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Abstract

Extracting temporal and representation features effi-
ciently plays a pivotal role in understanding visual se-
quence information. To deal with this, we propose a new
recurrent neural framework that can be stacked deep ef-
fectively. There are mainly two novel designs in our deep
RNN framework: one is a new RNN module called Context
Bridge Module (CBM) which splits the information flowing
along the sequence (temporal direction) and along depth
(spatial representation direction), making it easier to train
when building deep by balancing these two directions; the
other is the Overlap Coherence Training Scheme that re-
duces the training complexity for long visual sequential
tasks on account of the limitation of computing resources.

We provide empirical evidence to show that our deep
RNN framework is easy to optimize and can gain accu-
racy from the increased depth on several visual sequence
problems. On these tasks, we evaluate our deep RNN
framework with 15 layers, 7X than conventional RNN net-
works, but it is still easy to train. Our deep framework
achieves more than 11% relative improvements over shal-
low RNN models on Kinetics, UCF-101, and HMDB-51
for video classification. For auxiliary annotation, after re-
placing the shallow RNN part of Polygon-RNN with our
15-layer deep CBM, the performance improves by 14.7%.
For video future prediction, our deep RNN improves the
state-of-the-art shallow model’s performance by 2.4% on
PSNR and SSIM. The code and trained models are pub-
lished accompanied by this paper: https://github.
com/BoPangl996/Deep—RNN-Framework.

1. Introduction

With the advent of deep neural networks (DNN) in recent
years, a mass of vision tasks have made great progress [25,
53, 40, 36, 12] due to its superior representation capabil-
ity for high-dimensional data. On top of spatial represen-
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tation, temporal features are valuable and crucial as well
when dealing with sequential inputs like videos, for which
recurrent neural networks (RNN) are designed. Taking all
above into consideration, we are intended to build a deep
RNN architecture that combines the merits of both RNN
and DNN to extract more powerful temporal and represen-
tation features from visual sequential inputs.

A straightforward way to build RNN deeper is to simply
stack multiple RNN layers. However, this method is en-
countered with two problems. For one thing, in this deep
RNN structure, there exist two information flows — repre-
sentation flow and temporal flow, along structural (spatial)
depth and temporal depth respectively, however, these two
flows are often entangled with each other, making it hard
for models to be co-adaptive to both of them. Many spe-
cific RNN structures like LSTM [16] and GRU [6] are de-
signed mainly to capture temporal information among long
sequences, yet there is no adaption that can effectively take
advantage of both the two flows. Therefore, simply stacking
these RNN modules will lead to higher training error and
heavier training consumption. For another, the limitation
of computing resources greatly influences the feasibility of
this method. Unlike deep CNN [33, 27, 28], deep RNN
needs to unfold as many times as the sequence length, re-
sulting in more significant expansion of memory and com-
putational complexity with the depth increasing, especially
for visual sequential inputs.

In this paper, we propose a new deep RNN architecture
including two principle techniques, namely, Context Bridge
Module (CBM) and Overlap Coherence Training Scheme.
In CBM, we design two computing units taking charge of
representation flow and temporal flow respectively, forcing
these two flows relatively independent of each other with
the aim of making them focus on representation and tempo-
ral information separately to ease the training process. After
these two units, a merge unit is utilized to synthesize them.
By adjusting the synthesizing method, we can balance the
dominant degree of each direction to better adapt to the re-
quirements of different tasks. Furthermore, to make repre-
sentation flow less influenced by temporal flow in the be-
ginning of training, we design the Temporal Dropout (TD)
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to interdict the back-propagation of temporal information
across layers with a certain probability.

Besides, the proposed Overlap Coherence Training
Scheme aims at reducing the training cost of deep RNN.
Since the enormous training consumptions are largely due
to the long sequence, we introduce this training scheme that
randomly samples the long sequence with length [ into sev-
eral overlapping short clips with length n and leverages the
overlaps as the communication bridge between the adjacent
clips to smooth the information propagation among clips. In
this way, we simplify the original Markov process of order
[ into several ones of order n (n < [), which remarkably re-
duces the training complexity, and guarantees the temporal
information coherence among clips at the same time. Based
on overlaps, we design overlap coherence loss that forces
the detached clips to generate coherent results in order to
strengthen the consistency of temporal information, which
makes the model not a strict Markov process of order n, but
the complexity is still reduced.

We conduct comprehensive experiments on several tasks
to show the challenge of training deep RNN and evaluate
our proposed deep RNN framework. Results reveal that:
1) Deep RNN can enjoy accuracy gains from the greatly
increased depth, substantially better than the shallow net-
works. 2) Our CBM is more suitable for stacking deep com-
pared with other RNN structures like LSTM. 3) The overlap
coherence training scheme can effectively make many com-
puter vision problems with high-dimensional sequential in-
puts trainable on commonly-used computing devices.

We evaluate our framework on several visual sequence
tasks: action recognition and anticipation on UCF-101 [43],
HMDB-51 [26] and Kinetics [4], auxiliary annotation
(Polygon-RNN [5]) on Cityscapes [7], and video future pre-
diction on KTH [39]. For action recognition and anticipa-
tion tasks, our deep RNN framework achieves more than
11% relative improvements on all the datasets compared
with the shallow RNN models. For Polygon-RNN task, IoU
value improves by 14.7% on Cityscapes. For video future
prediction task, our deep RNN improves the performance
by 2.4% on PSNR [31] and SSIM [47] metrics.

2. Related Work

Methods for Visual Sequence Tasks Visual sequence
problems require models to extract hierarchical temporal
and representation features simultaneously. A slew of prior
arts have shed light on this tough problem: 1) An inchoate
approach is pooling the spatial representation features of ev-
ery item in the sequence, such as [23, 52] when dealing with
video classification and [46, 48] for action detection and lo-
calization. This approach can extract relative high-quality
spatial representation features but is very weak for tempo-
ral ones because it treats the sequence as a set and simply
combines the spatial features of the set as global temporal

features without considering order relations. 2) Then 3D
convolutional networks [22, 4] appear, which treat temporal
dimension equal to spatial dimension with its cubic convo-
lution kernel, while 3D convolutional networks need to con-
sume large amount of computing resources. 3) RNN [49, §]
is designed to handle sequence problems, therefore it is
a natural idea to utilize RNN to encode temporal infor-
mation after obtaining spatial features, which is adopted
in [49, 8, 29, 34] for video classification, [8, 44] for video
description, [5, 1] for auxiliary annotation and [45, 50, 32]
for video future prediction. Whereas, currently used RNN
is shallow, which may limit its performance.

Exploration on Deep RNN In this paper, we focus on ex-
ploring appropriate deep structure for RNN model. There
are many previous works trying to address this problem.
In [35, 14], the authors evaluate several ways to extend
RNN deeper, and results show that stacked RNN has rel-
atively better performance and more importantly, stacking
method can synthesize temporal information in each layer
to extract hierarchical temporal-spatial features instead of
plain temporal, deep spatial features.

The learning computational complexity of deep RNN
significantly increases with the depth growing, thus in [38],
the authors propose a new RNN structure called LSTMP
to reduce the complexity. In [20, 21, 18, 14], researchers
prove that deep RNNSs outperform associated shallow coun-
terparts that employ the same number of parameters. [20]
shows that each layer captures a different aspect of compo-
sitionality which reveals deep RNN’s ability to extract hi-
erarchical features, and a deep bidirectional RNN structure
is proposed in [21]. All these previous works prove the im-
portance of RNN depth in NLP and speech area, while for
high-dimensional inputs like videos in computer vision, it
is more challenging to tackle as we mentioned above. For
them, what we suppose to build is a deep RNN framework
which is easy to optimize even when inputs are large-scale
and can achieve promising improvements on performance
at the same time.

3. Deep RNN Framework

Deep model has exhibited superior performance in pro-
ducing powerful features, and we hope sequence modeling
can enjoy the deep representation as well. To this end, we
introduce our deep RNN framework in this section, which
contains two parts: context bridge module (CBM) designed
to effectively capture temporal and representation infor-
mation simultaneously, and the overlap coherence training
scheme to further simplify the training process.

3.1. Context Bridge Module

To model visual sequential inputs, we need to make sure
it can be trained efficiently when building deep. For this,
we design a non-shallow recurrent architecture to respec-
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Figure 1. Structure of CBM. The blue lines represent representa-
tion flows, while red ones represent temporal flows. R, T and ¢ de-
note representation unit, temporal unit and merge function respec-
tively. The dashed line (TD) means feeding forward is allowed but
back-propagation is forbidden with a certain probability.

tively capture temporal information from sequential inputs
(e.g. a sequence of frames in a video) and representation
information from each individual one (e.g. one frame of
the sequence). These two information flows are oriented to-
wards temporal depth and structural depth separately, and
we name them as temporal flow and representation flow.

Challenge The straight-forward design for deep RNN can
be a vertically stacked RNN architecture. However, in high-
dimensional visual tasks, parameters in RNN cell are hard
to be co-adaptive to two flows simultaneously, resulting in
ineffective and inefficient training. Extensive experiments
show this design is very hard to train. This is why we hardly
see stacked deep RNN in related literatures. In most cases,
people adopt shallow RNN which takes extracted CNN fea-
tures as inputs, though it is not an end-to-end pipeline.

Our Architecture Therefore, we go down to consider
how to capture these two branches of information flows as
independently as possible, through which the training pro-
cess can be much easier since the two relatively independent
branches can share the burden of learning and ease complex
co-adaptations. Specifically, for representation flow, we use
a computing unit (e.g. CNN structure) to extract features
of the individual input sample without recurrent operations,
while temporal flow adopts a RNN structure.

As shown in Fig. 1, in each cell, there is a “representa-
tion” unit R and a “temporal” unit 7" which act as a repre-
sentation feature extractor on individual input sample and
a temporal information encoder on the sequential inputs re-
spectively. Here R can be seen as a context bridge over the
temporal information. Intuitively, the representation infor-
mation flow would be encouraged to mainly propagate by
this bridge, since it doesn’t need to interwind with tempo-
ral information. Therefore, we call this module as Context
Bridge Module (CBM). By denoting o0;_1 ¢ as the input to
the module in i*” layer at time stamp ¢, we have
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Figure 2. Temporal flows adopting TD. Top: When setting the
TD rate to 1.0, all the colorized lines (red & purple) of temporal
flow cannot propagate back, while if only drop the red node out,
the gradients from red node’s temporal unit cannot flow backward
through the red lines. Bottom: Expectation numbers of back-
propagation paths with different lengths (paths from “0” to dif-
ferent “1” in Top) when adopting different TD rates. Note that the
back-propagation remains unchanged when setting TD rate to 0.0.

0 = R(0i—1,45¢3), (1)

where the representation unit R is designed as a conven-
tional CNN layer, namely ReLU(Conuv(-)), and 1; is the
parameters of R in i*" layer.

On the other hand, temporal flow is captured by 7" unit,
which is written as

cit = T(Cit—1,0i—1,; Di), (2

where c; ; is the memory state in ' layer at time stamp ¢,
and ¢; is the parameters of 7" in i*" layer. As a recurrent
architecture, T' can be a Sigmoid(Conv(-)) (as simple as
the conventional RNN) or LSTM. In practice, we suggest
Sigmoid(Conuv(-)) since it only consumes half of comput-
ing resources compared with LSTM cell, which greatly con-
tributes to building model deeper.

Finally, to fuse the information flows from the two units,
we introduce a merge unit,

Ot = C(O;’h ci,t)7 (3)

where ( is the merge function, and we adopt element-wise
production for ¢ in our experiments.

Temporal Dropout To make training easier, we hope the
learning in representation flow direction less interwinds
with temporal flow in the beginning. After a desirable
neural representation is shaped, the learning in temporal
flow direction can be more efficient. To this end, we
introduce a Temporal Dropout (TD) scheme: forbidding
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Figure 3. Four examples of feature maps from the representation
and temporal unit on the toy experiment. “F1” denotes frame 1,
“R” denotes representation unit and “T” denotes temporal unit.
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back-propagation from 7" unit through the dashed line in
Fig. 1 with a certain probability. Just like dropout proposed
in [25], it can reduce complex co-adaptations of two flows
and enhance model’s generalization ability. Specifically, we
begin with a high temporal dropout rate (forbidding with
a high probability) to isolate temporal information of each
layer. In this way, the representation unit can capture effec-
tive representation easily, since it largely shortens the back-
propagation chain in temporal flow as shown in Fig. 2 and
only gradients from R can back-propagate to previous lay-
ers. That is, the workload of learning two flows, to some
extent, can be de-coupled in different time by gradually de-
creasing the TD rate to incorporate temporal information
with representation features as training goes. To verify the
effectiveness of this idea, several experiments are conducted
in Section 4 and Section 5.

Comparison with Conventional RNN/LSTM As men-
tioned before, stacked RNN/LSTM is a solution for deep
recurrent architecture. Actually, our proposed approach is
a general version of it. Specifically, when we set the out-
put of R unit as constant 1, our model degenerates into
stacked RNN/LSTM model (7" unit can be LSTM cell).
If we further set the depth of representation branch to 1,
our model becomes a conventional shallow RNN/LSTM.
From another perspective, our model can be considered as
an extension of stacked RNN/LSTM with an extra context
bridge, namely the R unit.

Discussion with a Toy Experiment To further provide an
intuitive perception for the function of context bridge mod-
ule, we design a toy experiment. The experiment is a video
classification task that requires the model to learn which
object is in the video from spatial information and how it
moves from the temporal information, such as “a triangle is
moving left” or “a circle is moving right”. We adopt a 3-
layer CBM model with 3 channels and visualize the feature
maps of the final layer’s representation unit and temporal
unit in Fig. 3. We can see the two computing units act as
expected that the representation one mainly focuses on the
spatial information while the temporal information is cap-
tured by the temporal unit.

Original Training Scheme .-,

e e e e o]
/ Simple Sampling Method
- S ————— ===
/ Overlap Coherence Training Scheme
H —- >

Figure 4. Deep RNN training schemes. First row: original train-
ing scheme for RNN that takes the whole sequence as input and
the information can flow forward and backward without interdict-
ing. Second row: simple sampling method that samples the input
long sequence into several short clips. Third row: our overlap
coherence training scheme. Note that every item in the sequence
can receive backward information (gradients) due to the existence
of overlaps. The red line represents the initialization of each clip
that is randomly chosen from the former clips with overlaps.

3.2. Overlap Coherence Training Scheme

Challenge In practice, utilizing deep RNN to model high-
dimensional visual long sequences can be hard to achieve
because with the depth increasing, the computing resources
needed significantly expand. The deeper the model is, the
more dramatically computational complexity grows with
the increase of the sequence length, which can be regarded
as a contradiction between the structural depth and se-
quence length (temporal depth). Recently, a widely-used
method is to sample a few items from the long sequence
(successive or scattered) and learn a truncated version of the
original RNN on them [8, 17, 11, 4] to solve the contradic-
tion. Under this scheme, training on short samples instead
of the long sequence greatly reduces the training complex-
ity, which is very practical for deep RNN. However, this
can be seen as a compromise for the depth, which may lead
to losing some key temporal information. Considering two
short sampled clips that own overlaps, the outputs of the
overlap sections must be different due to the broken tem-
poral information, which will never happen if we train the
whole sequence together, and this provides a clear evidence
for the weakness of this sampling method.

Method In this paper, we also consider shortening the
long sequence to simplify the /-order Markov process into
several n-order (n < [) ones, but we smooth the informa-
tion propagation among short clips by introducing the Over-
lap Coherence Training Scheme. In training phase, we ran-
domly sample clips that have random lengths and starting
points, which will naturally generate many overlaps (Third
row in Fig. 4). The overlaps serve as the communication
bridge among the disconnected clips to make information
flow forward and backward smoothly throughout the whole
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Figure 5. “Cat & Dog” experiment. The input sequence is images
of cat and dog, and the label of each image represents the distance
from the cat image (padding with -1).

sequence. Therefore, we introduce a new loss called over-
lap coherence loss to force the outputs of overlaps from dif-
ferent clips to be as closed (coherent) as possible. Then, the
training objective function can be written as

N
STLe(s)+ A D La(v,u), 4)
=1

(v,u)eN

where s; is the i" clip and (2 is the set of pairs which are the
outputs of overlap sections from different clips. £, and L4
denote the original loss for the specific task and our over-
lap coherence loss implemented by MSE loss respectively,
where ) is the hyper-parameter to adjust the weight of them.

Additionally, our training scheme exhibits several high-
lights in practice. Firstly, our random sampling mode serves
as a great data argumentation approach to enhance model’s
generalization ability. Secondly, the vanishing/exploding
gradient problem can be solved to some extent since the
scheme will shorten the sequence adequately to train easily.
Thirdly, the initial state of each clip is taken from other ear-
lier trained clips by picking up their hidden states at corre-
sponding time stamp, which further bridges the information
flow among clips to make it smoothly transfer throughout
the whole sequence. Furthermore, initialized clips can be
computed together in parallel, which can effectively reduce
the training time, especially when the overlap rate is high.

Moreover, to verify our training scheme can actually
transfer useful information flow throughout the whole se-
quence, we commit a toy experiment shown in Fig. 5. The
input sequence is a series of images, where there is only one
cat and the others are all dogs. We train a model with over-
lap coherence training scheme to learn how far the current
dog image is from the cat image appeared before. We find
that the model can correctly predict even if the cat image ap-
pearing 50 frames ago, where we set the clip length smaller
than 10. This is because temporal information of the image
sequence is successfully captured among clips due to our
overlap coherence training scheme.

4. Experimental Results

In this section, we evaluate our deep RNN framework
and compare it with conventional shallow RNN (we choose
the commonly used one: LSTM) on several sequence tasks
to exhibit the superiority of our deep RNN framework over
the shallow ones on high-dimensional inputs.
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Figure 6. Shallow and deep RNN architecture. The shallow ver-
sion is implemented based on [8]. The deep one contains 15 RNN
layers and we add shortcuts along the depth, following [13]. Dif-
ferent from the shallow one, the RNN kernel is convolutional to
maintain the spatial features instead of linear kernel.

4.1. Video Action Recognition and Anticipation

We first evaluate our method with action recognition and
anticipation tasks [3, 30] on the UCF-101 dataset [43] and
HMDB-51 dataset [26] to compare our deep RNN with the
common shallow one with CNN backbones. Then we re-
move the backbones, evaluate the standalone deep RNN
model on Kinetics dataset [4] to compare it with several
excellent approaches, not merely the shallow RNN.

Implementation The frames in videos are resized with
its shorter side into 368 and a 224 x 224 crop is randomly
sampled from the frame or its horizontal flip. Color aug-
mentation is used, where all the random augmentation pa-
rameters are shared among the frames of each video. We
adopt BN [19] after each convolutional layer, the same as
[19]. The backbones (if needed) are pre-trained on Ima-
geNet [37] and the RNN part is initialized by “Xavier ini-
tialization” proposed in [10]. We use Adam optimizer [24]
with 64 mini-batch for shallow net and 16 for deep one.
The learning rate starts from 10~% and gradually decays.
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Table 1. Classification accuracy on UCF-101 and HMDB-51 (both
on the first test split). For action recognition, the whole sequence is
taken as input, while for anticipation, only the first two frames are
used to do inference. Note that “Recg” denotes action recognition
task and “Atcp” denotes action anticipation task.

UCF-101 HMDB-51
Recg Atcp Recg Atcp
1-layer LSTM 71.1[8] | 30.6[2] | 36.0[4] 18.8
15-layer ConvLSTM 68.9 49.6 342 27.6
1-layer CBM 65.3 28.4 343 16.9
15-layer CBM 79.8 57.7 40.2 321

Table 2. Action recognition accuracy on UCF-101 first test split.

Model Recognition Acc
1-layer LSTM with VGG [8] 71.1
1-layer LSTM with InceptionV1 [4] 81.0
15-layer ConvLSTM with InceptionV 1 77.6
15-layer CBM with InceptionV'1 85.3

Besides, we adopt a weight decay of 1075 and dropout of
0.2 and 0.5 for feature extractor and classifier respectively.

Adopting Conventional Backbone-Supported Structure
Conventional RNN model [8] is stacking a 1-layer LSTM
on the VGG [42] backbone. Now we extend it to deeper
versions (shown in Fig.6) — stacking a 15-layer ConvL-
STM [50] or a 15-layer CBM on the VGG backbone. For
TD rate of CBM cell, we start from 1.0, decay to 0.8 after
two epochs, and finally to 0.5 after another two epochs. We
adopt our overlap coherence training scheme for both of the
two deep versions to make them feasible, fix the weight-
ing factor A = 0.8 for overlap coherence loss, and keep the
overlap rate of sampling as 25%.

The results are shown in Tab. 1. For action recognition,
the deep ConvLSTM model has a lower accuracy compared
with the shallow model while for our deep CBM model,
it obtains 12.2% relative improvements on UCF-101 and
11.7% on HMDB-51. For action anticipation, both of the
two deep models gain improvements and our CBM version
possesses the best performance — achieving 88.6% relative
improvements on UCF-101 and 70.7% on HMDB-51.

Furthermore, we replace the VGG backbone with Incep-
tionV1 to validate the universality of our deep RNN frame-
work on UCF-101 of action recognition. Results are shown
in Tab. 2, where our deep CBM model still outperforms the
shallow one, achieving 5.3% relative improvements.

Adopting Standalone RNN Structure To reveal the ex-
cellent spatial representation ability of our deep RNN
framework, we remove the backbone, adopt a standalone
end-to-end deep RNN model to extract temporal and repre-
sentation features simultaneously.

Specifically, we utilize a deeper structure with 17-layer

Table 3. Action recognition accuracy on Kinetics, and end-to-end
fine-tuning on UCF-101 and HMDB-51. Note that our Deep CBM
model applies 17 layers of CBM. “BB” denotes backbone.

Architecture Kinetics | UCF-101 HMDB-51
Shallow LSTM with BB [8] 53.9 86.8 49.7
C3D [22] 56.1 79.9 494
Two-Stream [41] 62.8 93.8 64.3
3D-Fused [9] 62.3 91.5 66.5
Deep CBM without BB 60.2 91.9 61.7

CBM, where the representation unit of each layer is set the
same as the corresponding layer in ResNet-18 [13] and the
same shortcuts are employed. Other implementation details
are consistent with the above backbone-supported version.

The action recognition results on Kinetics-400 are shown
in Tab. 3 and we also fine-tune the model on UCF-101
and HMDB-51. Compared with the conventional shallow
LSTM with the backbone, our deep CBM achieves great
improvements — 5.9% on UCF-101, 19.4% on HMDB-51,
11.7% on Kinetics, and the performance is competitive with
some excellent non-recurrent models which are more pow-
erful on this task.

4.2. Polygon-RNN on Cityscapes

For auxiliary annotation task, similar with instance seg-
mentation task [51], we build the model following Polygon-
RNN [5], and evaluate it on Cityscapes instance segmenta-
tion dataset [7] which contains eight object categories and
we use the same train/test split as [5].

To build our model, we only replace the RNN part in the
original Polygon-RNN model with our deep RNN frame-
work which is a plain stacking of our CBM cell or Con-
vLSTM [50] cell. Unlike the deep architecture shown in
Fig. 6, we do not use shortcuts in this experiment. Inside
the CBM cell, we still choose the element-wise production
as merge function and set the size of all convolutional ker-
nels as 3 x 3. For TD rate, we start from 1.0, decay to
0.8 after the first epoch, and finally to 0.5 after another one
epoch. We evaluate our deep RNN framework with differ-
ent layers, and Tab. 5 summarizes the specific architectures.

Implementation The size of input images is 224 x 224.
We adopt BN [19] but with no dropout [15]. We initialize
the convolutional layers with “Xavier initialization” [10].
Models are trained with a mini-batch size of 16 using Adam
optimizer [24], and the learning rate starts from 10~ and
gradually decays when meeting the loss plateaus. We train
deep models (10 and 15-layer ones) with the overlap coher-
ence training scheme, where we set and keep A = 0.8.

Results We compare the 2, 5, 10, 15-layer RNN networks
with ConvLSTM or CBM cell. The results are shown in
Tab. 6. Compared with the original Polygon-RNN with the
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Table 4. Video prediction results on KTH. “T1” denotes the first frame to predict and “Avg” denotes the average value.

Method Metric| TI | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12 | T13 | T14 | TI5 | T16 | T17 | TI8 | T19 | T20 | Avg
ConvLSTM [50] PSNR | 33.8 | 30.6 | 28.8 | 27.6 | 26.9 | 26.3 | 26.0 | 25.7 | 25.3 | 25.0 | 24.8 | 24.5 | 242 | 23.7 | 23.2 | 22.7 | 22.1 | 21.8 | 21.7 | 21.6 | 25.3
SSIM |0.947|0.906 | 0.871 | 0.844 | 0.824 1 0.807 | 0.795 | 0.787|0.773 | 0.757 | 0.747| 0.738 | 0.732 | 0.721 | 0.708 | 0.691 | 0.674 | 0.663 | 0.659 | 0.656 | 0.765

MCet [45] PSNR | 33.8 | 31.0 | 29.4 | 28.4 | 27.6 | 27.1 | 26.7 | 26.3 | 25.9 | 25.6 | 25.1 | 24.7 | 242 | 23.9 | 23.6 | 23.4 | 232 | 23.1 | 23.0 | 22.9 | 259
SSIM |0.947|0.917]0.889 | 0.869 | 0.854 | 0.840 | 0.828 | 0.817|0.808 | 0.797 | 0.788 | 0.779 | 0.770 | 0.760 | 0.752 | 0.744 | 0.736| 0.730 | 0.726 | 0.723 | 0.804

Ours PSNR | 343 | 31.8 | 30.2 | 29.0 | 28.2 | 27.6 | 27.1 | 26.7 | 26.3 | 25.8 | 25.5 | 25.1 | 24.8 | 24.5 | 24.2 | 24.0 | 23.8 | 23.7 | 23.6 | 23.5 | 26.5
SSIM |0.951{0.923|0.905 | 0.885|0.871|0.856 | 0.843 | 0.833 | 0.824 | 0.814 | 0.805|0.796 | 0.790 | 0.783 | 0.779 | 0.775 | 0.770 | 0.765 | 0.761 | 0.757 | 0.824

Table 5. Structures of Polygon-RNN models with different depths.

# filters 256 | 128 | 64 | 32 | 8

2-layer model - - 1 - 1

#layers 5-layer model - 2 1 1 1
10-layer model - 5 3 1 1

15-layer model 2 4 6 2 1

shallow RNN, our deep CBM model achieves 14.7% rela-
tive improvements which is even competitive with Polygon-
RNN-++ proposed in [1] which adopts many complex tricks,
while the deep ConvLSTM model suffers from higher train-
ing loss, leading to a bad performance.

4.3. Video Future Prediction

For video future prediction, we evaluate our deep RNN
framework using the state-of-the-art method: MCnet pro-
posed in [45], which predicts 20 future frames based on the
observed 10 previous frames. We only replace the 1-layer
ConvLSTM part of the motion encoder into our 15-layer
deep CBM model, where the TD rate is finally set to 0.5
with similar process as the above. The detailed implementa-
tion settings are consistent with the original method in [45].

We evaluate on the KTH dataset [39] which contains 600
videos for 6 human actions, and we utilize PSNR [31] and
SSIM [47] as metrics. The results are shown in Tab. 4 and
we can see that compared with the original method using
shallow RNN, our deep model achieves 1.6% improvements
on SSIM and 1.8% on PSNR for 10-frame prediction, and
2.6% on SSIM and 2.1% on PSNR for 20-frame prediction.

In this experiment, we do not adopt the overlap coher-
ence training scheme since the sequence is not too long.

5. Analysis

The above visual applications demonstrate the superior-
ity of our deep RNN framework and in this section we will
further verify the effectiveness of our detailed designs —
the model depth, CBM for deep structure, the overlap coher-
ence training scheme, merge function and TD rate of CBM.

Analysis on Depth Results of all above experiments have
already demonstrated that our deep RNN model remarkably
outperforms the shallow RNN one due to the stronger repre-
sentation capability with the depth growing. We analyze the
experiments on Polygon-RNN to further explore the spe-

Table 6. Performance (IoU in %) on Cityscapes validation set
(used as test set in [5]). Note that “Polyg-LSTM” denotes the
original Polygon-RNN structure with ConvLSTM cell and “Polyg-
CBM?” denotes the Polygon-RNN structure with CBM cell.

Model IoU
Original Polygon-RNN [5] 61.4
Residual Polygon-RNN [1] 62.2
Residual Polygon-RNN + attention + RL [1] 67.2
Residual Polygon-RNN + attention + RL + EN [1] | 70.2
Polygon-RNN++ [1] 71.4

# layers # params of RNN
Polyg-LSTM 2 0.47M 61.4
Polyg-LSTM 5 2.94M 63.0
Polyg-LSTM 10 7.07TM 59.3
Polyg-LSTM 15 15.71IM 46.7
Polyg-CBM 2 0.20M 59.9
Polyg-CBM 5 1.13M 63.1
Polyg-CBM 10 2.68M 67.1
Polyg-CBM 15 5.85M 70.4

cific relationships between the depth and the model perfor-
mance, which is illustrated in Fig. 7(a) and Fig. 7(b).

From Fig. 7(b), we can observe that utilizing CBM, the
deeper the model is built, the lower training loss and higher
IoU value we will receive. Moreover, it is worth noting that
the deep models converge as fast as the shallow ones.

Analysis on CBM  As results shown in Tab. 1 and Tab. 2,
our deep CBM model achieves the best performance on ac-
tion recognition task with two different backbones and ac-
tion anticipation task, while deep ConvLSTM model suffers
from lower accuracy on action recognition even compared
with the shallow one.

As we discussed above, building deep RNN models
needs to co-adapt to both temporal and representation infor-
mation, making it difficult to optimize over a long sequence.
Therefore, for action recognition that takes the whole videos
as inputs, commonly-used deep RNN models cannot benefit
from the increased depth, while for action anticipation that
predicts only based on the first two frames, deeper structure
brings better results. To resolve this problem caused by the
contradiction of the two information flows when stacking
deep, our CBM cell is right introduced to de-couple these
two flows to make training more efficient, and receives best
results on both tasks.
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Figure 7. Training on Cityscapes. Dashed lines denote training loss, and the bold lines denote testing IoU. Left: Polyg-LSTM networks.
Deep models are difficult to train and suffer from high training loss. The convergence of 15-layer is not shown. Middle: Polyg-CBM
networks adopting 0.5 TD-rate. Deep models are easy to train. Right: Comparison between different TD rates on 10 and 15-layer models.

Table 7. Classification accuracy on UCF-101 with element-wise
production and addition settings. For R, both of the two set-
tings adopt ReLU (Conv(-)). For T, production setting adopts
Sigmoid(Conv(-)) while addition adopts Re LU (Conuv(-)).

Recognition | Anticipation
Production 79.8 57.7
Addition 77.4 56.7

Besides, results of Polygon-RNN task in Tab. 6 also
prove that our CBM cell is more suitable for stacking deep,
and comparisons between Fig. 7(a) and Fig. 7(b) further re-
veal that using ConvLSTM to stack deep leads to higher
training loss and lower IoU value.

Analysis on Overlap Coherence Training Scheme All
the deep models above adopt our overlap coherence train-
ing scheme. From the results, we can see that it works well
— deep models are trainable on commonly-used GPUs and
all the models learn effective temporal features. Under this
scheme, though it may not transfer temporal information as
smoothly as the original training scheme, the overlaps and
the coherence loss guarantee the consistency of temporal
information among the clips to a certain degree, and finally
we do benefit from the increasing structural depth by mak-
ing some compromise on the sequence length.

Analysis on Merge Function ¢ All above experi-
ments are committed with element-wise production merge
function. Here, we also evaluate another setting:
ReLU(Conu(-)) for R and T, and element-wise addition
for the merge function, which treats the two flows equally
without discrimination when merging the information. For
action recognition and anticipation tasks on UCF-101, the
comparison of these two settings is shown in Tab. 7. We find
that the production setting is marginally better than the ad-
dition one, possibly because the production setting extracts
better spatial representation features that are more useful for
video classification problems.

Analysis on TD Rate To show the influence of TD rate,
we set the final TD rate to 0.0, 0.2, 0.5, 0.8 and 1.0 (grad-
ually decay as the above experiments) and results of action
recognition task on UCF-101 are shown in Tab. §. We can

Table 8. Action recognition accuracy on UCF-101 with different
TD rates. We use VGG19 as backbones, 15-layer CBM as the
RNN part, and element-wise production as merge function.

TDrate | Acc TDrate | Acc TDrate | Acc
0.0 75.2 0.5 79.8 1.0 75.3
0.2 76.5 0.8 77.1

see that 0.5 TD-rate achieves the best result. When the TD
rate is set to 1.0, the temporal information can only flow
backward in its own layer, forbidding the temporal commu-
nication among different layers, thus leading to a relatively
non-ideal performance. For Polygon-RNN task, the results
shown in Fig. 7(c) reveal consistent conclusions.

6. Conclusion

In this paper, we proposed a deep RNN framework for
visual sequential applications. The first part of our deep
RNN framework is the CBM structure designed to balance
the temporal flow and representation flow. Based on the
characteristics of these two flows, we proposed the Tem-
poral Dropout to simplify the training process and enhance
the generalization ability. The second part is the Overlap
Coherence Training Scheme aiming at resolving the large
resource consuming of deep RNN models, which can sig-
nificantly reduce the length of sequences loaded into the
model and guarantee the consistency of temporal informa-
tion through overlaps simultaneously.

We conducted extensive experiments to evaluate our
deep RNN framework. Compared with the conventional
shallow RNN, our deep RNN framework achieves remark-
able improvements on action recognition, action anticipa-
tion, auxiliary annotation and video future prediction tasks.
Comprehensive analysis is presented to further validate the
effectiveness and robustness of our specific designs.
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