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Abstract

While significant progress has been made in the image
captioning task, video description is still in its infancy due
to the complex nature of video data. Generating multi-
sentence descriptions for long videos is even more chal-
lenging. Among the main issues are the fluency and coher-
ence of the generated descriptions, and their relevance to
the video. Recently, reinforcement and adversarial learning
based methods have been explored to improve the image
captioning models; however, both types of methods suffer
from a number of issues, e.g. poor readability and high re-
dundancy for RL and stability issues for GANs. In this work,
we instead propose to apply adversarial techniques during
inference, designing a discriminator which encourages bet-
ter multi-sentence video description. In addition, we find
that a multi-discriminator “hybrid” design, where each dis-
criminator targets one aspect of a description, leads to the
best results. Specifically, we decouple the discriminator to
evaluate on three criteria: 1) visual relevance to the video,
2) language diversity and fluency, and 3) coherence across
sentences. Our approach results in more accurate, diverse,
and coherent multi-sentence video descriptions, as shown
by automatic as well as human evaluation on the popular
ActivityNet Captions dataset. |

1. Introduction

Being able to automatically generate a natural language
description for a video has fascinated researchers since the
early 2000s [27]. Despite the high interest in this task and
ongoing emergence of new datasets [13, 29, 75] and ap-
proaches [67, 69, 76], it remains a highly challenging prob-
lem. Consider the outputs of the three recent video descrip-
tion methods on an example video from the ActivityNet
Captions dataset [3, 29] in Figure 1. We notice that there
are multiple issues with these descriptions, in addition to the
errors with respect to the video content: there are seman-
tic inconsistencies and lack of diversity within sentences,
as well as redundancies across sentences. There are mul-
tiple challenges towards more accurate and natural video

'https://github.com/jamespark3922/adv-inf.

(3)
Transformer: A man is seen riding on a board with a kite on a board. The people are seen riding
around on the water while the camera follows movements. The people continue riding around the
water while the camera captures them from the angles.

VideoStory: A person is seen riding a board on a board and begins moving along the water. The
person continues riding along the water and ends by several more people riding along the board.
The camera pans around the water and ends with one another person on the board.
MoveForwardTell: A large group of people are seen riding along the water on the water. A
person is seen riding on the water and moving along the water. A person is seen speaking to the
camera and leads into him riding around on the water.

Our Adversarial Inference: A large group of people are seen standing on a large field with one
another and leads into them riding around on a large body of water. The person is parasailing on
the water. The person continues riding along the water as well as the camera panning around.

Ground Truth: A group is standing on the sand and waves at the camera. They are shown
parasailing in the ocean water. They take turns, several people floating on the water.

Figure 1: Comparison of the state-of-the-art video descrip-
tion approaches, Transformer [76], VideoStory [13], Move-
ForwardTell [67], and our proposed Adversarial Inference.
Our approach generates more interesting and accurate de-
scriptions with less redundancy. Video from ActivityNet
Captions [3, 29] with three segments (left to right); red/bold
indicates content errors, blue/italic indicates repetitive pat-
terns, underscore highlights more interesting phrases.

description. One of the issues is the size of the available
training data, which, despite the recent progress, is lim-
ited. Besides, video representations are more complex than
e.g. image representations, and require modeling temporal
structure jointly with the semantics of the content. More-
over, describing videos with multiple sentences, requires
correctly recognizing a sequence of events in a video, main-
taining linguistic coherence and avoiding redundancy.
Another important factor is the target metric used in the
description models. Most works still exclusively rely on the
automatic metrics, e.g. METEOR [31], despite the evidence
that they are not consistent with human judgments [24, 57].
Further, some recent works propose to explicitly optimize
for the sentence metrics using reinforcement learning based
methods [35, 46]. These techniques have become quite
widespread, both for image and video description [1, 67].
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Despite getting higher scores, reinforcement learning based
methods have been shown to lead to unwanted artifacts,
such as ungrammatical sentence endings [15], increased ob-
ject hallucination rates [47] and lack of diverse content [36].
Overall, while informative, sentence metrics should not be
the only way of evaluating the description approaches.
Some works aim to overcome this issue by using the ad-
versarial learning [9, 53]. While Generative Adversarial
Networks [14] have achieved impressive results for image
and even video generation [21, 43, 63, 77], their success in
language generation has been limited [55, 71]. The main
issue is the difficulty of achieving stable training due to the
discrete output space [4, 5]. Another reported issue is lack
of coherence, especially for long text generation [20]. Still,
the idea of learning to distinguish the “good” natural de-
scriptions from the “bad” fake ones, is very compelling.

Rather than learning with adversarial training, we pro-
pose a simpler approach, Adversarial Inference for video
description, which relies on a discriminator to improve the
description quality. Specifically, we are interested in the
task of multi-sentence video description [48, 70], i.e. the
output of our model is a paragraph that describes a video.
We assume that the ground-truth temporal segments are
given, i.e. we do not address the event detection task, but
focus on obtaining a coherent multi-sentence description.
We first design a strong baseline generator model trained
with the maximum likelihood objective, which relies on a
previous sentence as context, similar to [13, 67]. We also
introduce object-level features in the form of object detec-
tions [1] to better represent people and objects in video. We
then make the following contributions:

(1) We propose the Adversarial Inference for video de-
scription, where we progressively sample sentence candi-
dates for each clip, and select the best ones based on a
discriminator’s score. Prior work has explored sampling
with log probabilities [12], while we show that a specifi-
cally trained discriminator leads to better results in terms of
correctness, coherence, and diversity (see Figure 1).

(2) Specifically, we propose the “hybrid discriminator”,
which combines three specialized discriminators: one mea-
sures the language characteristics of a sentence, the sec-
ond assesses its relevance to a video segment, and the third
measures its coherence with the previous sentence. Prior
work has considered a “single discriminator” for adversar-
ial training to capture both the linguistic characteristics and
visual relevance [53, 9]. We show that our “hybrid discrim-
inator” outperforms the “single discriminator” design.

(3) We compare our proposed approach to multiple base-
lines on a number of metrics, including automatic sentence
scores, diversity and repetition scores, person correctness
scores, and, most importantly, human judgments. We show
that our Adversarial Inference approach leads to more accu-
rate and diverse multi-sentence descriptions, outperforming

GAN and RL based approaches in a human evaluation.

2. Related Work

We review existing approaches to video description, in-
cluding recent work based on reinforcement and adversar-
ial learning. We then discuss related works that also sample
and re-score sentence descriptions, and some that aim to de-
sign alternatives to automatic evaluation metrics.

Video description. Over the past years there has been an
increased interest in video description generation, notably
with the broader adoption of the deep learning techniques.
S2VT [58] was among the first approaches based on LSTMs
[19, 11]; some of the later ones include [38, 49, 52, 68,
72, 73]. Most recently, a number of approaches to video
description have been proposed, such as replacing LSTM
with a Transformer Network [76], introducing a reconstruc-
tion objective [59], using bidirectional attention fusion for
context modeling [61], and others [7, 13, 33].

While most works focus on “video in - one sentence out”
task, some aim to generate a multi-sentence paragraph for
a video [48, 54, 70]. Recently, [69] propose a fine-grained
video captioning model for generating detailed sports nar-
ratives, and [67] propose the Move Forward and Tell ap-
proach, which localizes events and progressively decides
when to generate the next sentence. This is related to the
task of dense captioning [29], where videos are annotated
with multiple localized sentences but the task does not re-
quire to produce a single coherent paragraph for the video.

Reinforcement learning for caption generation. Most
deep language generation models rely on Cross-Entropy
loss and during training are given a previous ground-truth
word. This is known to cause an exposure bias [42], as
at test time the models need to condition on the predicted
words. To overcome this issue, a number of reinforcement
learning (RL) actor-critic [28] approaches have been pro-
posed [45, 46, 74]. [35] propose a policy gradient optimiza-
tion method to directly optimize for language metrics, like
CIDEr [57], using Monte Carlo rollouts. [46] propose a
Self-Critical Sequence Training (SCST) method based on
REINFORCE [66], and instead of estimating a baseline, use
the test-time inference algorithm (greedy decoding).

Recent works adopt similar techniques to video descrip-
tion. [40] extend the approach of [42] by using a mixed loss
(both cross-entropy and RL) and correcting CIDEr with an
entailment penalty. [65] propose a hierarchical reinforce-
ment learning approach, where a Manager generates sub-
goals, a Worker performs low-level actions, and a Critic de-
termines whether the goal is achieved. Finally, [32] propose
a multitask RL approach, built off [46], with an additional
attribute prediction loss.

GAN:s for caption generation. Instead of optimizing for
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hand-designed metrics, some recent works aim to learn
what the “good” captions should be like using adversarial
training. The first works to apply Generative Adversarial
Networks (GANs) [14] to image captioning are [53] and
[9]. [53] train a discriminator to distinguish natural human
captions from fake generated captions, focusing on caption
diversity and image relevance. To sample captions they rely
on Gumbel-Softmax approximation [22]. [9] instead rely on
policy gradient, and their discriminator focuses on caption
naturalness and image relevance. Some works have applied
adversarial learning to generate paragraph descriptions for
images/image sequences. [34] propose a joint training ap-
proach which incorporates multi-level adversarial discrim-
inators, one for sentence level and another for coherent
topic transition at a paragraph level. [64] rely on adver-
sarial reward learning to train a visual storytelling policy.
[60] use a multi-modal discriminator and a paragraph level
language-style discriminator for their adversarial training.
Their multi-modal discriminator resembles the standard dis-
criminator design of [9, 53]. In contrast, we decouple the
multi-modal discriminator into two specialized discrimina-
tors, Visual and Language, and use a Pairwise discriminator
for sentence pairs’ coherence. Importantly, none of these
works rely on their trained discriminators during inference.

Two recent image captioning works propose using dis-
criminator scores instead of language metrics in the SCST
model [6, 36]. We implement a GAN baseline based on this
idea, and compare it to our approach.

Caption sampling and re-scoring. A few prior works
explore caption sampling and re-scoring during inference
[2, 18, 56]. Specifically, [18] aim to obtain more image-
grounded bird explanations, while [2, 56] aim to generate
discriminative captions for a given distractor image. While
our approach is similar, our goal is different, as we work
with video rather than images, and aim to improve multi-
sentence description with respect to multiple properties.

Alternatives to automatic metrics. There is a growing in-
terest in alternative ways of measuring the description qual-
ity, than e.g. [39, 31, 57]. [8] train a general critic network
to learn to score captions, providing various types of cor-
rupted captions as negatives. [5S1] use a composite metric, a
classifier trained on the automatic scores as input. In con-
trast, we do not aim to build a general evaluation tool, but
propose to improve the video description quality with our
Adversarial Inference for a given generator.

3. Generation with Adversarial Inference

In this section, we present our approach to multi-
sentence description generation based on our Adversarial
Inference method. We first introduce our baseline genera-
tor G and then discuss our discriminator D. The task of
D is to score the descriptions generated by G for a given

video. This includes, among others, to measure whether
the multi-sentence descriptions are (1) correct with respect
to the video, (2) fluent within individual sentences, and (3)
form a coherent story across sentences. Instead of assigning
all three tasks to a single discriminator, we propose to com-
pose D out of three separate discriminators, each focusing
on one of the above tasks. We denote this design a hybrid
discriminator (see Figure 3).

While prior works mostly rely on discriminators for joint
adversarial training [9, 53], we argue that using them dur-
ing inference is a more robust way of improving over the
original generator. In our Adversarial Inference, the pre-
trained generator G presents D with the sentence candidates
by sampling from its probability distribution. In its turn, our
hybrid discriminator D selects the best sentence relying on
the combination of its sub-discriminators. The overview of
our approach is shown in Figure 2.

3.1. Baseline Multi-Sentence Generator: G

Given L clips [v!,v?,...,v"] from a video v, the task of
G is to generate L sentences [s', s, ..., s¥], where each sen-
tence s’ matches the content of the corresponding clip v°.
As the clips belong to the same video and are thus contex-
tually dependent, our goal is to not only generate a sentence
that matches its visual content, but to obtain a coherent and
diverse sequence of sentences, i.e. a natural paragraph.

Our generator follows a standard LSTM decoder [11, 19]
to generate individual sentences s® with encoded represen-
tation of v as our visual context. Typically, for each step
m, the LSTM hidden state h!, expects an input vector that
encodes the visual features from v* as well as the previous
word winfl. For our visual context, we use motion, RGB
images, and object detections as features for each video
clip, and follow the settings from [62, 67] to obtain a sin-
gle vector representation of each feature using a temporal
attention mechanism [68]%. The three vectors are concate-
nated to get the visual input v¢,. To encourage coherence
among consecutive sentences, we additionally append the
last hidden state of the previous sentence h'~! as input to
the LSTM decoder [13, 67]. The final input to the LSTM
decoder for clip v* at time step m is defined as follows:

hi, = LSTM (v}, wh, 1, h'™ 1), 0
with A% =0,

We follow the standard Maximum Likelihood Estima-
tion (MLE) training for G, i.e. we maximize the likelihood
of each word w?,, given the current LSTM hidden state h?,.

3.2. Discriminator: D

The task of a discriminator D is to score a sentence s
w.r.t. a video v as D(s|v) € (0,1), where 1 indicates a

2For details, please, see the supplemental material.
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Figure 2: The overview of our Adversarial Inference approach. The Generator progressively samples candidate sentences for
each clip, using the previous sentence as context. The Hybrid Discriminator scores the candidate sentences, and chooses the
best one based on its visual relevance, linguistic characteristics and coherence to the previous sentence (details in Figure 3).

positive match, while 0 is a negative match. Most prior
works that perform adversarial training for image caption-
ing [6, 9, 36, 53], rely on the following “single discrimi-
nator” design. D is trained to distinguish human ground-
truth sentences as positives vs. sentences generated by G
and mismatched ground truth sentences (from a different
video) as negatives. The latter aim to direct the discrimina-
tor’s attention to the sentences’ visual relevance.

For a given generator G, the discriminator D is trained
with the following objective:

1 :
maxﬁjz::lLD(v]), (2)

where N is the number of training videos. For a video v7
a respective term is defined as:

Lp(v?) = Eees, , [log(D(s[v)))] +
1 Egesellog(l — D(slo?))] + 3)
v- ESES\UJ' [log(l - D(S|Uj))]v

where S,; is the set of ground truth descriptions for v/,
Sg are generated samples from G, S\,; are ground truth
descriptions from other videos, i, v are hyper-parameters.

3.2.1 Hybrid Discriminator

In the “single discriminator” design, the discriminator is
given multiple tasks at once, i.e. to detect generated “fakes”,
which requires looking at linguistic characteristics, such
as diversity or language structure, as well the mismatched
“fakes”, which requires looking at sentence semantics and
relate it to the visual features. Moreover, for multi-sentence
description, we would also like to detect cases where a sen-
tence is inconsistent or redundant to a previous sentence.

To obtain these properties, we argue it is important to
decouple the different tasks and allocate an individual dis-
criminator for each one. In the following we introduce our
visual, language and pairwise discriminators, which jointly
constitute our hybrid discriminator (see Figure 3). We use
the objective defined above for all three, however, the types
of negatives vary by discriminator.

Visual Discriminator. The v isual discriminator Dy, de-
termines whether a sentence s’ refers to concepts present in
a video clip v?, regardless of fluency and grammatical struc-
ture of the sentence. We believe that as the pre-trained gen-
erator already produces video relevant sentences, we should
not include the generated samples as negatives for Dy . In-
stead, we use the mismatched ground truth as well as mis-
matched generated sentences as our two types of negatives.
While randomly mismatched negatives may be easier to dis-
tinguish, hard negatives, e.g. sentences from videos with the
same activity as a given video, require stronger visual dis-
criminative abilities. To improve our discriminator, we in-
troduce such hard negatives, after training Dy, for 2 epochs.
Note, that if we use an LSTM to encode our sentence
inputs to Dy, it may exploit the language characteristics to
distinguish the generated mismatched sentences, instead of
looking at their semantics. To mitigate this issue, we replace
the LSTM encoding with a bag of words (BOW) representa-
tion, i.e. each sentence is represented as a vocabulary-sized
binary vector. The BOW is further embedded via a linear
layer, and thus we obtain our final sentence encoding w?.
Similar to GG, Dy also considers multiple visual features,
i.e. we aggregate features from different misaligned modal-
ities (video, image, objects). We individually encode each
feature f using temporal attention based on the entire sen-
tence representation w’. The obtained vector representa-
tions f)} are then fused with the sentence representation w?,
using Multimodal Low-rank Bilinear pooling (MLB) [25],
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Figure 3: An overview of our Hybrid Discriminator. We
score a sentence s* for a given video clip v* and a previous
sentence s°~ 1.

which is known to be effective in tasks like multi-modal re-
trieval or VQA. The score for visual feature f and sentence
representation w* is obtained as follows:

Py = o(tanh(UT 7)o tanh(V7w")), S

where o is a sigmoid, producing values in (0, 1), ® is the
Hadamard product, U, V are linear layers. Instead of con-
catenating features 173} as done in the generator, here we de-
termine the scores p} between the sentence and each modal-
ity, and learn to weigh them adaptively based on the sen-
tence. The intuition is that some sentences are more likely
to require video features (“a man is jumping”), while oth-
ers may require e.g. object features (“a man is wearing a
red shirt”). Following [37], we assign weights )\3} to each
modality based on the sentence representation w:
T, i
i B eafw
>\f Z j ea}“ wt’ ©
where a; are learned parameters. Finally, the Dy, score
is the sum of the scores p’; weighted by \}:

v(s'[v") ZAfpf ©6)

Language Discriminator. Language discriminator Dy,
focuses on language structure of an individual sentence s°,
independent of its visual relevance. Here we want to ensure
fluency as well as diversity of sentence structure that is lack-
ing in G. The ActivityNet Captions [29] dataset, that we

experiment with, has long (over 13 words on average) and
diverse descriptions with varied grammatical structures. In
initial experiments we observed that a simple discriminator
is able to point out a obvious mismatches based on diversity
of the real vs. fake sentences, but fails to capture fluency or
repeating N-grams. To address this, in addition to generated
sentences from G, Dy is given negative inputs with a mix-
ture of randomly shuffled words or with repeated phrases
within a sentence.

To obtain a Dj, score, we encode a sentence s* with a
bidirectional LSTM, concatenate both last hidden states, de-
noted as h’, followed by a fully connected layer and a sig-
moid layer:

DL(Si) = U(WLﬁi + bL) @)

Pairwise Discriminator. Pairwise discriminator Dp
evaluates whether two consecutive sentences s~ ! and s’
are coherent yet diverse in content. Specifically, Dp scores
s® based on s°~1. To ensure coherence, we include “shuf-
fled” sentences as negatives, i.e. the order of sentences in a
paragraph is randomly changed. We also design negatives
with a pair of identical sentences (s* = s°~!) and option-
ally cutting off the endings (e.g. “a person enters and takes
a chair” and “a person enters”) to avoid repeating contents.

Similar to Dy, above, we encode both sentences with a
bidirectional LSTM and obtain 4*~! and h*. We concate-
nate the two vectors and compute the D p score as follows:

Dp(s'[s"™') = o(Wp[h'~', h'] + bp). (8)

Note, that the first sentence of a video description para-
graph is not assigned a pairwise score, as there is no previ-
ous sentence.

3.3. Adversarial Inference

In adversarial training for caption generation, G and D
are first pre-trained and then jointly updated, where the dis-
criminator improves the generator by providing feedback to
the quality of sampled sentences. To deal with the issue of
non-differentiable discrete sampling in joint training, sev-
eral solutions have been proposed, such as Reinforcement
Learning with variants of policy gradient methods or Gum-
bel softmax relaxation [6, 9, 53]. While certain improve-
ment has been shown, as we discussed in Section 1, GAN
training can be very unstable.

Motivated by the difficulties of joint training, we present
our Adversarial Inference method, which uses the discrim-
inator D during inference of the generator G. We show
that our approach outperforms a jointly trained GAN model,
most importantly, in human evaluation (see Section 4).

During inference, the generator typically uses greedy
max decoding or beam search to generate a sentence based
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on the maximum probability of each word. One alterna-
tive to this is sampling sentences based on log probability
[12]. Instead, we use our Hybrid Discriminator to score
the sampled sentences. Note, that we generate sentences
progressively, i.e. we provide the hidden state representa-
tion of the previous best sentence as context to sample the
next sentence (see Figure 2). Formally, for a video clip
v', a previous best sentence s:~! and K sampled sentences
54, 8%, ...s% from the generator G, the scores from our hy-
brid discriminator can be used to compare the sentences and
select the best one:
Su = Sugmax,_y_ D(si ot 517 ®)
where s is the j™ sampled sentence. The final discrimi-
nator score is defined as:

D(si|v',si") = - Dy (sho') +

. . (10)
B-Dr(sj) +v-Dp(sjlsi ),

where «, 3,y are hyper-parameters.

4. Experiments

We benchmark our approach for multi-sentence video
description on the ActivityNet Captions dataset [29] and
compare our Adversarial Inference to GAN and other base-
lines, as well as to state-of-the-art models.

4.1. Experimental Setup

Dataset. The ActivityNet Captions dataset contains 10,009
videos for training and 4,917 videos for validation with
two reference descriptions for each?. Similar to prior work
[76, 13], we use the validation videos with the 2™ refer-
ence for development, while the 1% reference is used for
evaluation. While the original task defined on ActivityNet
Captions involves both event localization and description,
we run our experiments with ground truth video intervals.
Our goal is to show that our approach leads to more correct,
diverse and coherent multi-sentence video descriptions.

Visual Processing. Each video clip is encoded with 2048-
dim ResNet-152 features [17] pre-trained on ImageNet [10]
(denoted as ResNet) and 8192-dim ResNext-101 features
[16] pre-trained on the Kinetics dataset [23] (denoted as
R3D). We extract both ResNet and R3D features at every
16 frames and use a temporal resolution of 16 frames for
R3D. The features are uniformly divided into 10 segments
as in [62, 67], and mean pooled within each segment to
represent the clip as 10 sequential features. We also run
the Faster R-CNN detector [44] from [1] trained on Visual
Genome [30], on 3 frames (at the beginning, middle and end

3The two references are not aligned to the same time intervals, and even
may have a different number of sentences.

of a clip) and detect top 16 objects per frame.We encode the
predicted object labels with bag of words weighted by de-
tection confidences (denoted as BottomUp). Thus, a visual
representation for each clip consists of 10 R3D features, 10
ResNet features, and 3 BottomUp features.

Language Processing. The sentences are “cut” at a maxi-
mum length of 30 words. The LSTM cells’ dimensionality
is fixed to 512. The discriminators’ word embeddings are
initialized with 300-dim Glove embeddings [41].

Training and Inference. We train the generator and dis-
criminators with cross entropy objectives using the ADAM
optimizer [26] with a learning rate of 5¢~%. One batch con-
sists of multiple clips and captions from the same video, and
the batch size is fixed to 16 when training all models. The
weights for all the discriminators’ negative inputs (u, v in
Eq. 3), are set to 0.5. The weights for our hybrid discrimi-
nator are set as o = 0.8, 5 =0.2, v = 1.0. Sampling temper-
ature during discriminator training is 1.0; during inference
we sample K = 100 sentences with temperature 0.2. When
training the discriminators, a specific type of a negative ex-
ample is randomly chosen for a video, i.e. a batch consists
of a combination of different types of negatives.

Baselines and SoTA. We compare our Adversarial Infer-
ence (denoted MLE+HybridDis) to: our baseline genera-
tor (MLE); multiple inference procedures, i.e. beam search
with size 3 (MLE+BS3), sampling with log probabili-
ties (MLE+LP) and inference with the single discriminator
(MLE+SingleDis); Self Critical Sequence Tranining [46]
which optimizes for CIDEr (SCST); GAN models built off
[6, 36] with a single discriminator®, with and without a cross
entropy (CE) loss (GAN, GAN w/o CE). Finally, we also
compare to the following state-of-the-art methods: Trans-
former [76], VideoStory [13] and MoveForwardTell [67],
whose predictions we obtained from the authors.

4.2. Results

Automatic Evaluation. Following [67], we conduct our
evaluation at paragraph-level. We include standard met-
rics, i.e. METEOR [31], BLEU@4 [39] and CIDEr-D [57].
However, these alone are not sufficient to get a holistic view
of the description quality, since the scores fail to capture
content diversity or detect repetition of phrases and sen-
tence structures. To see if our approach improves on these
properties, we report Div-1 and Div-2 scores [53], that mea-
sure a ratio of unique N-grams (N=1,2) to the total num-
ber of words, and RE-4 [67], that captures a degree of N-
gram repetition (N=4) in a description®. We compute these
scores at video (paragraph) level, and report the average

4We have tried incorporating our hybrid discriminator in GAN training,
however, we have not observed a large difference, likely due to a large
space of training hyper-parameters which is challenging to explore.

SFor Div-1,2 higher is better, while for RE-4 lower is better.
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Per video Overall Per act. Per video
Method METEOR BLEU@4 CIDEr-D Vocab Sent RE-4 | Div-17Div-2 1 RE-4 ]
Size Length
MLE 16.70 9.95 20.32 1749 13.83 0.38 055 074 0.08
GAN w/o CE 16.49 9.76 20.24 2174  13.67 0.35 056 074 0.07
GAN 16.69 10.02 21.07 1930 13.60 0.36 0.56 074 0.07
SCST 15.80 10.82 20.89 941 12.13 0.52 047 065 0.11
MLE + BS3 16.22 10.79 21.81 1374 1292 0.48 055 071 0.11
MLE + LP 17.51 8.70 12.23 1601 18.68 0.48 048 069 0.12
MLE + SingleDis 16.29 9.25 18.17 2291 13.98 0.37 059 075 0.07
MLE + SingleDis w/ Pair 16.16 9.32 18.72 2375 13.75 0.37 0.60 077 0.06
(Ours) MLE + HybridDis w/o Vis 16.33 8.92 17.29 2462  14.43 0.34 0.59 076 0.06
(Ours) MLE + HybridDis w/o Lang  16.44 9.37 19.44 2697  13.77 0.30 059 078 0.05
(Ours) MLE + HybridDis w/o Pair 16.60 9.56 19.39 2390 13.86 0.32 0.58 0.76  0.06
(Ours) MLE + HybridDis 16.48 9.91 20.60 2346  13.38 0.32 0.59 0.77 0.06
Human - - 8352 14.27 0.04 071 0.85 0.01
SoTA models
VideoStory [13] 16.26 7.66 14.53 1269 16.73 0.37 051 072 0.09
Transformer [76] 16.15 10.29 21.72 1819 1242 0.34 053 073 0.07
MoveForwardTell [67] 14.67 10.03 19.49 1926  11.46 0.53 0.55 066 0.18

Table 1: Comparison to video description baselines and SoTA models. Statistics over generated descriptions include N-gram
Diversity (Div-1,2, higher better) and Repetition (RE-4, lower better) per video and per activity. See Section 4.2 for details.

score over all videos. Finally, we want to capture the degree
of “discriminativeness” among the descriptions of videos
with similar content. ActivitiyNet [3] includes 200 activity
labels, and the videos with the same activity have similar
visual content. We thus also report RE-4 per activity by
combining all sentences associated with each activity, and
averaging the score over all activities.

We compare our model to baselines in Table 1 (top). The
best performing models in standard metrics do not include
our adversarial inference procedure nor the jointly trained
GAN models. This is somewhat expected, as prior work
shows that adversarial training does worse in these metrics
than the MLE baseline [9, 53]. We note that adding a CE
loss benefits GAN training, leading to more fluent descrip-
tions (GAN w/o CE vs. GAN). We also observe that the
METEOR score, popular in video description literature, is
strongly correlated with sentence length.

We see that our Adversarial Inference leads to more di-
verse descriptions with less repetition than the baselines, in-
cluding GANs. Our MLE+HybridDis model outperforms
the MLE+SingleDis in every metric, supporting our hybrid
discriminator design. Furthermore, MLE + SingleDis w/
Pair scores higher than the SingleDis but lower than our
HybridDis. This shows that a decoupled Visual discrimi-
nator is important for our task. Note that the SCST has the
lowest diversity and highest repetition among all baselines.

Our MLE+HybridDis model also improves over baselines
in terms of repetition score “per activity”, suggesting that it
obtains more video relevant and less generic descriptions.

To show the importance of all three discriminators, we
provide ablation experiments by taking out each compo-
nent, respectively (w/o Vis, w/o Lang, w/o Pair). Our Hy-
bridDis performs the worst when without its visual com-
ponent and the combination of three discriminators outper-
forms each of the ablations on the standard metrics. In Fig-
ure 4, we show a qualitative result obtained by the ablated
models vs. our full model. Removing the Visual discrim-
inator leads to incorrect mention of “pushing a puck”, as
the visual error is not penalized as needed. Model without
the Language discriminator results in somewhat implausi-
ble constructs (“stuck in the column”) and incorrectly men-
tions “holding a small child”. Removing the Pairwise dis-
criminator leads to incoherently including a “woman’ while
missing the salient ending event (kids leaving).

Human Evaluation. The most reliable way to evaluate the
description quality is with human judges. We run our eval-
uation on Amazon Mechanical Turk (AMT)® with a set of
200 random videos. To make the task easier for humans we
compare two systems at a time, rather than judging multi-
ple systems at once. We design a set of experiments, where
each system is being compared to the MLE baseline. The

Shttps://www.mturk.com
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HybridDis w/o Vis: A little girl is seen riding around a bumper car pushing a puck around a
large set of bumper cars. The girl continues to move around the bumper
car while the camera follows around. The girl smiles and walks away.

HybridDis w/o Lang: A little girl is sitting in @ bumper car holding a small child in a red shirt. The
girl in the red shirt gets stuck on the column. The girl walks away.

HybridDis w/o Pair: A small group of people are seen riding around in bumper cars and
bumping into one another. The girl continues riding around the bumper car
while the other people around the bumper car. The woman laughs and the
girl smiles.

HybridDis: A small group of people are seen riding around in bumper cars and
bumping into one another. The girl continues riding around the bumper car

while others watch on the side. The girl finishes and walks away.

Ground Truth: Kids are sitting in bumper cars. They drive them and crash into each other.

They stop and the kids get out.

Figure 4: Comparison of ablated models vs. our full model
(discussion in text). Content errors are highlighted in red.

Method Better Worse Delta
than MLE than MLE
SCST 22.0 62.0 -40.0
GAN 32.5 30.0 +2.5
MLE + BS3 27.0 31.0 -4.0
MLE + LP 32.5 34.0 -1.5
MLE + SingleDis 29.0 30.0 -1.0
(Ours) MLE + HybridDis w/o Pair 42.0 36.5 +5.5
(Ours) MLE + HybridDis 38.0 31.5 +6.5

Table 2: Human evaluation of multi-sentence video descrip-
tions, see text for details.

human judges can select that one description is better than
another or that both as similar. We ask 3 human judges to
score each pair of sentences, so that we can compute a ma-
jority vote (i.e. at least 2 out of 3 agree on a judgment), see
results in Table 2. Our proposed approach improves over all
other inference procedures, as well as over GAN and SCST.
We see that the GAN is rather competitive, but still overall
not scored as high as our approach. Notably, SCST is scored
rather low, which we attribute to its grammatical issues and
high redundancy in the descriptions.

Comparison to SOTA. We compare our approach to multi-
ple state-of-the-art methods using the same automatic met-
rics as above. As can be seen from Table 1 (bottom), our
MLE + HybridDis model performs on par with the state-
of-the-art on standard metrics and wins in diversity metrics.
We provide a qualitative comparison to the state-of-the-art
models in Figure 1 and in the supplemental material.

Person Correctness. Most video descriptions in the Ac-
tivityNet Captions dataset discuss people and their actions.

Method Exact Gender+
word  plurality
VideoStory [13] 449 64.1
Transformer [76] 45.8 66.0
MoveForwardTell [67] 42.6 64.1
MLE 48.8 67.5
SCST 440  63.3
GAN 48.9 67.5

(Ours) MLE + HybridDis  49.1 67.9

Table 3: Correctness of person-specific words, F1 score.

To get additional insights into correctness of the generated
descriptions, we evaluate the “person words” correctness.
Specifically, we compare (a) the exact person words (e.g.
girl, guys) and (b) only gender with plurality (e.g. female-
single, male-plural) between the references and the pre-
dicted descriptions, and report the FI score in Table 3 (this
is similar to [50], who evaluate character correctness in
movie descriptions). Interestingly, our MLE baseline al-
ready outperforms the state-of-the-art in terms of person
correctness, likely due to the additional object-level features
[1]. SCST leads to a significant decrease in person word
correctness, while our Adversarial Inference improves it.

5. Conclusion

The focus of prior work on video description generation
has so far been on training better generators and improving
the input representation. In contrast, in this work we advo-
cate an orthogonal direction to improve the quality of video
descriptions: We propose the concept Adversarial Inference
for video description where a trained discriminator selects
the best from a set of sampled sentences. This allows to
make the final decision on what is the best sample a pos-
teriori by relying on strong trained discriminators, which
look at the video and the generated sentences to make a de-
cision. More specifically, we introduce a hybrid discrim-
inator which consists of three individual experts: one for
language, one for relating the sentence to the video, and
one pairwise, across sentences. In our experimental study,
humans prefer sentences selected by our hybrid discrimi-
nator used in Adversarial Inference better than the default
greedy decoding. Beam search, sampling with log probabil-
ity as well as previous approaches to improve the generator
(SCST and GAN) are judged not as good as our sentences.
We include further qualitative results which demonstrate the
strength of our approach in supplemental materials.
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