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Abstract

This paper proposes the novel task of video generation

conditioned on a SINGLE semantic label map, which pro-

vides a good balance between flexibility and quality in the

generation process. Different from typical end-to-end ap-

proaches, which model both scene content and dynamics in

a single step, we propose to decompose this difficult task into

two sub-problems. As current image generation methods do

better than video generation in terms of detail, we synthe-

size high quality content by only generating the first frame.

Then we animate the scene based on its semantic meaning to

obtain temporally coherent video, giving us excellent results

overall. We employ a cVAE for predicting optical flow as

a beneficial intermediate step to generate a video sequence

conditioned on the initial single frame. A semantic label map

is integrated into the flow prediction module to achieve ma-

jor improvements in the image-to-video generation process.

Extensive experiments on the Cityscapes dataset show that

our method outperforms all competing methods. The source

code will be released on https://github.com/junting/seg2vid.

1. Introduction

A typical visual scene is composed of foreground objects

and the background. In a dynamic scene, motion of the

background is determined by camera movement which is

independent of the motion of foreground objects. Scene

understanding, which include both understanding how fore-

ground objects and background look and how they change, is

essential to advancing the development of computer vision.

Scene understanding, besides using recognition models, can

be accomplished by generative methods[34]. In this work we

focus on using generative models to understand our visual

world.

There has been much progress in image generation to

address static scene modeling. Researchers have proposed

methods to generate images from only noise [10] or from pre-
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Figure 1: Comparison with existing generation tasks. From

top: Image-to-image translation, video-to-video, and our

image-to-video synthesis. Our method only takes one se-

mantic label map as input and synthesizes a sequence of

photo-realistic video frames.

defined conditions such as attribute, text and pose [41, 20]. In

recent works, people also pay attention to image generation

conditioned on semantic information with either paired [12]

or unpaired data [42]. The conditional image generation

methods provide a way to manipulate existing images and

have potential value as a data augmentation strategy to assist

other computer vision tasks. While image generation tasks

only model static scenes, for video prediction, it is essential

to also investigate the temporal dynamics. Models are trained

to predict raw pixels of the future frame by learning from

historical motion patterns. There is another line of work on

video synthesis without any history frames.

Similar to research on image generation, some work in-

vestigated unconditional video generation. That is, directly

generating video clips from noise by using generative adver-

sarial networks to learn a mapping between spatial-temporal

latent space and video clips [31, 25]. Another group of re-

searchers worked on video-to-video translation [37], where

a sequence of frames are generated according to a sequence

of aligned semantic representations.
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Figure 2: Overview of our two step generation network. In

the first stage, we generate the starting frame by mapping

from a semantic label map. In the second stage, we use our

flow prediction network to transform the initial frame to a

video sequence.

In this work, we study video generation with a setting

similar to the video-to-video work [37] except that it is only

conditioned on a single frame‘s semantic label map. Com-

pared to previous works on video generation, our setting

not only provides control over the generation process but

also allows high variability in the results. Conditioning the

generation on semantic label map helps avoid producing un-

desirable results (e.g. a car driving on the pavement) which

often occurs in unconditional generation. Furthermore, we

can generate cars moving at different speeds or in different

directions, which is not possible in the video-to-video set-

ting. One intuitive idea to address this new task would be to

train an end-to-end conditional generative model. However,

it is not easy to apply such a model to datasets composed

of diverse objects and background, i.e. different objects in

different scenes have different motions. In reality, training

a single end-to-end model to simultaneously model both

appearance and motion of these objects and scenes is very

hard. Therefore, as illustrated in Fig. 2, we take a divide-and-

conquer strategy, designed to model appearance and motion

in a progressive manner.

In the first stage, we aim to transform a semantic label

map to a frame such that the appearance of scene is syn-

thesized, which falls into the category of image-to-image

translation. During translation process, the model only fo-

cuses on producing an image of good quality with reasonable

content.

In the next stage, future motion of the scene is predicted

based on the generated frame. Specifically, a conditional

VAE is employed to model uncertainty of future motion.

Different from existing video prediction tasks where mo-

tion information can be estimated from historical frames,

in our setting, we only have one semantic label map and

one generated frame available. We argue that it is impor-

tant for the model to leverage the semantic meaning of the

first frame when predicting motion. For example, buildings

and pedestrians have very distinctive motion. We take both

the semantic label map and the generated frame as input

and feed them into a motion prediction model. Empirical

results demonstrate that with semantic representation as in-

put, the model can learn better motion for dynamic objects

than without that, specially for complex scenes with multiple

classes of objects. We model motion with optical flow. Once

flows are predicted, they are directly applied to warp the first

frame to synthesize future frames. Finally, a post-processing

network is added to rectify imperfection caused during the

warping operation. Inspired by[21], we further improve the

performance of flow prediction and future frame generation

using bidirectional flows and geometric consistency. Experi-

mental results demonstrate the effectiveness of the proposed

method in video generation.

Our contributions are the following.

1. We introduce the novel task of conditioning video gen-

eration on a single semantic label map, allowing a good

balance between flexibility and quality compared to

existing video generation approaches.

2. The difficult task is divided into two sub-problems,

i.e., image generation followed by image-to-sequence

generation, such that each stage can specialize on one

problem.

3. We make full use of the semantic categorical prior in

motion prediction when only one starting frame is avail-

able. It helps predict more accurate optical flow, thereby

producing better future frames.

2. Related Work

Image generation Many work exists regarding image

generation which generally can be classified into two cat-

egories, unconditional generation and conditional genera-

tion. In unconditional generation, some work extends GANs

[10] or VAE [16] to map from noise to real data distribu-

tion. Auto-regressive architectures model the image on a

per-pixel basis [32, 22]. In the second category, conditional

models generate images given either class category, textual

descriptions, scene graphs or images [20, 2, 41, 15, 26]. Es-

pecially for image translation task, researchers study how

to generate a meaningful image from a semantic represen-

tation such as semantic label maps (paired and unpaired)

([12, 42, 38, 3, 26]). However, in image generation tasks,

photo-realism of the scene is modeled without considering

their motion information.

Video Generation Similar to Image generation, video

generation can also be divided into two categories: con-

ditional and unconditional. For the former category,

VideoGAN [34] explicitly disentangles a scene’s foreground

from background under the assumption that the background

is stationary. The model is limited to only simple cases and

cannot handle scenes with a moving background due to cam-

era movement. TGAN [25] first generates a sequence of

latent variables and then synthesize a sequence of frames
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Figure 3: Overall architecture of the proposed image-to-video generation network. It consists two components: a) Motion

Encoder and b) Video Decoder. For any pair of bidirectional flow predictions, consistency check is computed only in non

occluded areas.

based on those latent variables. MoCoGAN [31] also tries to

map a sequence of random vectors to a sequence of frames.

However, their framework decomposes video into content

subspace and motion subspace, making video generation

process more controllable. For conditional video generation,

it is still at its early stage. One recent work is vid2vid [37] in

which authors aim at transforming a sequence of semantic

representation, e.g. semantic label map and sketch map, to

a sequence of video frames. Our work falls into the cate-

gory of conditional video generation, but unlike vid2vid, our

method only requires a single semantic label map as input

which enables more freedom over the generation process.

Video prediction Some work model future motion in a

deterministic manner. In [23, 29, 33], future prediction is

carried out in a latent space, and the representation of future

frames is projected back to image domain. These models

are directly trained to optimize a reconstruction loss, such as

Mean Squared Error (MSE), between the predicted frames

and ground truth frames. However, they are prone to con-

verging to blurry results as they compute an average of all

possible future outcomes for the same starting frame. In

[19, 13, 8], future motion is predicted using either optical

flow or filter, where estimation and then corresponding spa-

tial transformation is applied to history frames to produce

future frames. The result is sharp but lacks diversity. A

group of researchers [39, 36, 7, 1] introduced conditional

variational autoencoders for video prediction to model uncer-

tainty in future motion allowing the results to be both sharp

and diverse. Similar to our work, Walker et al. [35] and

Li et al. [18] attempt to predict multiple future frames from

a static image. In the training phase, they take the ground

truth optical flow, either human annotated or computed, as

supervision to predict such flow, and transform the given

frame to future frames. Contrary to Walker et al. [35] and Li

et al. [18], we learn optical flow in an unsupervised manner,

i.e., without taking any pre-computed flow as supervision.

3. Semantic Label Map to Video Generation

Generating a video sequence V = {I0, I1, ..., IT } from

a single semantic label map S allows more flexibility com-

pared to translating multiple label maps to a video, but is

also more challenging. In this work we propose to divide

such a difficult task into two relatively easy sub-problems

and address each one separately, i.e., i) Image-to-Image (I2I):

an image generation model based on conditional GANs [38]

that maps a given semantic label map S to the starting frame

Î0 of a sequence, and ii) Image-to-Video (I2V): an image-

sequence generation network that produces a sequence of

frames V̂ = {Î0, Î1, ..., ÎT } based on the generated starting

frame Î0 and a latent variable z. In each stage we have a

model specializing on the corresponding task such that the

overall performance is good.

3.1. Image­to­Image (I2I)

Image-to-image translation aims at learning the mapping

of an image in the source domain to its corresponding im-

age in the target domain. Among the existing methods

[12, 42, 38, 3], we adopt the state-of-the-art image trans-

lation model pix2pixHD [38] to generate an image from a

semantic label map. It includes a coarse-to-fine architec-

ture to progressively produce high quality images with fine
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details while keeping global consistency. Note that the trans-

lation stage is not restricted to this method and other image

translation approaches can substitute pix2pixHD.

3.2. Image­to­Video (I2V)

In this section, we present how to use cVAE for image

sequence generation conditioned on an initial frame obtained

from Sec. 3.1. It is composed of two sub-modules, i.e., flow

prediction and video frame generation from flow. Fig. 3

shows the network structure and the components of the pro-

posed Image-to-Video model.

Conditional VAE - Compared to future prediction from

multiple frames, where the future motion can be estimated

based on past sequence, motion predicted from one single

frame can be more diverse. We employ the conditional

VAE (cVAE) model [39] as the backbone to capture multiple

possible future motions conditioned on a static image. The

proposed cVAE is composed of an encoder and a decoder.

The encoder Q(z|V, I0) learns to map a starting frame I0
and the subsequent frames V = {I1, ..., IT } into a latent

variable z that carries information about motion distribution

conditioned on the first frame I0. To achieve such mapping,

the latent variable z is composed of two parts, one projecting

from the whole sequence including both I0 and V , and the

other from only the initial frame I0. The decoder P (V |z, I0)
then reconstructs the sequence and outputs V̂ based on a

sampled z and I0. During training, the encoder Q(z|V, I0)
learns to match the standard normal distribution, N(0, I).
When running inference, the cVAE will generate a video

sequence from a given starting frame I0 and a latent variable

z sampled from N(0, I) without the need of the motion

encoder.

Flow Prediction - We first use an image encoder to trans-

form the starting frame into a latent vector zI0 as a part of

the latent variable z. The whole sequence is sent to another

sequence encoder to compute zm, which makes up the other

part of z for uncertainty modeling. zI0 and zm are concate-

nated as one vector z which is fed to a decoder to compute

future optical flow. For motion generation, we predict bidi-

rectional flows, i.e. both forward flow from the initial frame

to future frames and backward flow from future frames to

the initial frame. Computing cycle flow allows us to perform

forward-backward consistency checks. For regions which

appear in both frames (A and B), correspondence between

two frames can be captured both from A to B and from B

to A. We compute an occlusion mask to omit regions which

are either occluded or missing in the generated frame so that

the consistency check is only conducted on non-occluded

regions. Putting all this together, the resulting output of the

cVAE is the optical flow as well as the occlusion mask for

both forward and backward directions, defined as:

W f ,W b, Of , Ob = F(I0), (1)

Where F is the flow prediction module that is composed

of the motion encoder and the flow decoder as shown in

Fig 3. W f = {wf
1
, ...,w

f
T }, where w

f
t = (uf , vf ) is the

forward optical flow from I0 to It and W b = {wb
1
, ...,wb

T },

with w
b
t = (ub, vb) is the backward optical flow. Of =

{of
1
, ..., o

f
T } and Ob = {ob

1
, ..., obT } are the multi-frame

forward-backward occlusion maps. We define a pixel value

in the occlusion map to be zero when there is no correspon-

dence between frames. All optical flows and occlusion maps

are jointly predicted by our image-to-flow module. Note that

both bidirectional and occlusion maps are learned without

any pre-computed flow as supervision.

Video frame Generation - With the predicted optical

flow, we can directly produce future frames by warping the

initial frame. However, the generated frames obtained solely

by warping has inherent flaws, as some parts of the objects

may not be visible in one frame but appears in another. To

fill in the holes caused by either occlusion or objects entering

or leaving the scene, we propose to add a post-processing

network after frame warping. It takes a warped frame and its

corresponding occlusion mask Ob as the input, and generates

the refined frame. The final output of our model is defined

as follows:

Ît(x) = P(obt(x) · I0(x+w
b
t(x))), (2)

where P is the post-processing network and x denotes the

coordinates of a position in the frame.

Loss Function - Our loss function contains both per-

pixel reconstruction and uncertainty modeling. For the per-

pixel reconstruction, we compute losses in both the forward

and backward direction, formulated as

Lr(W
f ,W b, V ) =

T∑

t

∑

x

o
f
t (x)|I0(x)− It(x+w

f
t (x))|1

+ obt(x)|It(x)− I0(x+w
b
t(x))|1,

(3)

where T is the length of the generated sequence. We only

compute reconstruction in non-occluded regions to avoid

learning incorrect deformations. Neighboring pixels usually

belong to the same object, thus they tend to have similar

displacement. Therefore, similar to previous work [40, 30]

we also add a smoothness constraint to encourage flow in a

local neighborhood to be similar.

Lfs(W
f ,W b) = |∇W f |1 + |∇W b|1 (4)

We compute forward-backward consistency loss for non-

occluded regions:

Lfc(W
f ,W b) =

T∑

t

∑

x

o
f
t (x)|w

f
t (x)−w

b
t(x+w

f
t (x))|1

+ obt(x)|w
b
t(x)−w

f
t (x+w

b
t(x))|1,

(5)
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To train the in-painting network, we applied an L1 loss

together with a perceptual loss [14] that has been shown to

be useful for image generation. Therefore, our data loss can

be formulated as a weighed sum of the above terms.

Ldata(V̂ , V ) = λrLr + λfsLfs + λfcLfc

+ Ll1(V̂ , V ) + Ll1(φ(V̂ ), φ(V ))

+ λp|1−Ob|1 + λp|1−Of |1,

(6)

where φ is VGG-19 [27] from where we extract and col-

lect features from the first 16 layers. We add a penalty on

the occlusion maps for λp = 0.1 to avoid the trivial solu-

tion where all pixels become occluded (we define the value

in a position of Ob to be 0 when the pixels is becoming

occluded in the next frame). The weights are set to be:

λr = λfs = λfc = λl1 = 1 and β = 0.1. To model the

motion uncertainty we incorporate the KL-divergence loss

such that Q(z|X) matches N(0, I). The training loss for the

cVAE is a data loss combined with a KL-divergence loss.

LcV AE(V̂ , V ) =Ldata + βDkl(pφ(z|V )||p(z)). (7)

3.3. Flow prediction with semantic label maps

Different from video prediction conditioned on multiple

frames, generating a video from a static frame has no access

to historical motion information. To infer future motion of a

object in a static frame, the model needs to understand the

semantic category of that object and its interaction with other

objects and background. For example, the car will stop when

the traffic light is red and move on when is green. To promote

future motion estimation for the whole frame, we incorporate

semantic label map which describes semantic information of

the whole scene into the flow prediction module discussed

in previous sub-section.

We explore two ways of integrating the semantic label

map for flow prediction. In the first method, we expand a

semantic label map into several heatmaps which is filled

with ones on positions correspond to a semantic category

and zeros elsewhere. These heatmaps are concatenated with

the generated starting frame and fed to the cVAE model for

future frame synthesis. In the other method, we further di-

vide the heatmaps into two sets, i.e., foreground heatmaps

and background heatmaps, as shown in Fig. 4. Each set of

heatmaps is fed to a separate sequence encoder to get a latent

vector zFG and zBG. They are then concatenated with zI0
becoming the input to the flow decoder. In Section 4, exper-

imental results demonstrate that integrating semantic label

map helps computing more accurate flow and accordingly

improve the video generation performance.

4. Experiments

In this section we present the dataset and describe the

details about the implementation. We evaluate our method

Frame 
Sequence

Background 
Sequence Encoder

ZBG

Foreground
 Motion Encoder

ZFG

Foreground 
Semantic 

Label Maps

Background 
Semantic 

Label Maps
Frame 
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Figure 4: Semantic sequence encoder. Each sequence en-

coder only focuses on learning either foreground or back-

ground motion.

against several baseline methods with both qualitative and

quantitative metrics. We also perform ablation studies to

confirm the effectiveness of using semantic label maps for

video generation.

4.1. Datasets and Evaluation Metrics

Datasets We have conducted experiments on the

Cityscapes dataset while we have provided qualitative results

on the many other datasets. Cityscapes [6] consists of urban

scene videos recorded from a car driving on the street. It con-

tains 2,975 training, 500 validation and 1,525 test video se-

quences, each containing 30 frames. The ground truth seman-

tic segmentation mask is only available for the 20th frame

of every video. We use DeepLabV3[5] to compute semantic

segmentation maps for all frames, which are used for train-

ing and testing. We train the model using all videos from the

training set, and test it on the validation set. UCF101 [28]

The dataset contains 13, 220 videos of 101 action classes.

KTH Action dataset [17] consists of 600 videos of people

performing one of the six actions(walking, jogging, running,

boxing, handwaving, hand-clapping). KITTI [9] similar to

Cityscpes was recorded from a car traversing streets.

Evaluation Metrics We provide both quantitative and

qualitative evaluation results in this section. For qualita-

tive evaluation, we conducted a human subjective study to

evaluate our method as well as the baseline methods. We

randomly generated 100 video sequences for each method,

pairing each generated video with the result of another ran-

domly chosen method. The participants are asked to choose

from each pair the most realistic looking video. We calculate

the human preference score after each pair of videos was

evaluated by 10 participants.

The Fréchet Inception Distance (FID) [11] measures the

similarity between two sets of images. It was shown to

correlate well with human judgment of visual quality and
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MoCoGAN FG vid2vid Ours

FID 8.77 3.69 4.86 3.52

Table 1: Comparison of video generation methods where the

input is a single semantic label map.

is most often used to evaluate the quality of samples from

GANs. FID is calculated by computing the Fréchet distance

between two feature representations of the Inception network.

Similar to [37], we use the video inception network [4] to

extract spatio-temporal feature representations.

4.2. Implementation details

Our method takes a single semantic label map S and

predict T = 8 frames in a single step. We resize all frames to

128× 128 and extract the semantic segmentation maps with

DeepLabV3 [5] for training. We do not use any flow map as

ground truth for training. In the cVAE, the motion encoder is

built upon stacks of 2D convolutional layers intercepted with

max pooling layers. The latent vector z has dimension 1024,

896 for foreground motion and 128 for background motion.

For the flow encoder, we use three blocks each consisting of

3D convolutional layers intercepted with bilinear upsampling

layer that progressively recovers the input resolution in both

spatial and temporal dimensions. For the postprocessing

network, we adopt the U-Net architecture from [24].

4.3. Ablation Studies

We conduct extensive experiments on the Cityscapes

dataset to analyze the contribution of the semantic label

map and optical flow for motion prediction. We have shown

that optical flow is reliable motion representation to convey

motion between frames and preserver better visual quality.

Fig. 9 shows that the model without optical flow produces

blurry frames. In contrast, our flow based solution preserves

better details even on fast moving objects and produces fewer

artifacts.

We also compare frame sequences generated by the model

without semantic label map and two ways of integrating that.

As shown in Fig. 10, the model integrating semantic label

map is able to capture both foreground object motion and

background motion, whereas the one without that fails to

estimate the independent foreground object motion. By fur-

ther separating semantic label maps into background and

foreground, it can capture more details in structure marked

by the red rectangles. As expected, semantic information

plays an important role in generating object motion when

predicting from a single frame. We show further improve-

ments by separating semantic classes into two groups based

on background and foreground.

Figure 5: Comparison between different approaches of video

prediction from a static image. Top left: ground truth. Top

right: FG. Bottom left: MoCoGAN. Bottom right: img2vid

(ours). Our method preserve the the visual quality while

other method rapidly degrades.

MoCoGAN FG Ours

FID 7.06 2.86 1.80

Table 2: Comparison of video prediction methods that take

a single starting frame as input.

4.4. Baselines

We compare our network with five state-of-the-art base-

line methods trained on the Cityscapes dataset.

MoCoGAN [31] is an unconditional video generation

model. Here, we also compared the conditional setting of

MoCoGAN, given the initial frame x0 as input.

FlowGrounded (FG) [18] is a video prediction model

from a static image. We compare our image-to-video stage

with this method on both video generation and video predic-

tion tasks.

Vid2Vid [37], the goal of vid2vid is to map a sequence

of semantic represenation to a sequence of video frames,

where future motion is approximately given in the semantic

segmentation sequence. We evaluate vid2vid to see whether

our method is comparable to this ”upper bound”.

4.5. Results

Quantitative Results In Table 1 we report the results on

the Cityscapes dataset. In terms of performance, the lower

the FID, the better the model. In Table 1, we show that

our method has the lowest FID compared to all competing

methods. Notice that the results here are slightly different

from what is reported by Wang et al. [38] because we only

evaluate 8-frame sequences with a resolution of 1024× 512
due to GPU memory limitations. We generated a total of

500 short sequences on the validation set. We also provide

results for video prediction when only the starting frame is

given. As shown in Table 2, our method outperforms all

other state-of-the-art approaches in video prediction from a
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Figure 6: Comparisons with other competing baselines. Notice that vid2vid uses a sequence of semantic label maps while

other methods only take one as input. Please zoom in for best view.

Ours MoCoGAN FlowGrounded

t=5 t=11t=0 t=5 t=11 t=5 t=11

Figure 7: Comparisons with other competing baselines on

UCF-101 dataset and KTH human dataset. Please zoom in

to see the details.

static image.

Qualitative Results Fig. 6 compares our generation re-

sults with other approaches. MoCoGAN has limited capabil-

ity in modeling video sequences (both motion and appear-

ance). FG fails to synthesize the details of the scene,e.g.

windows of the background building are completely missing,

t=1 t=5

Figure 8: Samples of KITTI generated from model trained

on the cityscapes dataset.

increasing blurriness. Our method maintains the semantic

structure of the scene for the duration of the sequence and

contains finer details than the previous two methods. The

proposed method makes reasonable estimates of the objects’

future motion and produces temporally coherent video se-

quence. Compared to the ground truth sequence, our model

can generate semantically correct samples but with different

properties, e.g., a white car in the ground truth sequence

appears as a silver car in our result. For vid2vid, where the

input is a sequence of semantic label maps, shows realistic

images with great details, but limited on preserving the tem-

poral consistency across frames, e.g. the silver car in t = 3
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Figure 9: Ablation studies of our method. Top left: GT. Top

right: w/o segmentation label map and flow. Bottom left:w/o

flow. Bottom right: our full model. Our method preserve

better the visual quality.

Human Preference Score

seg2vid(ours) / MoCoGAN 1.0 / 0.0

seg2vid(ours) / FG 0.78 / 0.22

seg2vid(ours) /vid2vid 0.37 / 0.63

Table 3: User study on video generation methods.

Human Preference Score

seg2vid(ours) / MoCoGAN 1.0 / 0.0

seg2vid(ours) / FG 0.82 / 0.18

Table 4: User study on video prediction methods.

has turned into black in t = 7, while our methods keeps the

same color. To further show the effectiveness of our method

on predicting general motions, we provide visual results on

UCF-101 dataset and KTH action dataset that mainly con-

sist on people performing actions. As shown in Fig. 7, our

method preserves well the body structure and synthesizing

complex non-linear motions such as people skiing, playing

violin and walking. We trained the model on Cityscapes

and tested on samples from KITTI to show the method‘s

generalization ability, shown in Fig. 8.

The user study illustrated in Table. 3 also shown that our

method is the most favored except vid2vid. Additionally to

the results of synthesized data, we also reported results for

video prediction task. As shown in Fig. 5 our method can

predict well background motion and simultaneously captured

the movement of the car on the left side. The details and

structure of the scene is well preserved with our approach

while other methods suffer severe deformation. Table 4

shows that participants find our method to be more realistic.

5. Conclusion

In this work, we introduced the new video generation

task conditioned only on a single semantic label map, and

proposed a novel method for this task. Instead of learning

the generation end-to-end, which is very challenging, we

t = 1 t = 5

(b)

(c)

(d)

(a)

Figure 10: We compare three different variants of using

semantic label map for flow and frame prediction. (a) ground

truth, (b) w/o semantic label maps, (c) with semantic label

maps, (d) with separate semantic label maps for background

and foreground objects.

employed a divide and conquer strategy to model appear-

ance and motion in a progressive manner to obtain quality

results. We demonstrated that introducing semantic infor-

mation brings large improvement when predicting motion

from static content. The impressive performance compared

to other baselines indicate the effectiveness of the proposed

method for video generation.
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