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Figure 1: Result of the proposed SANet. We can transfer various styles to content images with high-quality.

Abstract

Arbitrary style transfer aims to synthesize a content image

with the style of an image to create a third image that has

never been seen before. Recent arbitrary style transfer

algorithms find it challenging to balance the content

structure and the style patterns. Moreover, simultaneously

maintaining the global and local style patterns is difficult

due to the patch-based mechanism. In this paper, we

introduce a novel style-attentional network (SANet) that

efficiently and flexibly integrates the local style patterns

according to the semantic spatial distribution of the content

* indicates equal contribution
** The current affiliation of Kwang Hee Lee is

Boeing Korea Engineering and Technology Center.

image. A new identity loss function and multi-level feature

embeddings enable our SANet and decoder to preserve the

content structure as much as possible while enriching the

style patterns. Experimental results demonstrate that our

algorithm synthesizes stylized images in real-time that are

higher in quality than those produced by the state-of-the-art

algorithms.

1. Introduction

Artistic style transfer is a technique used to create art

by synthesizing global and local style patterns from a given

style image evenly over a content image while maintaining

its original structure. Recently, the seminal work of Gatys

et al. [5] showed that the correlation between features ex-
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tracted from a pre-trained deep neural network can capture

the style patterns well. The method by Gatys et al. [5] is

flexible enough to combine the content and style of arbi-

trary images, but is prohibitively slow due to the iterative

optimization process.

Significant efforts have been made to reduce the compu-

tational cost of this process. Several approaches [1, 8, 12,

22, 3, 14, 19, 26, 29] have been developed based on feedfor-

ward networks. Feedforward methods can synthesize styl-

ized images efficiently, but are limited to a fixed number of

styles or provide insufficient visual quality.

For arbitrary style transfer, a few methods [13, 7, 20]

holistically adjust the content features to match the second-

order statistics of the style features. AdaIN [7] simply ad-

justs the mean and variance of the content image to match

those of the style image. Although AdaIN effectively com-

bines the structure of the content image and the style pattern

by transferring feature statistics, its output suffers in qual-

ity due to the over-simplified nature of this method. WCT

[13] transforms the content features into the style feature

space through a whitening and coloring process with the co-

variance instead of the variance. By embedding these styl-

ized features within a pre-trained encoder–decoder module,

the style-free decoder synthesizes the stylized image. How-

ever, if the feature has a large number of dimensions, WCT

will accordingly require computationally expensive opera-

tions. Avatar-Net [20] is a patch-based style decorator mod-

ule that maps the content features with the characteristics of

the style patterns while maintaining the content structure.

Avatar-Net considers not only the holistic style distribution,

but also the local style patterns. However, despite valuable

efforts, these methods still do not reflect the detailed tex-

ture of the style image, distort content structures, or fail to

balance the local and global style patterns.

In this work, we propose a novel arbitrary style trans-

fer algorithm that synthesizes high-quality stylized images

in real time while preserving the content structure. This is

achieved by a new style-attentional network (SANet) and a

novel identity loss function. For arbitrary style transfer, our

feedforward network, composed of SANets and decoders,

learns the semantic correlations between the content fea-

tures and the style features by spatially rearranging the style

features according to the content features.

Our proposed SANet is closely related to the style fea-

ture decorator of Avatar-Net [20]. There are, however, two

main differences: The proposed model uses 1) a learned

similarity kernel instead of a fixed one and 2) soft attention

instead of hard attention. In other words, we changed the

self-attention mechanism to a learnable soft-attention-based

network for the purpose of style decoration. Our SANet

uses the learnable similarity kernel to represent the content

feature map as a weighted sum of style features that are sim-

ilar to each of its positions. Using the identity loss during

the training, the same image pair are input and our model is

trained to restore the same result. At inference time, one of

the input images is replaced with the style image, and the

content image is restored as much as possible based on the

style features. Identity loss, unlike the content–style trade-

off, helps to maintain the content structure without losing

the richness of the style because it helps restore the con-

tents based on style features. The main contributions of our

work are as follows:

•We propose a new SANet to flexibly match the seman-

tically nearest style features onto the content features.

•We present a learning approach for a feedforward net-

work composed of SANets and decoders that is optimized

using a conventional style reconstruction loss and a new

identity loss.

• Our experiments show that our method is highly effi-

cient (about 18–24 frames per second (fps) at 512 pixels) at

synthesizing high-quality stylized images while balancing

the global and local style patterns and preserving content

structure.

2. Related Work

Arbitrary Style Transfer. The ultimate goal of arbi-

trary style transfer is to simultaneously achieve and pre-

serve generalization, quality, and efficiency. Despite re-

cent advances, existing methods [5, 4, 1, 8, 12, 22, 3, 6,

10, 11, 23, 24, 28, 18] present a trade-off among general-

ization, quality, and efficiency. Recently, several methods

[13, 20, 2, 7] have been proposed to achieve arbitrary style

transfer. The AdaIN algorithm simply adjusts the mean and

variance of the content image to match those of the style im-

age by transferring global feature statistics. WCT performs

a pair of feature transforms, whitening and coloring, for fea-

ture embedding within a pre-trained encoder-decoder mod-

ule. Avatar-Net introduced the patch-based feature decora-

tor, which transfers the content features to the semantically

nearest style features while simultaneously minimizing the

difference between their holistic feature distributions. In

many cases, we observe that the results of WCT and Avatar-

Net fail to sufficiently represent the detailed texture or main-

tain the content structure. We speculate that WCT and

Avatar-Net could fail to synthesize the detailed texture style

due to their pre-trained general encoder–decoder networks,

which are learned from general images such as MS-COCO

datasets [15] with large differences in style characteristics.

As a result, these methods consider mapping the style fea-

ture onto the content feature in the feature space, but there

is no way to control the global statistics or content structure

of the style. Although Avatar-Net can obtain the local style

patterns through a patch-based style decorator, the scale of

style patterns in the style images depends on the patch size.

Therefore, the global and local style patterns cannot both

be taken into consideration. In contrast, AdaIN transforms
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Figure 2: Overview of training flow. (a) Fixed VGG encoder encoding content and style images. Two SANets map features

from Relu 4 1 and Relu 5 1 features respectively. The decoder transforms the combined SANet output features to Ics
(Eq. 4). The fixed VGG encoder is used to compute Lc (Eq. 7) and Ls (Eq. 8). (b) The identity loss Lidentity (Eq. 9)

quantifies the difference between Ic and Icc or between Is and Iss, where Ic (Is) is the original content (style) image and Icc
(Iss) is the output image synthesized from the image pair (content or style).

texture and color distribution well, but does not represent lo-

cal style patterns well. In this method, there exists another

trade-off between content and style due to a combination

of scale-adapted content and style loss. In this paper, we

try to solve these problems using the SANets and the pro-

posed identity loss. In this way, the proposed style transfer

network can represent global and local style patterns and

maintain the content structure without losing the richness

of the style.

Self-Attention Mechanism. Our style-attentional mod-

ule is related to the recent self-attention methods [25, 30]

for image generation and machine translation. These mod-

els calculate the response at a position in a sequence or an

image by attending to all positions and taking their weighted

average in an embedding space. The proposed SANet learns

the mapping between the content features and the style fea-

tures by slightly modifying the self-attention mechanism.

3. Method

The style transfer network proposed in this paper is com-

posed of an encoder–decoder module and a style-attentional

module, as shown in Fig. 2. The proposed feedforward

network effectively generates high-quality stylized images

that appropriately reflect global and local style patterns.

Our new identity loss function helps to maintain the de-

tailed structure of the content while reflecting the style suf-

ficiently.

3.1. Network Architecture

Our style transfer network takes a content image Ic and

an arbitrary style image Is as inputs, and synthesizes a styl-

ized image Ics using the semantic structures from the for-

mer and characteristics from the latter. In this work, the pre-

trained VGG-19 network [21] is employed as encoder and

a symmetric decoder and two SANets are jointly trained for

arbitrary style transfer. Our decoder follows the settings of

[7].

To combine global style patterns and local style patterns

adequately, we integrate two SANets by taking the VGG

feature maps encoded from different layers (Relu 4 1 and

Relu 5 1) as inputs and combining both output feature

maps. From a content image Ic and style image Is pair, we

first extract their respective VGG feature maps Fc = E(Ic)
and Fs = E(Is) at a certain layer (e.g., Relu 4 1) of the

encoder.

After encoding the content and style images, we feed

both feature maps to a SANet module that maps the cor-

respondences between the content feature map Fc and the

style feature map Fs, producing following the output fea-

ture map:

Fcs = SANet (Fc, Fs) (1)

After applying 1 × 1 convolution to Fcs and summing

the two matrices element-wise as follows, we obtain Fcsc:

Fcsc = Fc +WcsFcs, (2)

where “+” denotes element-wise summation.

We combine two the output feature maps from the two

SANets as

Fm
csc = conv3×3(F

r 4 1
csc + upsampling(F r 5 1

csc )), (3)

where F r 4 1
csc and F r 5 1

csc are the output feature maps ob-

tained from the two SANets, conv3×3 denotes the 3×3 con-
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Figure 3: SANet.

volution used to combine the two feature maps, and F r 5 1
csc

is added to F r 4 1
csc after upsampling.

Then, the stylized output image Ics is synthesized by

feeding Fm
csc into the decoder as follows:

Ics = D (Fm
csc) . (4)

3.2. SANet for Style Feature Embedding

Figure 3 shows style feature embedding using the SANet

module. Content feature maps Fc and style feature maps

Fs from the encoder are normalized and then transformed

into two feature spaces f and g to calculate the attention

between F i
c and F

j
s as follows:

F i
cs =

1

C(F )

∑

∀j

exp(f(F i
c)

T g(F j
s ))h(F

j
s ), (5)

where f(Fc) = WfFc, g(Fs) = WgFs, and h(Fs) =
WhFs. Further, F denotes a mean–variance channel-wise

normalized version of F . The response is normalized by a

factor C(F ) =
∑

∀j exp(f(F
i
c)

T g(F j
s )). Here, i is the in-

dex of an output position and j is the index that enumerates

all possible positions. In the above formulation, Wf , Wg ,

and Wh are the learned weight matrices, which are imple-

mented as 1 × 1 convolutions as in [30].

Our SANet has a network structure similar to the existing

non-local block structure [27], but the number of input data

differ (the input of the SANet consists of Fc and Fs ). The

SANet module can appropriately embed a local style pattern

in each position of the content feature maps by mapping a

relationship (such as affinity) between the content and style

feature maps through learning.

3.3. Full System

As shown in Fig. 2, we use the encoder (a pre-trained

VGG-19 [21]) to compute the loss function for training the

SANet and decoder:

L = λcLc + λsLs + Lidentity, (6)

where the composers of content, style, and identity loss are

Lc, Ls, and Lidentity , respectively, and λc and λs are the

weights of different losses.

Similar to [7], the content loss is the Euclidean distance

between the mean–variance channel-wise normalized target

features, F r 4 1
c and F r 5 1

c and the mean–variance channel-

wise normalized features of the output image VGG features,

E(Ics)r 4 1 and E(Ics)r 5 1, as follows:

Lc = ||E(Ics)r 4 1 − F r 4 1
c ||2 + ||E(Ics)r 5 1 − F r 5 1

c ||2.

(7)

The style loss is defined as follows:

Ls =

L∑

i=1

||µ(φi(Ics))− µ(φi(Is))||2

+ ||σ(φi(Ics))− σ(φi(Is))||2,

(8)

where each φ denotes a feature map of the layer in the en-

coder used to compute the style loss. We use Relu 1 1,

Relu 2 1, Relu 3 1, Relu 4 1, and Relu 5 1 layers

with equal weights. We have applied both the Gram matrix

loss [5] and the AdaIN style loss [7], but the results show

that the AdaIN style loss is more satisfactory.

When Wf , Wg , and Wh are fixed as the identity matri-

ces, each position in the content feature maps can be trans-

formed into the semantically nearest feature in the style fea-

ture maps. In this case, the system cannot parse sufficient

style features. In the SANet, although Wf , Wg , and Wh are

learnable matrices, our style transfer model can be trained

by considering only the global statistics of the style loss Ls.

To consider both the global statistics and the semanti-

cally local mapping between the content features and the

style features, we define a new identity loss function as

Lidentity = λidentity1(||(Icc − Ic)||2 + ||(Iss − Is)||2)

+ λidentity2

L∑

i=1

(||φi(Icc)− φi(Ic)||2

+ ||φi(Iss)− φi(Is)||2),

(9)

where Icc(or Iss) denotes the output image synthesized

from two same content (or style) images, each φi denotes a

layer in the encoder, and λidentity1 and λidentity2 are iden-

tity loss weights. The weighting parameters are simply set

as λc = 1, λs = 3, λidentity1 = 1, and λidentity2 = 50 in

our experiments.

The content and style losses control the trade-off be-

tween the structure of the content image and the style pat-

terns. Unlike the other two losses, the identity loss is cal-

culated from the same input images with no gap in style

characteristics. Therefore, the identity loss concentrates
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Figure 4: Result details. Regions marked by bounding

boxes in the bottom row are enlarged in the top row for bet-

ter visualization.

Figure 5: User preference result of five style transfer algo-

rithms.

Method Time (256 px) Time (512 px)

Gatys et al. [5] 15.863 50.804

WCT [13] 0.689 0.997

Avatar-Net [20] 0.248 0.356

AdaIN [7] 0.011 0.039

ours (Relu 4 1) 0.012 0.042

ours (multi-level) 0.017 0.055

Table 1: Execution time comparison (in seconds).

on keeping the structure of the content image rather than

changing the style statistics. As a result, the identity loss

makes it possible to maintain the structure of the content

image and style characteristics of the reference image si-

multaneously.

4. Experimental Results

Figure 2 shows an overview of our style transfer network

based on the proposed SANets. The demo site will be re-

lease at https://dypark86.github.io/SANET/.

4.1. Experimental Settings

We trained the network using MS-COCO [15] for the

content images and WikiArt [17] for the style images. Both

datasets contain roughly 80,000 training images. We used

the Adam optimizer [9] with a learning rate of 0.0001 and

a batch size of five content–style image pairs. During train-

ing, we first rescaled the smaller dimension of both images

to 512 while preserving the aspect ratio, then randomly

cropped a region of size 256×256 pixels. In the testing

phase, our network can handle any input size because it is

fully convolutional.

4.2. Comparison with Prior Work

To evaluate the our method, we compared it with three

types of arbitrary style transform methods: the iterative op-

timization method proposed by Gatys et al. [5], two feature

transformation-based methods (WCT [13] and AdaIN [7]),

and the patch-based method Avatar-Net [20].

Qualitative examples. In Fig. 11, we show examples

of style transfer results synthesized by the state-of-the-art

methods. Additional results are provided in the supplemen-

tary materials. Note that none of the test style images were

observed during the training of our model.

The optimization-based method [5] allows arbitrary style

transfer, but is likely to encounter a bad local minimum

(e.g., rows 2 and 4 in Fig. 11). AdaIN [7] simply adjusts

the mean and variance of the content features to synthesize

the stylized image. However, its results are less appealing

and often retain some of the color distribution of the content

due to the trade-off between content and style (e.g., rows 1,

2, and 8 in Fig. 11). In addition, both AdaIN [7] and WCT

[13] sometimes yield distorted local style patterns because

of the holistic adjustment of the content features to match

the second-order statistics of the style features, as shown

in Fig. 11. Although Avatar-Net [20] decorates the image

with the style patterns according to the semantic spatial dis-

tribution of the content image and applies a multi-scale style

transfer, it frequently cannot represent the local and global

style patterns at the same time due to its dependency on the

patch size. Moreover, it cannot keep the content structure in

most cases (column 4 in Fig. 11). In contrast, our method

can parse diverse style patterns such as global color distri-

bution, texture, and local style patterns while maintaining

the structure of the content in most examples, as shown in

Fig. 11.

Unlike other algorithms, our learnable SANets can flex-

ibly parse a sufficient level of style features without max-

imally aligning the content and style features, regardless

a large domain gap (rows 1 and 6 in Fig. 11). The pro-

posed SANet semantically distinguishes the content struc-

ture and transfers similar style patterns onto the regions with
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the same semantic meaning. Our method transfers different

styles for each type of semantic content. In Fig. 11 (row

3), the sky and buildings in our stylized image are stylized

using different style patterns, whereas the results of other

methods have ambiguous style boundaries between the sky

and buildings.

We also provide details of the results in Fig. 4. Our re-

sults exhibit multi-scale style patterns (e.g., color distribu-

tion, bush strokes, and the white and red patterns of rough

textures in the style image). Avatar-Net and WCT distort the

brush strokes, output blurry hair texture, and do not preserve

the appearance of the face. AdaIN cannot even preserve the

color distribution.

User study. We used 14 content images and 70 style

images to synthesize 980 images in total. We randomly se-

lected 30 content and style combinations for each subject

and showed them the stylized images obtained by the five

comparison methods side-by-side in a random order. We

then asked the subject to indicate his/her favorite result for

each style. We collect 2,400 votes from 80 users and show

the percentage of votes for each method in Fig. 5. The re-

sult shows that the stylized results obtained by our method

are preferred more often than those of other methods.

Efficiency. Table 1 shows the run time performance

of the proposed method and other methods at two image

scales: 256 and 512 pixels. We measured the runtime

performance, including the time for style encoding. The

optimization-based method [5] is impractically computa-

tionally expensive because of its iterative optimization pro-

cess. In contrast, our multi-scale models (Relu 4 1 and

Relu 5 1) algorithms run at 59 fps and 18 fps for 256- and

512-pixel images respectively, and the single-scale (only

Relu 4 1) algorithms runs at 83 fps and 24 fps for 256-

and 512-pixel images respectively. Therefore, our method

could feasibly process style transfer in real time. Our model

is 7–20 times faster than the matrix computation-based

methods (WCT [13] and Avatar-Net [20]).

4.3. Ablation Studies

Loss analysis. In this section, we show the influence

of content-style loss and identity loss. Figure 6 (a) shows

the results obtained by fixing λidentity1, λidentity2, and λs

at 0, 0, and 5, respectively, while increasing λc from 1 to

50. Figure 6 (b) shows the results obtained by fixing λc

and λs at 0 and 5, respectively, and increasing λidentity1

and λidentity2 from 1 to 100 and from 50 to 5,000, respec-

tively. Without the identity loss, if we increase the weight

of the content loss, the content structure is preserved, but

the characteristics of the style patterns disappear, because

of the trade-off between the content loss and the style loss.

In contrast, increasing the weights of identity loss without

content loss preserves the content structure as much as pos-

sible while maintaining style patterns. However, distortion

Figure 6: Content-style loss vs. identity loss. (a) Results

obtained by fixing λidentity1, λidentity2, and λs at 0, 0, and

5, respectively, and increasing λc from 1 to 50. (b) Results

obtained by fixing λc and λs at 0 and 5, respectively, and

increasing λidentity1 and λidentity2 from 1 to 100 and from

50 to 5,000, respectively.

Figure 7: Multi-level feature embedding. By embedding

features at multiple levels, we can enrich the local and

global patterns for the stylized images.

of the content structure cannot be avoided. We hence ap-

plied a combination of content-style loss and identity loss

to maintain the content structure while enriching style pat-

terns.

Multi-level feature embedding. Figure 7 shows two

stylized outputs obtained from Relu 4 1 and Relu 5 1,

respectively. When only Relu 4 1 is used for style trans-

fer, the global statistics of the style features and the con-

tent structure are maintained well. However, the local style

patterns do not appear well. In contrast, Relu 5 1 helps

add the local style patterns such as circle patterns because

the receptive field is wider. However, the content struc-

tures are distorted and textures such as brush strokes disap-

pear. In our work, to enrich the style patterns, we integrated

two SANets by taking VGG feature maps encoded from the

different (Relu 4 1 and Relu 5 1) layers as inputs and

combining both output feature maps

4.4. Runtime Controls

In this section, we present the flexibility of our method

through several applications.
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Figure 8: Content–style trade-off during runtime. Our algorithm allows this trade-off to be adjusted at runtime by interpolat-

ing between feature maps Fm
ccc and Fm

csc.

Figure 9: Style interpolation with four different styles.

Figure 10: Example of spatial control. Left: content image.

Middle: style images and masks. Right: stylized image

from two different style images.

Content–style trade-off. The degree of stylization can

be controlled during training by adjusting the style weight

λs in Eq. 6 or during test time by interpolating between fea-

ture maps that are fed to the decoder. For runtime control,

we adjust the stylized features Fm
csc ←− αFm

csc+(1−α)Fm
ccc

and ∀α ∈ [0, 1]. Map Fm
ccc is obtained by taking two content

images as input for our model. The network tries to recon-

struct the content image when α = 0, and to synthesize the

most stylized image when α = 1 (as shown in Fig. 8).

Style interpolation. To interpolate between several style

images, a convex combination of feature maps Fm
csc from

different styles can be fed into the decoder (as shown in

Fig. 9).

Spatial control. Figure 10 shows an example of spa-

tially controlling the stylization. A set of masks M (Fig. 10

column 3) is additionally required as input to map the spa-

tial correspondence between content regions and styles. We

can assign the different styles in each spatial region by re-

placing Fm
csc with M

⊙
Fm
csc, where

⊙
is a simple mask-

out operation.

5. Conclusions

In this work, we proposed a new arbitrary style transform

algorithm that consists of style-attentional networks and de-

coders. Our algorithm is effective and efficient. Unlike the

patch-based style decorator in [20], our proposed SANet

can flexibly decorate the style features through learning

using a conventional style reconstruction loss and identity

loss. Furthermore, the proposed identity loss helps the

SANet maintain the content structure, enriching the local

and global style patterns. Experimental results demonstrate

that the proposed method synthesizes images that are pre-

ferred over other state-of-the-art arbitrary style transfer al-

gorithms.
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