truth sharp images.

Blurry image to sharp video. Recently, two deep learn-

ing based methods [11, 25] propose to restore a video from

a single blurry image with a fixed sequence length. How-

ever, their reconstructed videos do not obey the 3D geome-

try of the scene and camera motion. Although deep-learning

based methods achieve impressive performance in various

scenarios, their success heavily depend on the consistency

between the training datasets and the testing datasets, thus

hinder the generalization ability for real-world applications.

3. Formulation

In this section, we develop an EDI model of the relation-

ships between the events, the latent image and the blurry

image. Our goal is to reconstruct a high frame-rate, sharp

video from a single image and its corresponding events.

This model can tackle various blur types and work stably

in highly dynamic contexts and low lighting conditions.

3.1. Event Camera Model

Event cameras are bio-inspired sensors that asyn-

chronously report logarithmic intensity changes [3, 17].

Unlike conventional cameras that produce the full image

at a fixed frame-rate, event cameras trigger events when-

ever the change in intensity at a given pixel exceeds a preset

threshold. Event cameras do not suffer from the limited dy-

namic ranges typical of sensors with synchronous exposure

time, and are able to capture high-speed motion with mi-

crosecond accuracy.
Inherent in the theory of event cameras is the concept

of the latent image Lxy(t), denoting the instantaneous in-
tensity at pixel (x, y) at time t, related to the rate of pho-
ton arrival at that pixel. The latent image Lxy(t) is not di-
rectly output by the camera. Instead, the camera outputs
a sequence of events, denoted by (x, y, t, σ), which record
changes in the intensity of the latent image. Here, (x, y)
are image coordinates, t is the time the event takes place,
and polarity σ = ±1 denotes the direction (increase or de-
crease) of the intensity change at that pixel and time. Polar-
ity is given by,

σ = T

(
log
(

Lxy(t)

Lxy(tref)

)
, c

)
, (1)

where T (·, ·) is a truncation function,

T (d, c) =





+1, d ≥ c,

0, d ∈ (−c, c),

−1, d ≤ −c.

Here, c is a threshold parameter determining whether an

event should be recorded or not, tref denotes the timestamp

of the previous event. When an event is triggered, Lxy(tref)
at that pixel is updated to a new intensity level.

3.2. Intensity Image Formation

In addition to the event sequence, event cameras can
provide a full-frame grey-scale intensity image, at a much
slower rate than the event sequence. The grey-scale im-
ages may suffer from motion blur due to their long exposure
time. A general model of image formation is given by,

B =
1

T

∫ f+T/2

f−T/2

L(t) dt, (2)

where B is a blurry image, equal to the average value of

latent images during the exposure time [f −T/2, f +T/2].

3.3. Event­based Double Integral Model

We aim to recover a sequence of latent intensity images

by exploiting both the blur model and the event model. We

define exy(t) as a function of continuous time t such that

exy(t) = σ δt0(t),

whenever there is an event (x, y, t0, σ). Here, δt0(t) is an

impulse function, with unit integral, at time t0, and the se-

quence of events is turned into a continuous time signal,

consisting of a sequence of impulses. There is such a func-

tion exy(t) for every point (x, y) in the image. Since each

pixel can be treated separately, we omit the subscripts x, y.
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Figure 2. The event data and our reconstructed result, where (a)

and (b) are the input of our method. (a) The intensity image from

the event camera. (b) Events from the event camera plotted in 3D

space-time (x, y, t) (blue: positive event; red: negative event). (c)

The first integral of several events during a small time interval.

(d) The second integral of events during the exposure time. (e)

Samples from our reconstructed video from L(0) to L(200).

During an exposure period [f−T/2, f+T/2], we define

E(t) as the sum of events between time f and t at a given

pixel,

E(t) =

∫ t

f

e(s)ds,

which represents the proportional change in intensity be-

tween time f and t. Except under extreme conditions, such

as glare and no-light conditions, the latent image sequence

L(t) is expressed as,

L(t) = L(f) exp(cE(t)) = L(f) exp(c)E(t) . (3)

We put a tilde on top of things to denote logarithm, e.g.,

L̃(t) = log(L(t)).

L̃(t) = L̃(f) + cE(t). (4)

Given a sharp frame, we can reconstruct a high frame-

rate video from the sharp starting point L(f) by using

Eq. (4). When the input image is blurry, a trivial solution

would be to first deblur the image with an existing deblur-

ring method and then to reconstruct the video using Eq. (4)

(see Fig.6 for details). However, in this way, the event data

between intensity images is not fully exploited, thus result-

ing in inferior performance. Instead, we propose to recon-

struct the video by exploiting the inherent connection be-

tween event and blur, and present the following model.
As for the blurred image,

B =
1

T

∫ f+T/2

f−T/2

L(t)dt

=
L(f)

T

∫ f+T/2

f−T/2

exp
(
c

∫ t

f

e(s)ds
)
dt .

(5)

In this manner, we construct the relation between the
captured blurry image B and the latent image L(f) through
the double integral of the event. We name Eq. 5 the Event-
based Double Integral (EDI) model. Taking the logarithm
on both sides of Eq. 5 and rearranging, yields

L̃(f) = B̃− log

(
1

T

∫ f+T/2

f−T/2

exp(cE(t))dt

)
, (6)

which shows a linear relation between the blurry image, the

latent image and the integral of the events in the log space.

3.4. High Frame­Rate Video Generation

The right-hand side of Eq. (6) is known, apart from per-

haps the value of the contrast threshold c, the first term from

the grey-scale image, the second term from the event se-

quence, it is possible to compute L̃(f), and hence L(f) by

exponentiation. Subsequently, from Eq. (4) the latent image

L(t) at any time may be computed.

To avoid accumulated errors of constructing a video from

many frames of a blurred video, it is more suitable to con-

struct each frame L(t) using the closest blurred frame.

Theoretically, we could generate a video with frame-rate

as high as the DVS’s eps (events per second). However, as

each event carries little information and is subject to noise,

several events must be processed together to yield a reason-

able image. We generate a reconstructed frame every 50-

100 events, so for our experiments, the frame-rate of the re-

constructed video is usually 200 times greater than the input

low frame-rate video. Furthermore, as indicated by Eq. (6),

the challenging blind motion deblurring problem has been

reduced to a single variable optimization problem of how to

find the best value of the contrast threshold c. In the follow-

ing section, we use L(c, t) to present the latent sharp image

L(t) with different c.

4. Optimization

The unknown contrast threshold c represents the mini-

mum change in log intensity required to trigger an event.

By choosing an appropriate c in Eq. (5), we can generate a
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(a) The blurry image (b) Tao et al. [35]

(c) By human observation (d) By energy minimization

Figure 3. An example of our reconstruction result using different

methods to estimate c, from the real dataset [20]. (a) The blurry

image. (b) Deblurring result of [35] (c) Our result where c is cho-

sen by manual inspection. (d) Our result where c is computed

automatically by our proposed energy minimization (9).
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Figure 4. The figure plot deblurring performance against the

value of c. The image is clearer with higher PSNR value.

sequence of sharper images. To this end, we first need to

evaluate the sharpness of the reconstructed images. Here,

we propose two different methods to estimate the unknown

variable c: manually chosen and automatically optimized.

4.1. Manually Chosen c

According to our EDI model in Eq. (5), given a value

for c, we can obtain a sharp image. Therefore, we develop

a method for deblurring by manually inspecting the visual

effect of the deblurred image. In this way, we incorporate

human perception into the reconstruction loop and the de-

blurred images should satisfy human observation. In Fig. 3,

we give an example for manually chosen and automatically

optimized results on dataset from [20].

4.2. Automatically Chosen c

To automatically find the best c, we need to build an eval-

uation metric (energy function) that can evaluate the quality

of the deblurred image L(c, t). Specifically, we propose to

exploit different prior knowledge for sharp images and the

event data.

4.2.1 Edge Constraint for Event Data

As mentioned before, when a proper c is given, our re-

constructed image L(c, t) will contain much sharper edges

compared with the original input intensity image. Further-

more, event cameras inherently yield responses at moving

intensity boundaries, so edges in the latent image may be

located where (and when) events occur. This allows us to

find latent image edges. An edge at time t corresponds to

an event (at the pixel in question) during some time inter-

val around t so we convolve the event sequence with an

exponentially decaying window, to obtain a denoised edge

boundary,

M(t) =

∫ T

0

exp(−(α|t− s|)) e(t) ds,

where α is a weight parameter for time attenuation, and is

set to 1.0. Then, we use the Sobel filter S to get a sharper

binary edge map, which is also applied to L(c, t). (See Fig.

5 and 6 for details).

Here, we use cross-correlation between S(L(c, t)) and

S(M(t)) to evaluate the sharpness of L(c, t).

φedge(c) =
∑

x,y

S(L(c, t))(x, y) · S(M(t))(x, y) . (7)

4.2.2 Regularizing the Intensity Image

In our model, total variation is used to suppress noise in

the latent image while preserving edges, and penalize the

spatial fluctuations[28].

φTV(c) = |∇L(c, t)|1, (8)

where ∇ represents the gradient operators.

4.2.3 Energy Minimization

The optimal c can be estimate by solving Eq. (9),

min
c

φTV(c) + λφedge(c), (9)

where λ is a trade-off parameter. The response of cross-

correlation reflect the matching rate of L(c, t) and M(t)
which makes λ < 0. This single-variable minimiza-

tion problem can be solved by the nonlinear least-squares

method [19], Scatter-search[36] or Fibonacci search [6].

In Fig. 4, we illustrate the clearness of the reconstructed

image against the value of c. Meanwhile, we also pro-

vide the PSNR of the corresponding reconstructed image.

As demonstrated in the figure, our proposed reconstruction

metric could locate/identify the best deblurred image with

peak PSNR properly.
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Figure 5. At left, the edge image M(f) and below, its Sobel edge map. To the right are 3 reconstructed latent images using different

values of c, low 0.03, middle 0.11 and high 0.55. Above, the reconstructed images, below, their Sobel edge maps. The optimal value of the

threshold c is found by computing the cross-correlation of such images with the edge map at the left. (Best viewed on screen).

(a) The Blur Image (b) Jin et al. [11] (c) Baseline 1 (d) Baseline 2

(e) S(L(c, t)) · S(M(t)) (f) Samples of Our Reconstructed Video

Figure 6. Deblurring and reconstruction results on our real blurry event dataset. (a) Input blurry images. (b) Deblurring result of [11].

(c) Baseline 1 for our method. We first use the state-of-the-art video-based deblurring method [11] to recover a sharp image. Then use the

sharp image as input to a state-of-the-art reconstruction method [29] to get the intensity image. (d) Baseline 2 for our method. We first

use method [29] to reconstruct an intensity image. Then use a deblurring method [11] to recover a sharp image. (e) The cross-correlation

between S(L(c, t)) and S(M(t)). (f) Samples from our reconstructed video from L(0) to L(150). (Best viewed on screen).

5. Experiment

5.1. Experimental Setup

Synthetic dataset. In order to provide a quantitative com-

parison, we build a synthetic dataset based on the GoPro

blurry dataset [21]. It supplies ground truth videos which

are used to generate the blurry images. Similarly, we em-

ploy the ground-truth images to generate event data based

on the methodology of event camera model.

Real dataset. We evaluate our method on a public

Event-Camera dataset [20], which provides a collection of

sequences captured by the event camera for high-speed

robotics. Furthermore, we present our real blurry event

dataset 2, where each real sequence is captured with the

DAVIS[3] under different conditions, such as indoor, out-

door scenery, low lighting conditions, and different motion

patterns (e.g., camera shake, objects motion) that naturally

introduce motion blur into the APS intensity images.

Implementation details. For all our real experiments, we

use the DAVIS that shares photosensor array to simultane-

ously output events (DVS) and intensity images (APS). The

framework is implemented by using MATLAB with C++

wrappers. It takes around 1.5 second to process one image

on a single i7 core running at 3.6 GHz.

2To be released with codes
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Table 1. Quantitative comparisons on the Synthetic dataset [21]. This dataset provides videos can be used to generate not only blurry

images but also event data. All methods are tested under the same blurry condition, where methods [21, 11, 35, 40] use GoPro dataset

[21] to train their models. Jin [11] achieves their best performance when the image is down-sampled to 45% mentioned in their paper.
Average result of the deblurred images on dataset[21]

Pan et al. [22] Sun et al. [33] Gong et al. [9] Jin et al. [11] Tao et al. [35] Zhang et al. [40] Nah et al. [21] Ours

PSNR(dB) 23.50 25.30 26.05 26.98 30.26 29.18 29.08 29.06

SSIM 0.8336 0.8511 0.8632 0.8922 0.9342 0.9306 0.9135 0.9430

Average result of the reconstructed videos on dataset[21]

Baseline 1 [35] + [29] Baseline 2 [29] + [35] Scheerlinck et al. [29] Jin et al. [11] Ours

PSNR(dB) 25.52 26.34 25.84 25.62 28.49

SSIM 0.7685 0.8090 0.7904 0.8556 0.9199

(a) The Blurry Image (b) Jin et al. [11] (c) Ours

(d) The Reconstructed Video of [11]

(e) The Reconstructed Video of Our Method

(f) Reinbacher et al. [27] (g) Scheerlinck et al. [29]

Figure 7. An example of the reconstructed result on our synthetic event dataset based on the GoPro dataset [21]. [21] provides videos

to generate the blurry images and event data. (a) The blurry image. The red close-up frame is for (b)-(e), the yellow close-up frame

is for (f)-(g). (b) The deblurring result of Jin et al. [11]. (c) Our deblurring result. (d) The crop of their reconstructed images and the

frame number is fixed at 7. Jin et al. [11] uses the GoPro dataset added with 20 scenes as training data and their model is supervised by

7 consecutive sharp frames. (e) The crop of our reconstructed images. (f) The crop of Reinbacher [27] reconstructed images from only

events. (g) The crop of Scheerlinck [29] reconstructed image, they use both events and the intensity image. For (e)-(g), the shown frames

are the chosen examples, where the length of the reconstructed video is based on the number of events.

5.2. Experimental Results

We compare our proposed approach with state-of-the-art

blind deblurring methods, including conventional deblur-

ring methods [22, 38], deep based dynamic scene deblur-

ring methods [21, 11, 35, 40, 33], and event-based image

reconstruction methods [27, 29]. Moreover, Jin et al. [11]

can restore a video from a single blurry image based on a

deep network, where the middle frame in the restored odd-

numbered sequence is the best.

In order to prove the effectiveness of our EDI model,

we show some baseline comparisons in Fig. 6 and Table

1. For baseline 1, we first apply a state-of-the-art deblur-

ring method [35] to recover a sharp image, and then the

recovered image as an input is then fed to a reconstruction

method [29]. For baseline 2, we first use the video recon-

struction method to construct a sequence of intensity im-

ages, and then apply the deblurring method to each frame.

As seen in Table 1, our approach obtains higher PSNR and
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Figure 8. Examples of reconstruction result on our real blurry event dataset in low lighting and complex dynamic conditions (a) Input

blurry images. (b) The event information. (c) Deblurring results of [22]. (d) Deblurring results of [35]. (e) Deblurring results of [21]. (f)

Deblurring results of [11] and they use video as training data. (g) Reconstruction result of [27] from only events. (h)-(i) Reconstruction

results of [29], (h) from only events, (i) from combining events and frames. (j) Our reconstruction result. Results in (c)-(f) show that

real high dynamic settings and low light condition is still challenging in the deblurring area. Results in (g)-(h) show that while intensity

information of a scene is still retained with an event camera recording, color, and delicate texture information cannot be recovered.

SSIM in comparison to both baseline 1 and baseline 2. This

also implies that our approach better exploits the event data

to not only recover sharp images but also reconstruct high

frame-rate videos.

In Table 1 and Fig. 7, we show the quantitative and qual-

itative comparisons with the state-of-the-art image deblur-

ring approaches [33, 22, 9, 11, 35, 40, 21], and the video

reconstruction method [29] on our synthetic dataset, respec-

tively. As indicated in Table 1, our approach achieves the

best performance on SSIM and competitive result on PSNR

compared to the state-of-the-art methods, and attains signif-

icant performance improvements on high-frame video re-

construction.

We report our reconstruction results on the real dataset,

including text images and low-lighting images, in Fig. 1,

Fig. 2, Fig. 3 and Fig. 8. In comparison to existing event-

based image reconstructed methods [27, 29], our recon-

structed images are not only more realistic but also contain

richer details. More deblurring results and high-temporal

resolution videos are shown in the supplementary material.

6. Conclusion

In this paper, we propose an Event-based Double Inte-

gral (EDI) model to naturally connect intensity images and

event data captured by the event camera, which also takes

the blur generation process into account. In this way, our

model can be used to not only recover latent sharp images

but also reconstruct intermediate frames at high frame-rate.

We also propose a simple yet effective method to solve our

EDI model. Due to the simplicity of our optimization pro-

cess, our method is efficient as well. Extensive experiments

show that our method can generate high-quality high frame-

rate videos efficiently under different conditions, such as

low lighting and complex dynamic scenes.
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