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Abstract

Video frame interpolation is a long-studied problem in

the video processing field. Recently, deep learning ap-

proaches have been applied to this problem, showing im-

pressive results on low-resolution benchmarks. However,

these methods do not scale-up favorably to high resolutions.

Specifically, when the motion exceeds a typical number of

pixels, their interpolation quality is degraded. Moreover,

their run time renders them impractical for real-time appli-

cations. In this paper we propose IM-Net: an interpolated

motion neural network. We use an economic structured ar-

chitecture and end-to-end training with multi-scale tailored

losses. In particular, we formulate interpolated motion esti-

mation as classification rather than regression. IM-Net out-

performs previous methods by more than 1.3dB (PSNR) on

a high resolution version of the recently introduced Vimeo

triplet dataset. Moreover, the network runs in less than

33msec on a single GPU for HD resolution.

1. Introduction

In video frame interpolation (VFI) one synthesizes mid-

dle non-existing frames from the original input frames. This

is a well-known problem in the field of video process-

ing. A classical application requiring VFI is frame rate up-

conversion [3, 4, 12, 14, 16] for handling issues like display

motion blur and judder in LED/LCD displays. Other appli-

cations include frame recovery in video coding and stream-

ing [10, 11], slow motion effects [13] and novel view syn-

thesis [7, 26].

Conventional approaches to VFI typically consist of the

following steps: bi-directional motion estimation (ME),

motion interpolation (MI) and occlusion reasoning, and

motion-compensated frame interpolation (MC-FI). Such

approaches are prone to various artifacts, such as halos,

ghosts and break-ups due to insufficient quality of any of

the components mentioned above.

In the past few years deep learning and specifically con-

volutional neural networks (CNNs) have emerged as the

leading method for numerous image processing and com-

Figure 1. Example results from our high resolution in-house clips

(best viewed in color), from top to bottom: previous input frame,

current input frame, middle frame generated by TOFlow [31], Sep-

Conv [24] and IM-Net.

puter vision tasks. Many computer vision tasks, such as im-

age classification, object detection, and semantic segmen-

tation, require accurate and exhaustive labeling. VFI how-

ever can be readily learned by simply watching videos [18].

Straightforward sub-sampling of videos can provide frame

triplets, in which every middle frame can serve as ground

truth for interpolation given the two other input frames.

The self-supervised nature of VFI makes it appealing for

deep learning approaches. Indeed, a long series of works

[13, 17–20, 22–24, 27, 31] have attempted to replace all or

some of the steps in the VFI’s algorithmic flow with CNNs.
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Despite the significant progress achieved by recent

CNN-based methods for VFI, existing approaches are still

limited in their performance. They do not handle well

strong motions and wide occlusions, and are far from meet-

ing real-time processing requirements for standard high res-

olutions such as HD and FHD. In Fig. 1 we show two exam-

ples for failure cases of two recent CNN-based approaches

on high resolution frames with strong motions. These meth-

ods suffer from severe break-up, ghost and halo artifacts

around the moving ball and persons.

IM-Net proposed in this paper aims at closing this per-

formance gap. It can handle strong motions and wide occlu-

sions in high resolution and runs in less than 33msec on a

single GPU for HD resolution. Fig. 1 demonstrates our su-

periority over previous CNN-based methods in this type of

scenes. We can see that artifacts observed in previous meth-

ods are much reduced in IM-Net: the shape of the ball is

clear, the legs are not broken and the faces show no ghosts.

2. Contributions

This work presents IM-Net, a solution for video frame

interpolation. It focuses on an important and challenging

setup which remains unsolved up to date: real-time tem-

poral interpolation of high resolution videos consisting of

strong motions. The contribution of IM-Net is three-fold:

1. It is a deep CNN with a large receptive field that ex-

plicitly covers strong motions and is well suited for

high resolutions.

2. This is an efficient solution for VFI – the CNN is deep,

yet achieves real-time performance, and the middle

frame is synthesized by a simple FI module.

3. IM-Net is trained using a multi-scale loss that com-

bines both separable adaptive convolution and trilinear

interpolation terms.

3. Related Work

CNNs have been successfully applied for numerous im-

age processing tasks, such as image deconvolution [30] and

single image super-resolution (SR) [5,6,29]. In these works

the last convolutional layer directly produces the pixels of

the output image. Inspired by the success of these CNNs,

the early works on CNN-based VFI [18] and video frame

prediction [19] attempted to adopt a similar approach. How-

ever, this typically led to blurred outputs and unsatisfactory

image quality.

To overcome the weakness of these initial attempts, later

approaches suggested more structured neural networks. In

the AdaConv [23] and SepConv [24] methods, instead of

directly producing the output pixels, their CNNs estimate

adaptive filters for every pair of corresponding patches in

the consecutive input frames. These output filters are then

applied on the paired patches in both frames to produce the

interpolated middle frame. SepConv outperformed all pre-

vious CNN-based methods at the time of publication. How-

ever, it is important to note that this method is limited to

motions up to 51 pixels between consecutive input frames,

and thus cannot cope with strong motions and occlusions.

Furthermore, it requires high computational cost, for exam-

ple when applied on FHD resolution, SepConv will estimate

0.4G filter weights (204 weights per output pixel).

Another direction revisited the classical VFI algorithmic

flow and focused on replacing some of its steps by one or

more CNNs. Deep Voxel Flow [17] and van Amersfoort et

al. [27] focused on replacing all classical steps aside from

FI with a single CNN. Here the network receives as input a

pair of consecutive frames and outputs estimations for the

interpolated motion vector field (IMVF) and occlusion map.

The TOFlow method [31] utilized three sub-networks:

one for estimating the motion of each input frame with re-

spect to the middle frame, a second for occlusion reason-

ing, and a third for frame synthesis given warped frames

and occlusion masks. The main contribution of this work

was demonstrating that each video processing task requires

a different optical flow.

In Super Slomo [13] a CNN is used for bi-directional

ME, then a simplified MI method is applied, and finally a

second CNN performs ME refinement and occlusion rea-

soning. This work achieved overwhelming quality when

applied on videos taken at high frame-rates. However, it

seems that they do not aim at covering a wide range of mo-

tions.

Contex-Aware Synthesis (CtxSyn) [22] also utilizes a

CNN for bi-directional ME, which is followed by classical

MI and occlusion reasoning. Their main focus is on a sec-

ond CNN for frame synthesis, which is based on a GridNet

architecture [8]. This allowed them to replace the standard

weighted blending scheme by a learned and locally adap-

tive synthesis method. Their algorithm outperformed Sep-

Conv for complex scenes. Another advantage of both Super

Slomo and CtxSyn is their ability to produce as many of

intermediate frames as one desires.

Finally, two recent works suggested utilizing a per-pixel

phase-based motion representation for VFI. Phasenet [20]

incorporated such a representation within a CNN-based ap-

proach. This allows them to handle a wider range of motion,

compared to a classical phase-based method [21]. Their

main advantage is the ability to better cope with inherent

matching ambiguities in challenging scenes containing illu-

mination changes and motion blur. However, Phasenet is

inferior to SepConv in terms of the level of detail.

4. Method

In our work we propose a fully convolutional neural net-

work for estimating the IMVF and occlusion map. Unlike
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Figure 2. Overview of the IM-Net (best viewed in color). Left – pairs of input frames at three resolutions are inserted to the network.

Middle – the CNN architecture. Right – the Inference and Training paths. ReLU activation is applied after every Conv layer which is not

followed by SoftMax. The IMVF estimated by the network is overlaid on the interpolated frame.

previous works [17,27] that obtain pixel-wise estimates, we

aim at block-wise versions. This is reasonable for high res-

olutions thanks to the piecewise smooth nature of motion.

The estimated IMVF and occlusion map are then passed,

along with the input frames, to a classical FI method that

synthesizes the interpolated middle frame.

A widely used choice of architecture in the VFI domain

is the encoder-decoder module [13,17,20,24]. IM-Net also

uses such a module, but only as a basic processing building

block.

In this section we will describe in detail our hand-

tailored architecture which includes non-conventional lay-

ers. We further explain how the training loss is built upon

this choice of architecture and how the contributions are

manifested.

4.1. Network Architecture

The network’s architecture (see Fig. 2) is composed of

three types of modules — Feature Extraction, Encoder-

Decoder and Estimation. The Encoder-Decoder sub-

networks receive features extracted from the pair of consec-

utive input frames. Their outputs are merged into a high-

dimensional representation which is passed on to the Esti-

mation sub-network.

To benefit from a multi-scale processing of the pair of

previous and current input frames, we constructed a three

level pyramidal representation of the input frames. This

means that each frame is passed to the CNN at three dif-

ferent scales.

Each of the six input frames (a pair per each pyramid

level) is processed by the Feature Extraction module, yield-

ing 25 feature channels per input. Since all inputs go

through the same layers and these layers share their param-

eters, we refer to them as Siamese.

The extracted features from each pyramid level are

passed as inputs to its Encoder-Decoder module. We de-

sign each Encoder-Decoder module with a slightly differ-

ent architecture1 so that all decoder outputs are of size

W/8×H/8× 50.

Next, the three decoder outputs are merged using locally

(per-pixel) adaptive (learned) weights. To produce these

weights the decoder outputs are passed to a cascade of Conv

layers, followed by a SoftMax layer. The merged output is

then computed as a channel-wise weighted average of the

three decoder outputs.

Finally, the merged output is sent to three parallel Es-

timation paths, each consisting of Conv layers and end-

ing with a SoftMax layer. The first two paths generate

25 normalized weights each (in a W/8 × H/8 resolution).

These pairs of weights are associated with estimation of the

horizontal and vertical components of the IMVF, respec-

tively. The third path generates two normalized weights (in

a W/8 × H/8 resolution), which are associated with esti-

mation of the occlusion map.

This architecture results in a computationally light-

weight CNN with a large receptive field. This is due to

1The parameters of corresponding Conv layers in the three encoders are

shared, whereas each decoder has its own set of parameters.

2400



Symbol Definition Resolution (Training)

W ×H Full image resolution 512× 512
Ip, Ic, Im Previous/current/middle frame (full resolution) 512× 512× 3

IDS
p , IDS

c , IDS
m Previous/current/middle frame downscaled by factor 8 64× 64× 3

T The estimated occlusion map 64× 64
WX , WY Output of the horizontal/vertical motion estimation path 64× 64× 25
SX , SY The estimated horizontal/vertical component of the IMVF 64× 64

Flev0
k Features extracted from level 0 of the image pyramid for Ik 256× 256× 25

Flevi
k Features extracted from ith level of the image pyramid for Ik, for i = 1, 2 64× 64× 25

bilin Bilinear interpolation over a 2× 2 support around a given spatial location

Φ (I1, I2) Average smoothed ℓ1 metric between two images

TV (·) Non-isotropic total variation
Table 1. List of notations

the cost-aware choice of the number of channels at each

layer, starting with a small number and increasing it by a

small factor (less than 2) after each decrease in spatial res-

olution. This is in contrast to the common trend in previous

work [17, 23, 24]. More details on the computational cost

per each sub-network can be found in the supplementary

material.

From this point on, we make extensive use of notations.

Please refer to Table 1 for the full list.

4.2. Non­Conventional Estimation Layers

The outputs of the estimation paths are further processed

for the middle frame synthesis, which requires two compo-

nents – motion compensated warping (MCW) of the input

frames and local blending weights (occlusion map).

The outputs of the horizontal and vertical estimation

paths WX and WY yield two options for MCW:

(i) Separable adaptive filtering — each set of 25 outputs

can be utilized as a normalized one-dimensional filter op-

erating on each input frame, downscaled by a factor of 8.

The two filters are applied in a separable fashion, where for

the previous frame we flip the order of the filter coefficients,

yielding two versions of the downscaled middle frame:

IDS,SepC
p→m = SepConv

(

IDS
p ,−

)

IDS,SepC
c→m = SepConv

(

IDS
c ,+

)

(1)

where

Î
SepC

(x, y) = SepConv (I,±)
.
= (2)

12
∑

v=−12

WY (x, y, v)

12
∑

u=−12

WX (x, y, u) I (x± u, y ± v) .

(ii) Classification probabilities – we assign each of the 25

classes with a motion component directed from the interpo-

lated frame to the current frame2. To cover a large range of

2We assume linear motion between input frames, namely the motion

from middle to previous equals minus the motion from middle to current.

motions, we use a uniformly distributed set of values within

the range [−96, 96] pixels in full resolution3, i.e.

Wj (x, y, k) = Pr {Sj (x, y) = 8k} , (3)

for j ∈ {X,Y } and k ∈ {−12, . . . , 12}. The class proba-

bilities are transformed to values in the IMVF by a center-

of-mass (expectation) calculation,

Sj (x, y) =

12
∑

u=−12

8u · Wj (x, y, u) . (4)

The IMVF can be used for obtaining the warped full reso-

lution frames by

IWarp
p→m = Warp (Ip,−, 8)

IWarp
c→m = Warp (Ic,+, 8) (5)

where

Î
Warp

(x, y) = Warp (I,±, L)
.
= (6)

Ibilin
(

x±
L

8
SX

(⌊ x

L

⌋

,
⌊ y

L

⌋)

, y ±
L

8
SY

(⌊ x

L

⌋

,
⌊ y

L

⌋)

)

.

In Eq. (5), we assign each estimated motion vector to an

8×8 block in full resolution. In general, using Eq. (6) it can

be assigned to an L×L block in resolution W ·L/8×H·L/8.

The occlusion map serves as local weights for blend-

ing the warped input frames and obtaining the final output

frame. This map is extracted as the first channel from the

output of the occlusion estimation path. The map can get

any value between 0 and 1, where 1 is interpreted as clos-

ing, 0 as opening and 0.5 as non-occluded (equal blending).

The low and full resolution versions of the interpolated

frame are obtained by

Î
DS,SepC

m = T · IDS,SepC
p→m + (1− T) IDS,SepC

c→m (7)

Î
trilin

m = TUS↑8 · IWarp
p→m +

(

1− TUS↑8

)

IWarp
c→m (8)

3This design is flexible with respect to the range of motions on which

the network spends its attention during training.
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where

TUS↑L (x, y) = T (⌊x/L⌋, ⌊y/L⌋) . (9)

Eq. (8) is essentially the trilinear FI suggested by [17]. In

this equation we assigned each occlusion weight to an 8×8
block in the full resolution.

The separable adaptive filtering and trilinear FI opera-

tions are applied only during training. At inference time,

we replace them by a more elaborate FI module (see Fig. 2).

This module exploits a de-blocking mechanism which re-

moves block artifacts from motion boundaries. First, it

produces several versions of each output pixel by apply-

ing Eq. (8) using the block-wise estimates from neighboring

blocks. Then it interpolates these versions according to the

pixel location within the block.

4.3. Training Loss

We train the fully convolutional network in an end-to-

end manner using only pairs of input frames, along with

their middle frames as ground truth. The network’s training

loss is composed of five terms:

Loss =α1Φ
(

Î
DS,SepC

m , IDS
m

)

+ α2Φ
(

Î
trilin

m , Im

)

+

α3 · Warp Terms + λ · Regs+

γ · Symmetry Terms (10)

In all of these terms we shall utilize the smoothed ℓ1 met-

ric (Φ) when comparing between a pair of image pixels or

features. The two first terms are fidelity terms: one is asso-

ciated with the frames downscaled by a factor of 8 and sep-

arable filtering, and the other with the full resolution frames

and trilinear interpolation. These terms penalize the net-

work for artifacts in the synthesized frame. However, the

root cause for such artifacts is typically inaccuracies in the

registration of the input features.

In order to explicitly encourage better alignment be-

tween pairs of input features, we added the warping terms.

These terms measure the distance between the warped fea-

tures from the previous and current frames. This is in con-

trast to [13] that utilizes a loss between the warped input

frames and to [23, 24] that incorporate a loss between fea-

tures of the interpolated and the ground truth middle frames.

More specifically, for each pyramid level we use pairs of

features from a specific layer in the Siamese sub-network

(see Fig. 2). We warp these features according to the esti-

mated IMVF, as follows:

Flevi,SepC
p→m = SepConv

(

Flevi
p ,−

)

, i = 1, 2

Flevi,SepC
c→m = SepConv

(

Flevi
c ,+

)

, i = 1, 2

Flev0,Warp
p→m = Warp

(

Flev0
p ,−, 4

)

Flev0,Warp
c→m = Warp

(

Flev0
c ,+, 4

)

(11)

Each warping loss term is computed as a conditioned

mean over the absolute difference between pairs of warped

input features. The condition is that both features are non-

negligible and the spatial location does not belong to an oc-

cluded region. Let us denote the set of feature indices that

satisfy this condition by

Ω (F,G,T)
.
= {(x, y, c) | F (x, y, c) > ǫ, (12)

G (x, y, c) > ǫ,

∣

∣

∣

∣

T (x, y)−
1

2

∣

∣

∣

∣

≤
1

4

}

Each conditioned mean is calculated as

κ (F1,F2,T)
.
= Φ(F1,F2 | Ω (F1,F2,T)) . (13)

Using Eq. (9), (11) and (13) we can formulate the warping

terms as:

Warp Terms =

2
∑

i=1

κ
(

Flevi,SepC
p→m ,Flevi,SepC

c→m ,T
)

+

α4κ
(

Flev0,Warp
p→m ,Flev0,Warp

c→m ,TUS↑4

)

(14)

Next, we added regularizers for encouraging piece-wise

smoothness in the estimated motion field. Specifically, we

apply a non-isotropic total variation over the first moments

of the horizontal and vertical motion distributions – SX , SY ,

and their second moments:

Regs = TV (SX) + TV (RX) + TV (SY ) + TV (RY ) ,
(15)

where the second-moment is given by

Rj (x, y) =

√

√

√

√

12
∑

u=−12

[8u− Sj (x, y)]
2
· Wj (x, y, u).

(16)

Finally, in the last term we encourage the CNN’s esti-

mates to be invariant to two symmetries: horizontal flipping

and flipping the temporal order of the input frames. When

applying these terms we include in each training batch both

the original inputs and three combinations of horizontally

and/or temporally flipped versions of these inputs.

4.4. Training Dataset

In order to create a large training dataset we started from

numerous video clips at HD or FHD resolution, mostly

retrieved from YouTube (with common creative license).

The chosen video clips include sport events (for exam-

ple: marathons, basketball and soccer games), scenes with

strong hand movements (such as interviews and lectures),

and footage with strong camera motion (taken by action-

cameras or from a moving vehicle). These clips cover a

broad range of lighting conditions and environments (i.e.

both indoor/outdoor scenes), and most importantly, diverse

types of motion and occlusion.
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Figure 3. The full resolution fidelity loss term in logarithmic scale

(after applying −20 · log10(·)) versus the number of iterations for

two types of motion estimation – our design choice and plain re-

gression.

Each clip was decomposed to frame triplets, consisting

of the previous frame, the current frame and the target mid-

dle frame that serves as ground truth. This set of triplets

was filtered so that we kept only challenging and interesting

scenes. We tested several filtering methods. A straightfor-

ward method which proved beneficial is checking that plain

blending of the input frame pair substantially differs from

the target frame.

From each high resolution frame we cropped a few inter-

esting regions of 512×512 pixels, unlike the common trend

of downscaling the input frames. This procedure resulted

in approximately 40,000 frame triplets. For enriching this

dataset we applied the following data augmentations: hor-

izontal and temporal flipping, as well as adding a random

global shift to the input frames.

4.5. Training Protocol

Because our architecture is custom made for this task,

we chose to train the parameters of our CNN from scratch,

namely we did not use any pre-trained model. We found

it useful to apply a series of separate training phases, each

with different loss terms or dataset. We started with real-life

frames globally and synthetically shifted. The shifts were

uniformly distributed in the range [−192, 192] (between the

previous and current frame). This ensures that the estima-

tion paths will be adapted from an early stage of their train-

ing to a large motion range. Then, we switched to the real-

life dataset described in the previous sub-section, gradually

adding more loss terms and modifying their contribution by

changing the relevant hyper-parameters. For example, we

started with α1 = 0.9 and α2 = 0.1, and increased α2 to

1.5, thus encouraging coarse-to-fine motion estimation.

For all training phases we utilized a batch size of 16 and

the Adam optimizer [15]. We started with a learning rate of

10−4 and decreased it to 5·10−5, as the training progressed.

We did not apply batch normalization or dropout.

5. Results

5.1. Comparison to Regression

We first demonstrate that our choice of classification in

the motion estimation paths (see Section 4.2) is more effi-

cient than conventional regression. In this experiment, we

trained from scratch the network twice: once with our de-

sign and once with a modified architecture. In the latter,

we avoided using SoftMax layers in the motion estimation

paths and center-of-mass computations. Instead, the last

convolutional layer in each such path directly produces the

values of the IMVF.

To isolate the effect of the motion estimation paths, we

used a simplified training process, which allowed for bet-

ter control for other loss terms. First, we chose to train the

network with inputs that have a global shift, as described in

Section 4.5. Second, we only kept the fidelity terms, with

no other regularizers, warping nor symmetry terms. Finally,

we disabled the occlusion estimation path and set all of the

values in the occlusion map to 0.5. We trained both net-

works for 150, 000 iterations. Fig. 3 shows that under these

conditions the classification design outperforms regression.

5.2. Testing Dataset

As aforementioned, our approach focuses on real-life

scenarios where VFI is required at high resolution with

presence of strong motions. Thus we searched for a dataset

that meets these requirements.

When inspecting several popular benchmarks we found

that many of them are not suitable for our purposes. Both

KITTI [9] and Sintel [2] consist of frames at high resolu-

tion as we desire. However, the first suffers from low image

quality and is limited to urban-traffic scenes, and the second

is purely synthetic. Moreover, these benchmarks are typi-

cally used for assessing the quality of estimated optical flow

between consecutive input frames rather than frame inter-

polation. Because this measure is not directly linked to our

end-to-end training scenario, we did not test on them. UFC-

101 [25], which was originally created for action recogni-

tion, consists of low resolution frames at low image quality

and with mainly weak motions and occlusions (in number of

pixels). Finally, while the Middlebury challenge [1] is very

popular, it is a small (8 images) and limited benchmark with

low resolution frames that does not meet our needs.

The Vimeo dataset, recently introduced by the authors of

TOFlow [31], is much more suitable for our needs. It con-

sists of 3,782 frame triplets extracted from real-life video-

clips available at the Vimeo website [28]. This dataset has

sufficient image quality while covering a large variety of

light conditions, environments and motions. Nevertheless,

the low resolution of its frames – 448 × 256, obtained by

downscaling the original high resolution frames, is a weak

point of this dataset. In contrast, IM-Net was trained with
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IM-Net PSNR SSIM

w.o. warping and symmetry terms 32.07 0.9319
w.o. symmetry terms 32.94 0.9416
All terms inside 33.11 0.9436

Table 2. Ablation study – contribution of loss terms

patches of size 512×512 cropped from HD or FHD frames.

To benefit from the strong points of this dataset, we created

a high-resolution (1344 × 768) version of it by up-scaling

each frame in the original Vimeo dataset using an off-the-

shelf CNN-based single image SR method [32]. In our ex-

periments we used both the original dataset and its SR ver-

sion to conduct an ablation study and to compare IM-Net

with prior art.

5.3. Ablation Study

As discussed in Section 4.5 as training progressed, we

gradually added more types of loss terms. The symmetry

terms are designed to confine the network into the physical

world and to reduce biases. The warping terms are added to

punish the network outside of occluded areas in the case that

the interpolated features from the pair of input frames do not

match. When this occurs, ghosts and halos may appear in

the synthesized frame.

For the sake of ablation study we evaluated our method

on the SR version of the Vimeo dataset, where we report the

gain obtained by adding several groups of loss terms. Ta-

ble 2 summarizes those contributions. We can see that the

warping terms contribute 0.87dB and that imposing sym-

metries yields an additional gain of 0.17dB.

5.4. Comparison to State­of­the­Art

Recent methods achieved impressive results on low res-

olution VFI benchmarks. For example, SepConv [24],

TOFlow [31], Super Slomo [13] and CtxSyn [22] are all

ranked at the top ten performers in the Middlebury bench-

mark. The three former methods also showed state-of-the-

art performance on the UCF-101 dataset. By testing two

leading methods: SepConv and TOFlow, both on low and

high resolution versions of the same benchmark, we shall

examine how well these algorithms scale up with resolution

and motion-strength.

As described in Section 5.2, we conducted our compar-

isons using the Vimeo dataset. First, we tried applying IM-

Net directly on the original Vimeo frames, despite the fact

that there is not a good match between our training set and

this test set. We obtained an average PSNR of 32.35dB,

which is 1.4dB lower than the best performance achieved

by TOFlow. To improve the suitability of our trained net-

work with this dataset, we re-ran our approach with simple

pre and post-processing steps (more details are provided in

the supplementary material). Next, we repeated the experi-

ment with the SR version of Vimeo (see Section 5.2).

Table 3 summarizes the PSNR and SSIM of these experi-

ments. At low resolution the three networks show compara-

ble quality, but after increasing the resolution SepConv and

TOFlow suffer from reductions of 1.6dB and 3.2dB respec-

tively, whereas IM-Net decreases only by 0.3dB compared

to the low resolution interpolation quality. We also tested

IM-Net on several test videos at various high resolutions,

ranging from HD to 4K. On these clips we observed similar

performance gaps as in the Vimeo dataset. Results for two

of the clips can be found in the supplementary material.

Fig. 4 shows results for five pairs of frames taken from

the original Vimeo and its SR version. We can see that for

the original low resolution frames, IM-Net is comparable

to the two other methods (and all three are quite close to

the ground truth). Once the resolution of the frames is in-

creased, severe break-up, ghost and halo artifacts appear in

SepConv and TOFlow, whereas for IM-Net, the results re-

main almost unharmed. More visual demonstrations can be

found in the supplementary material.

Finally, we compared the running time of IM-Net with

that of SepConv and TOFlow. For our method, we report the

time required for running only the CNN. Other operations,

such as preparing the input frames at three resolutions and

running the FI module, require a negligible computational

cost compared to that of the CNN. SepConv and TOFlow

include in their neural networks the frame synthesis step and

thus the reported times include it. Table 4 summarizes the

running times on HD and FHD resolutions, measured on a

single Nvidia Titan X GPU. We can see that IM-Net is faster

by a factor of 16. This is due to its light-weight architecture

and the use of block-wise (instead of pixel-wise) estimates

for the IMVF and the occlusion map.

6. Conclusion

In this paper we presented IM-Net, a method for VFI.

Our approach is composed of a CNN that outputs block-

wise estimates for the IMVF and occlusion map, followed

by a FI module that removes block artifacts on motion

edges. By careful choice of the network’s architecture and

training loss, we were able to train a CNN that covers a wide

range of motions, handles strong occlusions and at the same

time can meet real-time requirements at inference time.

The frame interpolation quality of our approach can be

further boosted by adding more CNNs on top of the existing

one – a second CNN can refine our estimate for the IMVF

and a third CNN can replace the simple FI module, as sug-

gested in several recent works [22, 31].
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Method SepConv - Lf [24] TOFlow [31] IM-Net

Objective figure-of-merit PSNR SSIM PSNR SSIM PSNR SSIM

448× 256 resolution 33.45 0.9509 33.73 0.9515 33.50 0.9473
1344× 768 resolution 31.81 0.9309 30.54 0.9190 33.11 0.9436

Table 3. Comparison to state-of-the-art on the Vimeo dataset

Method SepConv -Lf [24] TOFlow [31] IM-Net

Platform Torch Torch Caffe

Run time (msec) for HD 500 460 30

Run time (msec) for FHD 900 880 55
Table 4. Run times (msec) of IM-Net and state-of-the-art methods for HD and FHD resolutions

Figure 4. Example results from the Vimeo dataset (best viewed in color), from left to right: 448x256 ground-truth frame, interpolated frame

synthesized by TOFlow [31] on 448x256 inputs, SepConv [24] on 448x256 inputs, IM-Net on 448x256 inputs, TOFlow on 1344x768

inputs, SepConv on 1344x768 inputs, and IM-Net on 1344x768 inputs. In each pair of rows we show the full frame on the top and zoom-in

of a cropped interesting region (highlighted in a red box) on the bottom.
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