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Abstract

Zero shot learning (ZSL) aims to recognize unseen

classes by exploiting semantic relationships between seen

and unseen classes. Two major problems faced by ZSL al-

gorithms are the hubness problem and the bias towards the

seen classes. Existing ZSL methods focus on only one of

these problems in the conventional and generalized ZSL set-

ting. In this work, we propose a novel approach, Semanti-

cally Aligned Bias Reducing (SABR) ZSL, which focuses on

solving both the problems. It overcomes the hubness prob-

lem by learning a latent space that preserves the semantic

relationship between the labels while encoding the discrim-

inating information about the classes. Further, we also pro-

pose ways to reduce bias of the seen classes through a sim-

ple cross-validation process in the inductive setting and a

novel weak transfer constraint in the transductive setting.

Extensive experiments on three benchmark datasets suggest

that the proposed model significantly outperforms existing

state-of-the-art algorithms by ∼1.5-9% in the conventional

ZSL setting and by ∼2-14% in the generalized ZSL for both

the inductive and transductive settings.

1. Introduction

In recent years, deep learning has achieved state-of-the-

art performance across a wide range of computer vision

tasks such as image classification task [13]. However, these

deep learning methods rely on enormous amount of la-

beled data which is scarce for dynamically emerging ob-

jects. Practically, it is unrealistic to annotate everything

around us. Thus, making the conventional object classifi-

cation methods infeasible. In this work, we focus on the

extreme case when there is no labeled data, i.e., Zero-shot

learning (ZSL), where the task is to recognize the unseen

class instances by relying on the labeled set of seen classes.

ZSL assumes that the semantic label embeddings of both

seen and unseen classes are known apriori. ZSL thus learns

to identify unseen classes by leveraging the semantic rela-

tionship between seen and unseen classes.

On the basis of data available during the training phase,

ZSL can be divided into two categories: Inductive and

Transductive ZSL. In inductive ZSL [10, 14, 12, 2, 17,

23, 29, 3, 25], we are provided with the labeled seen class

instances and the semantic embedding of unseen class la-

bels during training. While in transductive ZSL [21, 28],

in addition to the labeled seen class data and the semantic

embedding of all labels, we are also provided with the un-

labeled instances of unseen classes data. ZSL can also be

categorized into Conventional and Generalized ZSL de-

pending on the data that is presented to the model during

the testing phase. In Conventional ZSL, data emerges only

from unseen classes at test time. While Generalized ZSL

[8] is a more realistic setting where the data during testing

comes from both seen and unseen classes.

Generally, ZSL approaches project the seen and un-

seen class data into a latent space that is robust for learn-

ing unseen class labels. One approach is to learn a latent

space that is aligned towards the semantic label embedding

[10, 12, 14, 17, 19, 23]. The input data is transformed into

this latent space for learning the classification models over

seen and unseen classes. This approach leads to the well

known hubness problem [18, 16, 9] where the transformed

data become hubs for the nearby class embeddings leading

to performance deterioration in both conventional and gen-

eralized ZSL. To alleviate the hubness problem, the other

approaches [29, 5, 31, 18] learn a latent visual space for

recognizing the seen class labels by aligning the semantic

class embeddings towards this latent space. Irrespective of

the latent space for transforming the data, there is an inher-

ent bias in the model towards seen classes, which we refer to

as the bias problem. Due to this bias the models generally

perform poorly on unseen classes.

Existing ZSL methods focus on addressing only one of

these problems. In this work, we propose a novel method -

Semantically Aligned Bias Reducing (SABR) ZSL to al-

leviate both the hubness and bias problems. We propose

two versions of SABR - SABR-I and SABR-T for the in-

ductive and the transductive ZSL settings respectively. Both

these versions have a common first step that learns an inter-
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mediate representation for the seen and unseen class data.

This intermediate latent space is learned to preserve both the

semantic relationship between class embeddings and dis-

criminating information among classes through a novel loss

function.

After having learned the optimal latent space, both

SABR-I and SABR-T learn generative adversarial networks

(GAN) to generate the latent space representations. Specif-

ically, SABR-I learns a conditional Wasserstein GAN for

generating the latent space representations for the seen

classes using only the seen class embeddings. As the label

embeddings of seen and unseen classes exhibit semantic re-

lationships that are being learned in first step, we utilize the

generative network to synthesize unseen class representa-

tions for learning a classification model for ZSL and GZSL.

Given that we only have labeled data for the seen classes,

SABR-I reduces the bias by early stopping the training of

conditional WGAN through a simulated ZSL problem in-

duced on the seen class data.

SABR-T goes further to learn a different GAN for gen-

erating latent space instances for the unseen classes. This

network is learned to minimize the marginal probability

difference between the true latent space representations of

the unlabeled unseen class instances and the synthetically

generated representations. Further, the conditional proba-

bility distribution of the latent space representations given

the semantic labels are weakly transferred from the condi-

tional WGAN learned by SABR-I for the seen class labels.

Specifically, we learn a Wasserstein GAN[4] for the unseen

classes by constraining the amount of transfer from the seen

classes as learned by SABR-I. Overall, the major contribu-

tions of the paper are as follows

• We propose a novel two-step solution for zero shot

learning. In the first step, an appropriate latent space is

learned by fine tuning a pre-trained model with seman-

tic embedding to reduce the hubness problem. In the

second step, generators for synthesizing unseen class

representations are learned, whose bias towards the

seen class is reduced by using an early stopping crite-

rion in the inductive setting and a weak transfer criteria

for the transductive setting.

• We introduce a loss function, which ensures that the

embedding space is discriminative and semantically

aligned with the semantic class embeddings. A novel

adversarial generative transfer is proposed that tries to

minimize both the conditional and marginal distribu-

tions of seen and unseen classes.

• Empirical evaluation across all the zero-shot learning

datasets suggests that the proposed approach outper-

forms the state-of-the-art performance in both conven-

tional and generalized ZSL in both the inductive and

transductive settings.

2. Related Work

Zero-shot learning (ZSL) has been a well studied area in

recent years. Early ZSL approaches [10, 12, 2, 17, 19, 23]

utilized the semantic label space for projecting the seen

and unseen instances. DEVISE [10], ALE [1] and SJE [2]

learned bi-linear compatibility functions to model the rela-

tionship between visual and semantic space. ESZSL [17]

added a regularizer to the bi-linear compatibility functions

that bounded the norm of projected features and semantic

attributes. All these methods were constrained by learn-

ing linear functions and was overcome by LATEM [23] and

CMT [19] which learned non-linear functions. Zhang et al.

[29] were the first to demonstrate the hubness problem and

suggested to use an intermediate visual space for projecting

the seen and unseen class instances. Zhang et al. [29] and

Ba et al. [5] transform both the semantic and visual space to

a joint embedding space in which the visual representations

are closer to their respective semantic representations. An-

nadani et al. [3] focused on utilizing the semantic structure

while maintaining separability of classes. Our approach for

the inductive ZSL setting (SABR-I) improves over the work

of Annadani et al. [3], as in SABR-I we not only preserve

semantic relations in visual space but also reduce the bias

of seen classes.

Among the transductive ZSL approaches, Song et al.

[20] leverage the conditional seen class data with unlabelled

unseen class data to learn an unbiased latent embedding

space. The bias towards seen classes is reduced by forcing

a uniform prior over the output of the classifier for unseen

class instances. Our approach differs from QFSL primar-

ily in two ways. Firstly, we reduce the bias in both the

inductive and transductive versions of our model. In the

transductive version, SABR-T reduces the bias without en-

forcing the uniform prior on the output as this will reduce

the unseen class conditional information in the latent space.

Secondly, learning an optimal latent space helps to mitigate

the hubness problem.

There also exists work on generative modeling for ZSL

[21, 6, 25]. Verma et al. [21] model each class-conditional

distribution as a Gaussian distribution whose parameters are

learned by seen classes. It then predicts the parameters of

class-conditional distribution for unseen classes. They fur-

ther extend this work to incorporate the unseen class data

and report results in transductive setting. Bucher et al.

[6] and Xian et al. [25] generate pseudo instances of un-

seen classes by training a conditional generator for the seen

classes. Our proposed approach for the inductive setting

SABR-I differs from these approaches, as we learn a dis-

criminative embedding space that preserves semantic rela-

tions which alleviates hubness problem. Further, we lever-

age the unlabeled unseen class data to reduce the bias of

seen classes.
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Figure 1. [Best viewed in color] An illustration of the proposed Semantically Aligned Bias Reducing (SABR) model.

3. Methodology

3.1. Problem Definition

Let Ds = {xsi , y
s
i , c(y

s
i ), i = 1, 2....Ns} represent the

set of seen class data instances, where xsi denotes the ith

seen class instance with the corresponding class label ysi ∈
S (the set of seen classes). The semantic label embedding

for each ys ∈ S is denoted by c(ys). In the inductive ZSL

setting, we are provided only with the set of unseen labels

yu ∈ U and the corresponding semantic label embedding

c(yu). There is no overlap between the seen and unseen

classes i.e., S ∩ U = ∅. In the transductive ZSL setting,

we also have unlabeled unseen class data represented by

Du = {xui , y
u, c(yu), i = 1, 2....Nu} where xui is the ith

unseen class instance. As the unseen class dataset is un-

labeled, we do not have the labels yui of xui . The goal of

conventional ZSL is to predict the label for each xui ∈ U .

In the generalized ZSL setting, the goal is to predict the la-

bel of a test sample, where the test sample can belong to

either seen or unseen class.

3.2. Semantically Aligned Bias Reducing ZSL

In this section, we present our proposed two-tier model,

SABR-I, for inductive ZSL (and a three-tier model, SABR-

T for transductive ZSL) as shown in figure 1.

3.2.1 Learning the Optimal Latent Space

In the first step of SABR-I and SABR-T, we learn a la-

tent space Ψ that preserves the semantic relations between

classes while also learning the discriminating information

for recognizing the classes. The semantic relations are es-

sential as the learned latent space is later used for gener-

ating synthetic instances of unseen classes. The discrimi-

nating information is useful for learning the classifier and

thus mitigating the hubness effect. We use pre-trained deep

network Resnet-101 to extract features from the seen and

unseen class images. For simplicity henceforth xsi and xui
refer to the features extracted from the pre-trained deep em-

bedding models. These features are then used to learn a

transformation, ψ(), that projects the seen and unseen class

instances onto the latent space Ψ. ψ() is modeled as a

two layer fully connected network. The latent representa-

tions ψ(xsi ) are used to simultaneously learn a classifier (fc)

(for learning the discriminating information) and a regres-

sor (fr) (for preserving the semantic relationships among

the labels). The classifier fc outputs the one hot encoding

of the class label of the instance and thus is trained mini-

mizing the cross entropy loss,

LC = −
1

Ns

Ns∑

i=1

L(ysi , fc(ψ(x
s
i )) (1)

where L is cross entropy loss between true and predicted

labels of seen class instance xsi .

The semantic relationships between the labels are pre-

served by ensuring that the output of the regressor fr on the

embedding of a seen instance ψ(xsi ) is closely related to the

corresponding semantic embedding c(ysi ). We propose to

use a similarity based cross-entropy loss, as defined in the

equation below, between the predicted label embeddings of

the regressor and the true semantic label embedding.

LS = −
Ns∑

i=1

log
exp(〈fr(ψ(x

s
i )), c(y

s
i )〉)

Σys∈S exp(〈fr(ψ(xsi )), c(y
s
i )〉)

(2)

where 〈fr(ψ(x
s
i )), c(y

s
i )〉 refers to the similarity between

predicted label embedding, fr(ψ(x
s
i )), of each source in-

stance xsi and its true semantic label embedding c(ysi ). This
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loss function ensures that the predicted label embeddings

for all seen class instances belonging to a specific label form

a cluster around the true semantic label embedding. The

similarity could be defined using any measure such as Eu-

clidean distance, cosine similarity or dot product.

The transformation function ψ(), as well as the classi-

fier fc and the regressor fr are learned simultaneously by

jointly minimizing the loss functions represented in equa-

tions 1 and 2 weighted by the factor γ

LFS = min LC + γ ∗ LS (3)

Thus at the end of step 1, both the versions of SABR

learn the transformation ψ to the latent space that is optimal

in the sense that it possesses the discriminative information

for classification and encodes the semantic relationship be-

tween the labels.

3.2.2 Bias Reducing Generator Network for SABR-I

The objective of inductive ZSL is to learn a classifier that

can predict the labels of unseen class instances. As we do

not have training instances of unseen classes, following the

approach of Xian et al. [25], we learn a generator network

that can generate synthetic unseen class instances as illus-

trated in the module 2 of Figure 1

Given the seen class embeddings ψ(xsi ) ∈ Ψ, we first

learn a conditional generator Gs : 〈z, c(ys)〉 → Ψ. The

generator takes as input a random noise vector z and a se-

mantic label embedding c(ys) and outputs an instance x̃s in

the latent space Ψ. As we know the labels associated with

each seen class training instance, we train the conditional

generator using the Wasserstein adversarial loss defined by

Ls
G = E[Ds(ψ(xs), c(ys))]− E[Ds(x̃s, c(ys))]

− λE[(‖∇x̂sDs(x̂s, c(ys))‖ − 1)2]
(4)

where,Ds is the seen class conditional discriminator whose

input is the seen class label embedding (c(ys)) and the latent

space instance (ψ(xs)), x̂s = αψ(xs) + (1 − α)x̃s with

α ∼ U(0, 1) and λ is the gradient penalty coefficient. Thus,

the objective for discriminator and generator pair is to

min
Gs

max
Ds

Ls
G (5)

We further want to encourage the generator to synthesize

latent space embeddings of seen classes that are discrimi-

native and encode the semantic similarity between the la-

bel embeddings. We achieve this by incorporating the loss

functions defined in equation 1 and 2 to the overall opti-

mization objective of the generator. We use the pre-trained

classifier fc and regressor fr from the previous step while

training the generator Gs. Thus the overall loss function for

the generator-discriminator network can be defined as

min
Gs

max
Ds

Ls
G + β(LC + γLS) (6)

This generator is then used to synthesize the latent space

representations for the unseen classes. The semantic la-

bel embeddings encode relationships between the labels and

therefore we expect the generator to synthesize meaningful

latent representations of the unseen classes. However, the

generator can be overly biased towards the seen classes due

to the training set that is presented to it. This bias is mit-

igated using the principle of early stopping during training

of the generator. The number of training epochs required to

achieve the best performance is determined through a sim-

ple cross-validation set up on the seen classes.

3.2.3 Bias Reducing Generator Network for SABR-T

In the transductive setting the training process can benefit

from modeling the unlabeled unseen class data. In par-

ticular, we model the marginal probability distribution of

the unseen class unlabeled data via a GAN. We first obtain

the latent representations of unseen class data xu by trans-

forming them using the function ψ(). Now, given the latent

space representations of the unseen class instances ψ(xu),
we learn a generator Gu : 〈z, c(yu)〉 → Ψ that takes noise

z and semantic vector c(yu) as the input and outputs a syn-

thetic instance x̃u in the latent space. Gu is trained as a

conditional generator using the Wasserstein adversarial loss

defined as follows

Lu
G = E[Du(ψ(xu))]− E[Du(x̃u)]

− λE[(‖∇x̂uDu(x̂u)‖ − 1)2]
(7)

were, Du is the discriminator, x̂u = αψ(xu) + (1− α)x̃u,

α ∼U(0,1), and λ is the gradient penalty coefficient. Note

that unlike Ds, Du is not a conditional discriminator. Thus,

the overall objective of the generator-discriminator pair for

the unseen class instances can be defined as:

min
Gu

max
Du

Lu
G (8)

The unlabeled class generator, Gu, trained in this fashion

will produce synthetic unseen class latent representations

that closely follow the true marginal distribution P (ψ(xu)).
However, it would not have learned the correct conditionals

P (ψ(xu)|c(yu)). This is understandable as we do not have

labeled unseen class data to train a conditional discrimina-

tor. On the other hand the seen class generatorGs also mod-

els the P (ψ(xs)|c(ys)). This is because of the seen class

conditional discriminator Ds.

As the semantic label embeddings of the seen and unseen

class share a common space and the latent representations

of the seen and unseen class data are also from a common

space, we hypothesize that generators of both the sets of

classes must also be similar. Imposing this constraint allows

us to transfer knowledge of the conditionals from the seen

class generator to the unseen class generator.
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Specifically, let W s
G be the weights associated with the

seen class generator, Gs and Wu
G be the weights associ-

ated with the unseen class generator, Gu. We propose a

weak transfer constraint that forces Wu
G to be similar to

that of W s
G. We hypothesize that the unseen class generator

learned using this constraint will encode the information on

the conditionals. Thus, the overall objective of the generator

network for the unseen transfer is formulated as:

min
G

max
D

Lu
WGAN + ω ‖W s

G −Wu
G‖ (9)

where, ω is a hyper-parameter controlling the importance of

the similarity between the generators. When ω = 0, the un-

seen class generator is completely independent of the seen

class generator and there is no transfer of information be-

tween the two. This should result in synthetic unseen class

instances that have very poor class conditional information

in them. Large values of ω will force the unseen class gen-

erator to be identical to the seen class generator inducing

high bias towards the seen classes; meaning the condition-

als are biased towards the seen classes. This is also prob-

lematic as there is no overlap between the seen and unseen

classes. Thus choosing an optimal hyper-parameter value

that allows Gu to learn from Gs is important. This hyper-

parameter is tuned through cross-validation on the set of

seen classes.

3.3. Classification and Evaluation Metric

For the inductive setting, we generate synthetic unseen

class representations using Gs. While for the transductive

setting, we generate unseen class representations using Gu.

As bothGs andGu are conditional generators, we also have

the unseen class labels associated with these synthetic in-

stances. These are then used to train a softmax classifier to

perform conventional ZSL. For the GZSL setting we com-

bine the synthetically generated labeled unseen class rep-

resentations with the representations of seen class labeled

training instances to learn a softmax classifier.

We average the correct predictions for each class and re-

port the average per class top accuracy [24, 26] as below.

MCAu =
1

|U |

∑

yu∈U

accyu (10)

where, accyu denotes top-1 accuracy on test unseen data for

each class in U .

In the generalized ZSL setting, we compute average per

class top accuracy for both seen and unseen classes and

report the harmonic mean of seen and unseen accuracy

[24, 26] as defined below

H =
2 ∗MCAs ∗MCAu

MCAs +MCAu

(11)

where, MCAu,MCAs denote the mean class accuracy on

test unseen and seen classes respectively.

4. Experiments

4.1. Datasets

We evaluate the proposed methods using the follow-

ing three benchmark datasets of ZSL. Animals with At-

tributes2 (AWA2) [24, 26] that comprises of 37,322 images

belonging to 50 classes where each class label is described

using a 85-dimensional vector. We use 40 classes for train-

ing and the remaining 10 classes for testing. Caltech-

UCSDBirds-200-2011 (CUB) [22] that contains 11,788

images from 200 different types of birds where the class

label is represented using a 312 dimensional vector. We

use 150 classes for training and the remaining 50 classes

for testing. SUN [27] that consists of 14,340 images across

717 scenes with the class labels described using a 102 vec-

tor. Following [24, 26], 580 classes out of 645 are used for

training and the remaining 72 for testing.

We employ the proposed splits of Xian et al. [24, 26]

in all our experiments for fair comparison against prior ap-

proaches. For parameter tuning of the bias reducing models,

we further divide the seen class set into train and valida-

tion splits preserving the original class distribution between

train and test set. The best hyper-parameter values obtained

through this cross-validation procedure is used to train the

model using the entire training data.

4.2. Experimental Settings

4.2.1 Learning the optimal latent space

In all our experiments, we use Resnet-101[11] as the deep

convolutional architecture. Prior literature has suggested

using Resnet due to its on par or sometimes superior per-

formance over other architectures such as VGG and Incep-

tion. The transformation function ψ is defined as two fully

connected layers of 2048 and 1024 hidden units with ReLU

activations acting on the final pooling layer of Resnet. The

resulting 1024 dimensional space corresponds to the latent

space, Ψ of our network and is trained by the loss proposed

in equation 3. The classifier fc is defined as a single fully

connected layer output layer with softmax activation over

embedding space Ψ. The semantically aligning regressor

fr is defined as a single output layer with the number of at-

tributes in c(ys) over embedding space Ψ. This entire net-

work is learned jointly. Learning rate is set to 0.001 and γ

is 0.01 across all the datasets.

4.2.2 Learning the bias reducing generators

The seen and unseen class generators are modeled using a

single fully connected hidden layer with 2048 leaky ReLU

units. The discriminators contain a single hidden layer with

4096 leaky ReLU units that is connected to the output layer.

Note that the SABR-I and SABR-T generators do not syn-

thesize instances in the original data space, but the repre-
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sentations in the latent space Ψ. The gradient penalty coef-

ficient of the Wasserstein generators, λ is set to 10 and β, the

coefficient that enforces the generators to learn the represen-

tations of the latent space is set to 0.1 across all datasets. We

first train a conditional WGAN for the seen classes and then

adapt the WGAN for the unseen classes. The rest of hyper-

parameters are fine tuned by stratified cross-validation over

the seen class training set.

5. Results and Discussion

5.1. Bias reduction in SABR­I

In the inductive setting, as we do not have the unseen

class data, the generator Gs tends to be overly biased to-

wards the seen classes. We perform a three fold cross-

validation experiment on the seen class training examples

to validate this hypothesis. In each fold the seen class gen-

erator, Gs was allowed to train for a long time till the gen-

erator and discriminator converged. Samples for the unseen

class in the validation set were synthesized from the gener-

ator at different epochs. These instances were used to train

a classifier model for the GZSL setting. The average har-

monic mean, H across the three folds as a function of the

number of training epochs of the SABR-I generator is pre-

sented in Figure 2. It can be observed that as the number

of training epochs increases, H increases initially but starts

decreasing beyond an epoch. For detailed analysis, we plot

the MCAu, MCAs and H values for AWA2. We observe

that as the training progresses, MCAs plateaus. However,

the accuracy on the unseen classes in the cross-validation

set MCAu increases initially, but starts decreasing beyond

epoch 45. Due to this, the overall H value decreases be-

yond this epoch. This behavior is very evident in the AWA2

dataset, and to a lesser extent in the CUB and SUN datasets

due to significantly lesser number of training instances per

class. This indicates that over training of the model based

only on the seen class can bias the generator towards the

seen classes and lose its capacity to generalize. This bias-

ing is mitigated by stopping early at the best harmonic mean

achieved i.e. at the 40, 45, and 95 epoch for AWA2, CUB,

and SUN datasets respectively. In the transductive setting,

this bias is subdued due to the presence of unlabeled data

and there is no need for early stopping.

5.2. Bias reduction in SABR­T

In the transductive setting, the hyper-parameter ω con-

trols the bias in Gu towards the seen classes. We tune this

hyper-parameter through cross-validation where the seen

classes are divided into seen and unseen classes, similar

to the inductive setting. Figure 3 illustrates the results ob-

tained by the SABR-T while varying ω during the cross-

validation process. We chose ω that performs best on this

cross-validation set. For AWA2, CUB and SUN the model

Figure 2. [Best viewed in color] Effect of bias measured by plot-

ting average harmonic mean, H on the validation set (left). De-

tailed analysis on AWA2 by visualizing MCAs, MCAu and H .

Figure 3. [Best viewed in color] Effect of the hyper-parameter ω

on the cross-validation set.

performs best at 0.008, 0.002 and 0.002 respectively. These

values are fixed for the rest of the experiments.

5.3. Performance in the conventional ZSL setting

We compare our approach with existing state-of-the-art

inductive and transductive ZSL methods. The results for

the state of the art techniques reported in Table 1 are ob-

tained from Xian et al. [24, 26] and use the proposed splits

on AWA2, CUB, and SUN datasets with Resnet-101 as the

underlying CNN architecture.

The first observation from Table 1 is that no single state

of the art method outperforms all the prior approaches on all

the datasets for both the inductive and transductive settings.

However, across all the inductive approaches, SABR-I per-

forms better on AWA2 by 1.4%, CUB by 7.9% and by 1.4%

on SUN dataset. While in the transductive setting, SABR-T

outperforms the current state-of-the-art by 9.2%, 1.9%, and

3.6% on the AWA2, CUB and SUN datasets respectively.

We attribute this high performance gain to the reduced bias

in the model by the better alignment of the marginals and

weak conditional transfer from the seen class generator. The

next best performing model on AWA2 and CUB in the trans-

ductive setting, QFSL, assumes a uniform distribution over

the unseen class label space, which we suspect is confusing
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Type Method AWA2 CUB SUN

DAP[14] 46.1 40 39.9

IAP[14] 35.9 24 19.4

CONSE[15] 44.5 34.3 38.8

CMT[19] 37.9 34.6 39.9

SSE[30] 61 43.9 51.5

LATEM[23] 55.8 49.3 55.3

ALE[1] 62.5 54.9 58.1

DEVISE[10] 59.7 52 56.5

I SJE[2] 61.9 53.9 53.7

ESZSL[17] 58.6 53.9 54.5

SYNC[7] 46.6 55.6 56.3

SAE[12] 54.1 33.3 4.3

GFZSL[21] 63.8 49.4 60

f-CLSWGAN[25] - 57.3 60.8

PSR[3] 63.8 56 61.4

QFSL#[20] 63.5 58.8 56.2

I SABR-I 65.2 63.9 62.8

ALE∗[24] 70.6 54.4 55.5

T GFZSL∗[21] 78.3 50.6 63.9

DSRL∗[28] 72.5 48.9 56.1

QFSL#[20] 79.7 72.1 58.3

T SABR-T 88.9 74.0 67.5
1 I - inductive ZSL setting, T - transductive ZSl setting.
2 Bold font denotes the best result while blue refers to the second best result.
3 All results with ∗ have been reported in Xian et al., [24] and are optimisti-

cally approximated by their graphs.
# Note that results reported on QFSL are on GoogleNet architecture.

Table 1. Performance in the conventional ZSL setting.

the classifier.

The significant performance jump in the transductive set-

ting over the inductive setting suggests the importance of

having the marginal probability distribution of the unseen

classes through the unlabeled instances. We further discuss

the robustness of our approach with the amount of unlabeled

data in section 5.5.

5.4. Performance in the generalized ZSL setting

Table 2 presents the results for the generalized ZSL set-

ting for various state-of-the-art approaches. SABR-I im-

proves over DAP[14], IAP[14], CONSE[15], CMT[19],

SSE[30], LATEM[23], ALE[1], DEVISE[10], SJE[2],

ESZSL[17], SYNC[7], SAE[12] and GFZSL[21] by a large

margin (over 10-20%) across all the benchmark datasets.

These methods utilized semantic space for the embed-

ding and thus faced the hubness problem. We observe

that SABR-I outperforms PSR[3] by 14.65%, 22.89%, and

12.31% on the AWA2, CUB and SUN datasets respectively.

This is because SABR-I not only preserves semantic rela-

tions in intermediate visual space like PSR but also, subdues

the biasing effect by synthesizing unseen class instances and

early stopping the training of the generator. SABR-I im-

Figure 4. Change in the transductive ZSL and GZSL accuracy as a

function of the number of unseen class instances.

proves over f-CSLWGAN by 7.09% on CUB dataset. We

attribute this improvement to learning an optimal latent rep-

resentation for the dataset that is fine tuned using the seen

class data. However, on the SUN dataset the performance

of SABR-I marginally better than f-CLSWGAN by 2.1%.

We speculate that the small number of training samples per

class in the SUN dataset is insufficient to learn the optimal

latent space and the seen class generator for SABR-I.

In the transductive setting, SABR-T performs better than

QFSL by 7.61% and 9.38% on the AWA2 and SUN datasets

respectively. There are two potential reasons for this sig-

nificant improvement. Firstly, QFSL fine-tunes the en-

tire ResNet-101 architecture, while SABR-T learns a latent

space that preserves both the semantic relations and dis-

criminative information using the ResNet representations

without fine tuning the ResNet model. This mitigates the

hubness problem. Secondly, QFSL tries to reduce the bias

of the seen classes in the latent space by encouraging the

output for unseen class instances to be uniformly distributed

across all the unseen classes. This results in loss of class

conditional information in the latent space. In contrast,

SABR-T aligns the marginal distribution of the generated

samples with that of the true unseen class instances, and

learns the class conditionals from the seen class data. On the

CUB dataset, while SABR-T yields superior performance

over previous transductive approaches by 36.31%, except

QFSL, where there is a marginal drop of 2.9%.

5.5. Amount of unlabeled data for transductive
learning

Prior transductive ZSL approaches and SABR-T utilize

all the available unlabeled unseen class instances for mod-

eling the marginal probability distributions in both ZSL and

GZSL settings. We hypothesize that the marginals of the

unseen class instances can be learned from a smaller subset

of unlabeled data. We conduct experiments using SABR-T

on the AWA2 and SUN datasets as these contain maximum

and minimum number of instances per class. SABR-T is

trained with a randomly selected subset of unlabeled un-

seen class instances and the average performance over 5 tri-

als for both ZSL and GZSL settings are reported in Figure 4.

As expected the performance on both the datasets increases

with increase in the number of unlabeled instances used dur-
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Type Method AWA2 CUB SUN

MCAu MCAs H MCAu MCAs H MCAu MCAs H

DAP[14] 0 84.7 0 1.7 67.9 3.3 4.2 25.1 7.2

IAP[14] 0.9 87.6 1.8 0.2 72.8 0.4 1 37.8 1.8

CONSE[15] 0.5 90.6 1 1.6 72.2 3.1 6.8 39.9 11.6

CMT[15] 0.5 90 1 7.2 49.8 12.6 8.1 21.8 11.8

SSE[30] 8.1 82.5 14.8 8.5 46.9 14.4 2.1 36.4 4

LATEM[23] 11.5 77.3 20 15.2 57.3 24 14.7 28.8 19.5

ALE[1] 14 81.8 23.9 23.7 62 34.4 21.8 33.1 26.3

DEVISE[10] 17.1 74.7 27.8 23.8 53 32.8 16.9 27.4 20.9

I SJE[2] 8 73.9 14.4 23.5 59.2 33.6 14.7 30.5 19.8

ESZSL[17] 5.9 77.8 11 12.6 63.8 21 11 27.9 15.8

SYNC[7] 10.1 90.5 18 11.5 70.9 19.8 7.9 43.3 13.4

SAE[12] 1.1 82.2 2.2 7.8 54 13.6 8.8 18 11.8

GFZSL[21] 2.5 80.1 4.8 0 45.7 0 0 39.6 0

f-CLSWGAN[25] - - - 43.7 57.7 49.7 42.6 36.6 39.4

PSR[3] 20.7 73.8 32.3 24.6 54.3 33.9 20.8 37.2 26.7

I SABR-I 30.3 93.9 46.9 55.03 58.7 56.8 50.7 35.1 41.5

ALE∗[24] 21.7 30.4 21.1

T GFZSL∗[21] 40 33.5 0

DSRL∗[28] 32.3 28.9 20.5

QFSL[20] 66.2 93.1 77.4 71.5 74.9 73.2 51.3 31.2 38.8

T SABR-T 79.7 91.0 85.0 67.2 73.7 70.3 58.8 41.5 48.6
1 I - inductive GZSL setting, T - transductive GZSL setting
2 Bold font denotes the best result while blue refers to the second best result.
3 All results with ∗ only have H value reported by Xian et al., [24] and are optimistically approximated by the graphs.

Table 2. Performance in the Generalized ZSL Setting.

ing training. Interestingly, on the AWA2 dataset, SABR-T

achieves the best performance with using only 6.5% of the

total unlabeled instances. We observe a similar trend on the

CUB and SUN dataset with the performance peaking by us-

ing only 10% and 35% of the unlabeled data respectively.

6. Summary and Future Work

In this work, we propose a novel approach, Semanti-

cally Aligned Bias Reducing (SABR) Zero Shot Learn-

ing, which focuses on solving both the hubness and bias

problems that are commonly faced by zero shot learning

(ZSL) techniques. SABR overcomes the hubness problem

by learning a latent space that preserves the semantic re-

lationship between the labels while encoding the discrimi-

nating information about the classes. Further, we also pro-

pose ways to reduce bias of the seen classes through a sim-

ple cross-validation process in the inductive setting and a

novel weak transfer constraint in the transductive setting.

Extensive experiments are conducted on three benchmark

datasets (AWA2, CUB, and SUN) to investigate the effi-

cacy of the proposed model. The results suggest that SABR

significantly outperforms existing state-of-the-art zero shot

learning algorithms by ∼1.5-9% in the conventional ZSL

setting and by ∼2-14% in the generalized ZSL for both the

inductive and transductive settings on most of the datasets.

We also demonstrate that SABR reaches peak performance

in the transductive setting by using only a fraction of the

unlabeled unseen class instances for training.

In future, we would like to explore other semantic spaces

like word vector embeddings or combination of different se-

mantic label embeddings to accurately model the relation-

ship between the seen and unseen class labels. It would

also be beneficial to explore ways to extract semantic label

embeddings from auxiliary sources as this would assist in

extending ZSL to many real-world scenarios.
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[6] Maxime Bucher, Stéphane Herbin, and Frédéric Jurie. Gen-

erating visual representations for zero-shot classification. In

Proceedings of the IEEE International Conference on Com-

puter Vision, 2017.

[7] Soravit Changpinyo, Wei-Lun Chao, Boqing Gong, and Fei

Sha. Synthesized classifiers for zero-shot learning. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 5327–5336, 2016.

[8] Wei-Lun Chao, Soravit Changpinyo, Boqing Gong, and Fei

Sha. An empirical study and analysis of generalized zero-

shot learning for object recognition in the wild. In Proceed-

ings of the European Conference on Computer Vision, pages

52–68, 2016.

[9] Georgiana Dinu, Angeliki Lazaridou, and Marco Baroni. Im-

proving zero-shot learning by mitigating the hubness prob-

lem. arXiv preprint arXiv:1412.6568, 2014.

[10] Corrado Greg S Frome, Andrea, Jon Shlens, Samy Ben-

gio, Jeff Dean, Tomas Mikolov, and MA Ranzato. Devise:

A deep visual-semantic embedding model. In Advances in

Neural Information Processing Systems, pages 2121–2129,

2013.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016.

[12] Elyor Kodirov, Tao Xiang, and Shaogang Gong. Se-

mantic autoencoder for zero-shot learning. arXiv preprint

arXiv:1704.08345, 2017.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 1097–1105, 2012.

[14] Christoph H Lampert, Hannes Nickisch, and Stefan Harmel-

ing. Attribute-based classification for zero-shot visual object

categorization. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 36(3):453–465, 2014.

[15] Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram

Singer, Jonathon Shlens, Andrea Frome, Greg S Corrado,

and Jeffrey Dean. Zero-shot learning by convex combination

of semantic embeddings. arXiv preprint arXiv:1312.5650,

2013.
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