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Abstract

We propose sphere generative adversarial network

(GAN), a novel integral probability metric (IPM)-based

GAN. Sphere GAN uses the hypersphere to bound IPMs

in the objective function. Thus, it can be trained sta-

bly. On the hypersphere, sphere GAN exploits the in-

formation of higher-order statistics of data using geomet-

ric moment matching, thereby providing more accurate re-

sults. In the paper, we mathematically prove the good

properties of sphere GAN. In experiments, sphere GAN

quantitatively and qualitatively surpasses recent state-of-

the-art GANs for unsupervised image generation problems

with the CIFAR-10, STL-10, and LSUN bedroom datasets.

Source code is available at https://github.com/

pswkiki/SphereGAN .

1. Introduction

Since the seminal work by Goodfellow et al. [8], gener-

ative adversarial networks (GANs) have attracted much re-

search interest, and they have been used to achieve outstand-

ing performance in a wide range of computer vision appli-

cations including in image generation [17, 26], super reso-

lution [14], video prediction [19], style transfer [5, 12, 34],

image inpainting [39], image editing [14], visual track-

ing [28], 3D reconstruction [1], segmentation [7], object

detection [35], reinforcement learning [10], and medical

imaging [40].

Conventional GANs try to minimize the distribution di-

vergence between fake and real data [8]. For this purpose,

the generator tries to produce desired samples that look like

real data, and the discriminator tries to differentiate them

from real data. Although GANs have been successfully ap-

plied to various tasks, it is very difficult to train them, in

turn making it difficult to use them to solve more complex

problems. For example, training dynamics frequently be-

come unstable, and the generated samples easily collapse to

a few modes.

While a lot of GANs and their applications have been

proposed recently, in this paper, we focus on GANs based

on integral probability metrics (IPMs) [2, 9, 24, 37] for

overcoming the aforementioned problems. IPM-based

GANs insert a gradient penalty term or soft consistent term

into objective functions for achieving stable learning, re-

sulting in a remarkable improvement in performance. How-

ever, these additional terms inevitably introduce additional

hyper-parameters that need to be tuned, thereby incurring

higher computation cost. In addition, many IPM-based

GANs suffer from the unstable behavior of the sample-

based constrain strategy, and WGAN uses only first-order

statistics with a dual form of the 1-Wesserstein distance.

In this paper, we develop sphere GAN, a novel IPM-

based GAN. Sphere GAN uses geometric moment match-

ing and exploits the information of higher-order statistics

of data, thus obtaining accurate results. Because moment

matching is performed on the hypersphere, IPMs of sphere

GAN can be bounded. We show that the geometric con-

straint induced by the hypersphere makes GAN training

more stable. Sphere GAN affords these advantages without

relying on the heuristics of conventional IPM-based GAN,

namely, virtual sampling techniques and additional gradient

penalty terms. Instead, sphere GAN utilizes Riemannian

manifolds (i.e., hypersphere) supported by the mathemati-

cal theory.

This paper makes three main contributions:

• We propose sphere GAN, a novel concept that afford

several advantages over IPM-based GANs. To the best

of our knowledge, our proposed sphere GAN is the

first attempt to use Riemannian manifolds to define

IPMs in GAN objective functions. In addition, it is

the first IPM-based GAN that does not use the gradi-

ent penalty or virtual data sampling techniques.

• The good properties of sphere GAN are mathemati-

cally proven. In Section 4, we show that sphere GAN

is closely related to IPMs and that minimizing the pro-

posed distance amounts to minimizing the multiple

Wesserstein distances of probability measures on the

n-dimensional hypersphere Sn.

• Sphere GAN outperforms recent state-of-the-art meth-

ods including IPM-based GAN variants for unsu-
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pervised image generation problems with CIFAR-

10, STL-10, and LSUN bedroom datasets. Sphere

GAN significantly improves the accuracy by effi-

ciently matching higher order moments in feature

spaces.

2. Related Work

It is difficult to measure the distance between two non-

overlapping probability distributions with low variances

when we utilize discrepancy measures based on Kullback-

Leibler (KL) divergence [2]. To overcome this problem,

IPM-based GAN variants [23] have been recently proposed

as alternatives for KL-divergence-based GANs. In IPMs,

the distance between two probability distributions is mea-

sured by the largest discrepancy in expectation over a cer-

tain class of functions, making it crucial to select a proper

class of functions in IPM-based GANs. In this section, we

discuss the advantages and disadvantages of several IPM-

based GAN variants.

Wesserstein distance: WGAN and its variants in [2, 9,

24, 37] use Wesserstein metrics to compare the probabil-

ity measures of real images with those of fake images. In

these methods, discriminators are modeled as a real-valued

1-Lipschitz function, which output a one-dimensional Eu-

clidean space. To enforce the Lipschitz condition, WGAN

clips the weights of discriminators such that they lie in a

compact interval [−c, c] [2]. However, weight clipping

leads to unstable learning and produces sub-optimal re-

sults [9]. To solve this problem, WGAN with a gradient

penalty (WGAN-GP) was proposed. However, the train-

ing time of WGAN-GP is almost two times that of other

methods because it needs to calculate the gradient norm in

every iteration. WGAN-CT [37] avoided this constraint by

combining the gradient penalty term with the soft consis-

tent term that penalizes violations of the 1-Lipschitz condi-

tion. WGAN-GP and WGAN-CT showed remarkable per-

formance; however, both methods need additional penalty

terms that can lead to sub-optimal solutions when penalty

weights are wrongly selected.

WGAN-CT trains networks with good heuristics; by

contrast sphere GAN does not sample virtual data points.

Unlike WGAN-GP [9], WGAN-CT [37], and WGAN-LP

[24], sphere GAN does not have an additional penalty term

[20], making its training time much shorter. We experimen-

tally demonstrate that sphere GAN achieves state-of-the-art

results without gradient constraints.

Maximum mean discrepancy (MMD) distance: WGAN

matches only first-order moments in discriminator networks

[2]. By contrast, MMD GAN matches infinite-order mo-

ments defined on unit ball in Hilbert space [16]. MMD

GAN affords several advantages through the use of higher-

order statistics; however, it uses autoencoders to satisfy

the injectivity of networks and performs weight clipping to

bound the gradients for stable learning. Therefore, the ob-

jective functions in [16] considerably reduce the network

capacity. The MMD distance cannot handle complex natu-

ral images well because the pixel space is high dimensional.

In this case, the MMD distance produces low-quality sam-

ples and loses the diversity of representations.

Other IPMs: Squared MMD with a specific kernel is

well known to be equivalent to the energy distance. The

Cramér GAN used this energy distance to train GANs [3].

The critic function was parameterized by neural networks,

and then, the energy distance was maximized [30, 41]. Like

MMD GAN, Cramér GAN imposed the Lipschitz constraint

on critic functions for achieving stable learning. By con-

trast, fisher GAN [22] and Sobolev GAN [21] defined func-

tion classes on the Lebesgue ball and the Sobolev space, re-

spectively, to avoid the Lipschitz constraint; however, they

need to solve an augmented Lagrangian to impose theoreti-

cal constraints on discriminators.

Like MMD GAN and Fisher GAN [22], sphere GAN

uses information of higher-order statistics in GAN objec-

tive functions. However, MMD GAN and Fisher GAN re-

quire expensive penalty terms to satisfy theoretical assump-

tions. By contrast, the objective function of sphere GAN

in (4) is simple and straightforward but also robust because

it is mathematically equivalent to using multiple Wesser-

stein distances defined on a hypersphere. Section 4 provides

mathematical proofs of the fact that the objective function

(4) is closely related to IPMs.

3. Sphere GAN

This section introduces the novel sphere GAN and

shows that is has several advantages compared to state-of-

the-art IPM-based GANs.

3.1. Objective Function

The objective function based on the Wasserstein metric

directly matches the first moment in the one-dimensional

feature space as follows.

min
G

max
D

Ex∼P [D(x)]− Ez∼N [D(G(z))], (1)

where G and D denote the generator and discriminator, re-

spectively, and P and N represent real data and latent code

distributions, respectively. In (1), the discriminator D maps

data x to a real number R:

D : x ∈ X → R, (2)

where D should satisfy the 1-Lipschitz condition D ∈
Lip1, and X ⊂ Rn is the n-dimensional Euclidean im-

age space. As in conventional IPM-based GANs, the ob-

jective function of our sphere GAN is based on (1). Un-

like in existing GANs that directly match the first moment
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Figure 1. Pipeline of sphere GAN. Fake data is generated from noise inputs by a generator. Then, real and fake data are fed to a

discriminator, which maps the output to an n-dimensional Euclidean feature space (i.e., yellow plane). The green and purple circles on the

plane denote feature points of fake and real samples, respectively. By geometric transformation, these feature points are re-mapped into

the n-dimensional hypersphere (i.e., yellow sphere). By using theses mapped points, sphere GAN calculates geometric moments centered

at the north pole of the hypersphere. The discriminator of sphere GAN tries to maximize the moment differences of probability measures

between real and fake samples, while the generator tries to interfere with the discriminator by minimizing the moment differences. By

using the geometric moments defined on the hypersphere, the generator and discriminator enhance their performance through a two-player

minmax game.

of one-dimensional feature spaces, sphere GAN matches

higher-order and multiple moments defined on the hyper-

sphere. For this purpose, the discriminator outputs an n-

dimensional hypersphere Sn:

D : x ∈ X → Sn. (3)

Then, the objective function of sphere GAN is defined as

min
G

max
D

∑

r

Ex[d
r
s(N, D(x)]−

∑

r

Ez[d
r
s

(

N, D(G(z))
)

],

(4)

for r = 1, · · · , R, where the function drs in (8) measures the

r-th moment distance between each sample and the north

pole of the hypersphere, N. Note that the subscript s indi-

cates that drs is defined on Sn. Fig.1 shows the pipeline of

sphere GAN.

With the new objective function in (4), sphere GAN af-

fords advantages. First, by defining IPMs on the hyper-

sphere, it can alleviate several constraints that should be

imposed on the discriminator. As mentioned above, con-

ventional discriminators based on the Wesserstein distance

require Lipschitz constraints, which forces the discrimina-

tors to be a member of 1-Lipschitz functions. However,

constraints with incorrect weight parameters λ consider-

ably reduce the network capacity and overly reflect sampled

points. For example, WGAN-GP, WGAN-CT, and WGAN-

LP in [9, 24, 37] require additional constraint terms in the

objective function for updating discriminators:

Ldisc = Ez[D(G∗(z))]− Ex[D(x)] + λC(x), (5)

Table 1. Gradient penalty terms used in conventional GANs

based on the Wesserstein distance. GP, CT, and LP denote gradi-

ent penalty, soft consistency, and Lipschitz penalty terms, respec-

tively. x̂ denotes the feature points that are uniformly sampled

from straight lines from real to fake data points. x′, x′′ denote

virtual data points which are perturbed by dropout units.

Additional constraint term

GP Ex̂

[

(||∇x̂D(x̂)||2 − 1)
2
]

CT GP + Ex′,x′′ [max (0, d(D(x′), D(x′′)))− Const]

LP Ex̂

[

max (0, ||∇x̂D(x̂)||2 − 1)
2
]

where G∗ denotes the fixed generator and C denotes addi-

tional constraint terms that are defined in Table 1. In (5),

the gradient norm should be calculated at every iteration;

this increases the computational complexity. Unlike in con-

ventional approaches, sphere GAN does not need any ad-

ditional constraints that forces discriminators to lie in a de-

sired function space. By using geometric transformation,

sphere GAN ensures that distance functions lie in a desired

function space. Then, our new objective function for updat-

ing the weights of the discriminator is

Ldisc =
∑

r

Ez[d
r
s

(

N, D(G∗(z))
)

]−
∑

r

Ex[d
r
s(N, D(x)],

(6)

where there are no additional constraint terms. Algorithm 1

show the pseudo-code of sphere GAN.
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Algorithm 1 Sphere GAN

Input: Real data distribution P .

Output: Discriminator and generator parameters: w, θ
1: while θ has not converged do

2: for r = 1 to R do

3: Sample real data x from P .

4: Sample random noise z from N (0, I).

5: L(r)
disc ← drs

(

N, Dw(Gθ(z))
)

− drs
(

N, Dw(x)
)

6: end for

7: for r = 1 to R do

8: Sample real data x from P .

9: Sample random noise z from N (0, I).

10: L(r)
gen ← −drs

(

N, Dw(Gθ(z))
)

11: end for

12: w ← Adam(∇w

∑R

r=1 L
(r)
disc, w)

13: θ ← Adam(∇θ

∑R

r=1 L
(r)
gen, θ)

14: end while

3.2. Hypersphere

As in (4), sphere GAN matches multiple moments over

the feature space defined on the hypersphere Sn. Sphere

GAN uses the hypersphere instead of arbitrary Riemannian

manifoldsM because doing so affords the following three

advantages.

1. The distance function drs of the hypersphere is bounded

and becomes very easy to implement.

2. The gradient norm behaves well with this distance

function, which is crucial for stable learning.

3. The Riemannian structure of the hypersphere is suit-

able for defining GAN objectives.

Conventional GANs typically consider the Euclidean

space Rn with the Euclidean distance. These GANs can

be extended by modeling arbitrary Riemannian manifolds.

These manifolds are not compact and the distance function

is not bounded, which may cause gradient explosion and un-

stable learning. To solve this problem, sphere GAN uses a

geometric-aware transformation function, which transforms

the Euclidean space Rn to the hypersphere Sn. Note that

this function is implemented by the last dense layer of the

discriminator. Our transformation function is designed by a

diffeomorphism1 from Rn to Sn. Thus, the transformation

function is differentiable and can preserve dimensionality

at every point of the feature space. The next section intro-

duces stereographic projection as a geometric transforma-

tion function.

1The diffeomorphism is a bijective and differentiable function, which

preserves the dimensionality of the tangent space of the domain and image

smooth manifolds.

Figure 2. Inverse of stereographic projection on Euclidean

plane Π
−1

: R2 → S2/{N}. Each red line denote the geodesics

on R2 and S2.

3.3. Geometric­aware transformation function

The inverse of the stereographic projection is a diffeo-

morphism from the Euclidean space Rn to the hypersphere

Sn. Intuitively, the inverse of the stereographic projection

can be considered a way of projecting the hyperplane onto

the hypersphere. Let p = (p1, . . . , pn) be a coordinate sys-

tem of Rn and N = (0, . . . , 1) be a north pole of the hy-

persphere. Then, the inverse of the stereographic projection

Π−1 : Rn → Sn/{N} is defined as follows:

Π−1(p) =

(

2p

||p||2 + 1
,
||p||2 − 1

||p||2 + 1

)

. (7)

After projecting two points p, q ∈ Rn through the inverse

of the stereographic projection, we measure the distance be-

tween two points, in terms of hypersphere metrics:

ds(Π
−1(p),Π−1(q))

= arccos

( ||p||2||q||2 − ||p||2 − ||q||2 + 4p · q + 1

(||p||2 + 1) (||q||2 + 1)

)

,

(8)

where ds is the distance function defined on Sn.

Geometrically, ds can be considered a geodesic dis-

tance. As shown in Fig.2, the geodesic distance between

two points on the hypersphere is much shorter than the Eu-

clidean distance and is bounded on the hypersphere (i.e.,

yellow sphere), thus implementing geometric transforma-

tion is equivalent to impose global constraint to hyperplane.

As a result, it enables stable training when using sphere

GAN with the objective function in (4).

Lemma 1. The distance function in (8) is differentiable and

is bounded.

The distance function in (8) satisfies non-negativity,

symmetry, and triangle inequality and is differentiable. The

distance between any two points is bounded, because the

hypersphere is a compact manifold. For example, the Eu-

clidean distance between two points 0 = (0, . . . , 0) and
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q = (t, . . . , t) diverges:
√
nt2 → ∞ as t → ∞. By con-

trast, the distance defined on the hypersphere in (8) con-

verges: d(Π−1(0),Π−1(q)) = arccos
(

−nt2+1
nt2+1

)

→ π as

t → ∞. The geometric-aware transformation function of

sphere GAN makes the distribution divergence of the dis-

criminator outputs bounded, thereby enforcing stable train-

ing dynamics. In addition, the function preserves the di-

mensionality of the feature spaces and maintains differen-

tiability.

4. Analysis of Sphere GAN

This section presents a mathematical analysis of sphere

GAN.

4.1. Link to IPMs

We first prove that minimizing the objective function in

(4) amounts to minimizing IPMs. For this purpose, we de-

fine geometric central moments on the Riemannian mani-

fold. Let M be the compact, connected, and geodesically

complete Riemannian manifold with Borel σ-algebra, Σ.

Both p ∼ P and q ∼ Q are probability measures defined

on the measurable space (M,Σ). Then, the IPM is defined

as follows:

Definition 1. The IPM is a distance measure between two

probability measures P and Q:

γ(P,Q) = sup
f∈F

∣

∣

∣

∣

∫

M

fdP−
∫

M

fdQ

∣

∣

∣

∣

, (9)

whereF is a class of real-valued bounded measurable func-

tions onM.

We can define the geometric moments onM:

Definition 2. The r-th central moment of P on (M,Σ) for

given a point p0 is

mr

P =

∫

M

dr(p0, p)dP(p), (10)

where 1 ≤ r < ∞ and mr
P < ∞. dr is the Riemannian

distance function onM.

In sphere GAN, we define a new IPM between P and Q:

Definition 3. The IPM based on the moment difference is

γM(P,Q) = sup
d∈Cp0

(M)

∑

r

∣

∣mr

P −mr

Q

∣

∣ , (11)

where Cp0
(M) is a class of bounded distance functions from

a given point p0 to another point onM.

When we compare Definition 1 with Definition 3,

we note relations between conventional IPMs and the

IPM of sphere GAN. While mr
P in (11) corresponds to

Ex[d
r
s(p0, D(x))] in (4), M can be replaced by Sn2 and

x0 can be set to north pole N. Then, we obtain the same

equation as (4), which implies that minimizing the objec-

tive function in (4) amounts to minimizing IPMs in (11).

However, there are several differences between conven-

tional IPMs and the IPMs of sphere GAN. The function

space of our IPM is the set of bounded distance functions

onM centered at p0, Cp0
(M). Thus, sphere GAN parame-

terizes distance functions:

Ex[d
r
s(p0, D(x))] ≃ 1

N

N
∑

i=1

drs(p0, D(xi)), (12)

where {xi} is the set of images. By contrast, the function

space of the IPM of WGAN is the set of 1-Lipschitz dis-

criminators. Thus, it parameterizes discriminators.

Ex[D(x)] ≃
N
∑

i=1

D(xi), (13)

where D ∈ Lip1.

4.2. Link to Wesserstein distance

γSn is the IPM of sphere GAN defined in (11), where

M = Sn. The generator of sphere GAN aims to reduce γS,

which is equivalent to matching higher-order central mo-

ments between two probability measures P and Q defined

on Sn:

Proposition 1. As P weakly converges to Q,

• γSn → 0

• mr

P →mr

Q for all r

Let W r
Sn be the r-Wesserstein distance of probability

measures defined on Sn. Then, minimizing γSn is equiv-

alent to minimizing the summation of r-Wesserstein dis-

tances over all r.

Proposition 2. As γSn converges to 0,
∑

r

W r
Sn(P,Q)→ 0. (14)

The result of Proposition 2 is not surprising because

weak convergence is strongly related to the Wesserstein dis-

tance [33]. In conventional GANs based on the Wesserstein

distance [2, 9, 24, 37], objective functions are designed as a

dual form by the Kantorovich-Rubinstein duality theorem.

In the dual form, only the 1-Wesserstein distance can be im-

plemented for achieving efficient learning of GANs. Con-

trary to conventional GANs, sphere GAN can use more gen-

eral r-Wesserstein distances, and thus, the function space is

much broader.

2Note that the hypersphere satisfies all assumptions mentioned earlier

in this section.
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4.3. Gradient Analysis

By using γSn over other IPMs, sphere GAN can com-

pute the gradients of loss functions by choosing different

moments of γSn . The selection of different moments leads

to different learning behaviors as the gradients differ. We

found that any moment enables stable learning using sphere

GAN.

Lemma 2. Ex∼P

[

||∇xd
r
s(N, D(x))||2

]

<∞ for all r.

Lemma 2 tells us that using the hypersphere is a rea-

sonable choice for stably learning GANs, where the norm

of gradient is bounded during the training. But our sphere

GAN can have large gradients because no penalty is im-

posed on the discriminator. Thus, it has a potential risk of

gradient explosion. However, in experiments, we observed

that the average magnitude of the norm of gradients at each

iteration is affordable when using the Adam optimizer.

5. Experiments

5.1. Implementation Details

Hyper-parameters: The network was trained with batch

size of 64. In all experiments, we used the Xavier ini-

tialization and Adam optimizer for both the generator and

the discriminator. We fixed the hyper-parameters of the

Adam optimizer for the generator and discriminator to α =
1E − 4, β1 = 0, β2 = 0.9. In experiments using Con-

vNet, we set the moment modes to
∑5

1 d
r. In other exper-

iments, we set the dimension of the hypersphere to S1024

and the moment modes to
∑3

1 d
r. In conventional IPM-

based GANs, the discriminator was updated multiple times

and the generator, one time, per iteration. Contrary to these

GANs, in sphere GAN, both networks were updated one

time per iteration3.

Geometric Block: We added the geometric block to the

last convolutional layer of the discriminator for geometric-

aware transformation. The discriminator (D) and geometric

block (GB) were designed as follows:

D : X → ConvBlocks→ GB

GB : ReLU→ AverageMeanPooling

→ DenseLayer(Rn)→ ISGP(Sn ⊂ Rn+1),

where X ⊂ Rn is an input and ISGP denotes the inverse of

stereo-graphic projection. The pseudo code for ISGP and

detailed network structures are provided in the supplemen-

tary materials.

Baseline Network: We conducted unsupervised image

generation tasks using two baseline networks: ConvNet and

ResNet. For ConvNet, we followed the network architec-

ture proposed in [20] to build both the generator and the

3One study has investigated the dynamics of learning GANs [11]. How-

ever, it is difficult to perform direct comparisons and analyses.

discriminator. It consists of transposed convolutional blocks

in the generator and convolutional blocks in the discrimina-

tor, in which each blocks consists of two convolutional lay-

ers. For ResNet, we followed the network architectures pro-

posed in [9]. In both discriminator networks, we used layer

normalization [15] for the normalization unit suggested in

[22], and we attached the geometric block GB to the last

convolutional block for geometric transformation. Details

of the network architectures are provided in the supplemen-

tary materials.

Environments: All experiments were conducted using a

single GTX Titan GPU. Sphere GAN was implemented us-

ing Keras-2.2.4 with Tensorflow-1.11.0 back-

end.

5.2. Dataset and Evaluation Metrics

Dataset: We conducted experiments on CIFAR-10 [13],

STL-10 [6], and LSUN [38] datasets. CIFAR-10 and STL-

10 contains around 50K and 100K natural images of size

32× 32 and 96× 96 with 10 different classes, respectively.

For STL-10, we downsized original images to a size of 48×
48. For LSUN, we used around 3M bedroom images that

were resized to 64× 64.

Evaluation Metrics: To quantitatively evaluate the net-

works, we used two metrics for image generation tasks: in-

ception score (IS) [27] and Fréchet inception distance (FID)

[11]. By using these metrics, we compared sphere GAN

against other IPM-based GANs with various datasets. In all

experiments, we generated 50K images to evaluate GANs

in terms of IS and FID. For implementation, we used open

source code provided by the authors4.

IS is strongly correlated to human judgment and in-

ception. The generated images were applied to an in-

ception convolutional network [29] to obtain the condi-

tional distribution p(y|x), and IS was calculated as follows:

exp
(

E
[

DKL[p(y|x)||p(y)]
])

where p(y) is approximated

by 1
N

∑N

n=1 p(y|xn). On the other hand, FID overcomes

the problems of IS by estimating the 2-Wesserstein distance

of Gaussian distributions induced by the outputs of hidden

activation (pool3 of inception model). FID is consistent

with increasing disturbances and human judgment. FID be-

tween two image distributions P1,P2 is defined as follows:

FID(P1,P2) = ||m1 −m2||22+Tr(C1+C2−2(C1C2)
1

2 ),
(15)

where mi and Ci are the Gaussian mean and covariance

matrix obtained from Pi, respectively.

5.3. Ablation Study

This section aims to answer the following three ques-

tions:

4 IS: https://github.com/openai/improved-gan, FID:

https://github.com/bioinf-jku/TTUR.
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Figure 3. Inception scores (IS) on CIFAR-10 with ConvNet ac-

cording to different moment matching modes and different dimen-

sions of hypersphere. Red, yellow, and blue bars denote mo-

ment modes:
∑

1
dr,

∑
3

1
dr , and

∑
5

1
dr , respectively. The hor-

izontal axis denotes the dimensions of hypersphere Sn

: n =

16, 64, 256, 1024.

Figure 4. Norm of gradient for Sphere GAN and WGAN-GP

discriminator networks.

Q1: Does training GANs with higher moments improve the

quality of samples?

Q2: Does training GANs with higher dimensions of the hy-

persphere improve performance?

Q3: Does the norm of gradients behave well during train-

ing?

Answer to Q1: We conducted unsupervised image gen-

eration tasks with different moments to show that higher

moments help to improve performance. In this experiment,

various summation modes were used for the GAN objec-

tive. As shown in Fig.3, matching higher moments in the

feature space considerably improves performance. We ob-

served that higher than fifth-order moments deteriorate the

performance in the CIFAR-10 dataset, because higher mo-

ments induces high magnitude of gradients, and this may

cause unstable learning. However, in experiments,
∑3

i=1 d
r

was suitable for large networks in general. Conventional

GANs based on the Wesserstein distance did not improve

their accuracy as higher-order moments were used.

Table 2. Unsupervised image generation results on CIFAR-10.

IS : higher is better, FID : lower is better. For networks with ⋆, we

used the results reported in [20].

Method IS FID

CIFAR-10 (real) 11.24 ± .12 7.8

MMD GAN [16] 6.17 ± .07 -

Weight clipping⋆ 6.41 ± .11 42.6

WGAN-GP⋆ 6.68 ± .06 40.2

Spectral Norm-WD⋆ 7.20 ± .08 32.0

Sphere GAN-Conv 7.57 ± .05 -

WGAN-GP-ResNet [9] 7.86 ± .07 -

χ2 GAN [31] 7.88 ± .10 -

Fisher GAN [22] 7.90 ± .05 -

Coulomb GAN [32] - 27.3

Spectral Norm-WD⋆ 7.96 ± .06 22.5

WGAN-LP [24] 8.02 ± .08 -

WGAN-CT [37] 8.12 ± .12 -

Spectral Norm [20] 8.22 ± .05 21.7

Sphere GAN-ResNet 8.39 ± .08 17.1

Answer to Q2: We observed that the dimensions of the

hypersphere should be large enough to ensure that the in-

formation contained in the feature space is meaningful in

using geometric moments. In other methods where the fea-

ture space is one dimension (e.g., Wesserstein distance), the

dimension of the feature space was not enough to deliver

the information of higher-order statistics. As demonstrated

in Fig.3, higher dimensions of the hypersphere significantly

improved the accuracy of sphere GAN.

Answers to Q3: We evaluated the norm of gradients at

each iteration to show that GANs can be trained stably

with the proposed metric. As shown in Fig.4, the norm of

gradients started to converge after 100K iterations, while

WGAN-GP easily attained the convergence. In sphere

GAN, the norm of gradients was smoothly bounded with

the proposed metric.

5.4. Quantitative and Qualitative Results

CIFAR-10 : Table 2 summarizes quantitative results.

Sphere GAN-ResNet achieved state-of-the-art scores for

both IS and FID with a large margin. Sphere GAN-Conv

also outperformed WGAN-GP and MMD GAN.

STL-10 : In experiments with STL-10, we used approx-

imately one-half the number of network parameters com-

pared to the original network used in [20]. Despite the

small number of network parameters, sphere GAN-ResNet

significantly outperformed SN-GAN and other IPM-based

GANs, as shown in Table 3.

LSUN Bedroom : In this experiment, we reported FID

only because IS was not meaningful, as noted in [4]. The

results in Table 4 indicate that sphere GAN-ResNet outper-

formed state-of-the-art GANs.
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Table 3. Unsupervised image generation results on STL-10. For

networks with ⋆, we used the results reported in [20].

Method IS FID

STL-10 (real) 26.08 ± .26 7.9

Weight clipping⋆ 7.57 ± .10 64.2

WGAN-GP⋆ 8.42 ± .13 55.1

Sphere GAN-Conv 8.43 ± .09 44.1

Warde-Farley [36] 8.51 ± .13 -

Spectral Norm⋆ 9.10 ± .04 40.1

Sphere GAN-ResNet 9.55 ± .11 31.4

Table 4. Unsupervised image generation results on LSUN Bed-

room. For networks with ⋆, we used the results reported in [4].

Method FID

LSUN Bedroom (real) 2.36

Cramér GAN⋆ 54.2

WGAN-GP⋆ 41.4

MMD-GAN-rq⋆ 32.0

Sphere GAN 16.9
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Figure 5. Averaged computation time over 100 iterations for

different GAN variants. The yellow and red bars denote the av-

eraged computation time when the updating ratio of the generator

and discriminator is 1 : 1 and 1 : 5, respectively.

Training Time: In Fig.5, we calculated the averaged train-

ing time over 100 iterations for different methods. WGAN-

CT and WGAN-GP were clearly much slower than other

methods (around 40% slower than DCGAN) because they

calculate the norm of gradients ||∇x̂D(x̂)||2 at every itera-

tion. The training time of sphere GAN is much shorter than

that of other IPM-based GANs and almost the same as that

of vanilla DCGAN [25] and LSGAN [18].

We qualitatively evaluated sphere GAN using three

datasets. Figs.6 and 7 show the qualitative results of sphere

GAN for the LSUN-bedroom and STL-10 datasets, respec-

tively. The qualitative results indicate that sphere GAN was

trained stably and hardly suffered from mode collapse prob-

lems. Most generated images are photo-realistic.

6. Conclusion

This paper proposes sphere GAN, a novel IPM-based

GAN. Sphere GAN defines IPMs on the hypersphere (i.e.,

Figure 6. Qualitative results of sphere GAN for LSUN-bedroom

dataset

Figure 7. Qualitative results of sphere GAN for STL-10 dataset

a type of Riemannian manifolds), and therefore, it can be

trained stably using bounded IPMs. High-order moment

matching enables sphere GAN to exploit useful information

about data and to provide accurate results. Experimental re-

sults demonstrate that sphere GAN shows state-of-the-art

performance compared to IPM-based GANs for the LSUN,

STL-10, and CIFAR-10 datasets.
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