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Abstract

This paper addresses the challenge of 6DoF pose esti-

mation from a single RGB image under severe occlusion or

truncation. Many recent works have shown that a two-stage

approach, which first detects keypoints and then solves

a Perspective-n-Point (PnP) problem for pose estimation,

achieves remarkable performance. However, most of these

methods only localize a set of sparse keypoints by regressing

their image coordinates or heatmaps, which are sensitive to

occlusion and truncation. Instead, we introduce a Pixel-

wise Voting Network (PVNet) to regress pixel-wise vectors

pointing to the keypoints and use these vectors to vote for

keypoint locations. This creates a flexible representation for

localizing occluded or truncated keypoints. Another impor-

tant feature of this representation is that it provides uncer-

tainties of keypoint locations that can be further leveraged

by the PnP solver. Experiments show that the proposed ap-

proach outperforms the state of the art on the LINEMOD,

Occlusion LINEMOD and YCB-Video datasets by a large

margin, while being efficient for real-time pose estimation.

We further create a Truncation LINEMOD dataset to vali-

date the robustness of our approach against truncation. The

code is available at https://zju3dv.github.io/pvnet/.

1. Introduction

Object pose estimation aims to detect objects and esti-

mate their orientations and translations relative to a canon-

ical frame [39]. Accurate pose estimation is essential for

a variety of applications such as augmented reality, au-

tonomous driving and robotic manipulation. For instance,

fast and robust pose estimation is crucial in Amazon Pick-

ing Challenge [6], where a robot needs to pick objects from

a warehouse shelf. This paper focuses on the specific setting

of recovering the 6DoF pose of an object, i.e., rotation and

translation in 3D, from a single RGB image of that object.

This problem is quite challenging from many perspectives,
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Figure 1. The 6D pose estimation problem is formulated as a

Perspective-n-Point (PnP) problem in this paper, which requires

correspondences between 2D and 3D keypoints, as illustrated in

(d) and (e). We predict vectors pointing to keypoints for each pixel,

as shown in (b), and localize 2D keypoints in a RANSAC-based

voting scheme, as shown in (c). The proposed method is robust to

occlusion (g) and truncation (h), where the green bounding boxes

represent the ground truth poses and the blue bounding boxes rep-

resent our predictions.

including object detection under severe occlusions, varia-

tions in lighting and appearance, and cluttered background

objects.

Traditional methods [24, 20, 15] have shown that pose

estimation can be achieved by establishing the correspon-

dences between an object image and the object model. They

rely on hand-crafted features, which are not robust to image

variations and background clutters. Deep learning based

methods [33, 17, 40, 4] train end-to-end neural networks

that take an image as input and output its corresponding

pose. However, generalization remains as an issue, as it

is unclear that such end-to-end methods learn sufficient fea-

ture representations for pose estimation.

Some recent methods [29, 30, 36] use CNNs to first

regress 2D keypoints and then compute 6D pose parame-

ters using the Perspective-n-Point (PnP) algorithm. In other

words, the detected keypoints serve as an intermediate rep-

resentation for pose estimation. Such two-stage approaches

achieve state-of-the-art performance, thanks to robust de-

tection of keypoints. However, these methods have diffi-

culty in tackling occluded and truncated objects, since part

of their keypoints are invisible. Although CNNs may pre-

dict these unseen keypoints by memorizing similar patterns,
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generalization remains difficult.

We argue that addressing occlusion and truncation re-

quires dense predictions, namely pixel-wise or patch-wise

estimates for the final output or intermediate representa-

tions. To this end, we propose a novel framework for

6D pose estimation using a Pixel-wise Voting Network

(PVNet). The basic idea is illustrated in Figure 1. Instead of

directly regressing image coordinates of keypoints, PVNet

predicts vectors that represent directions from each pixel of

the object towards the keypoints. These directions then vote

for the keypoint locations based on RANSAC [9]. This vot-

ing scheme is motivated from a property of rigid objects

that once we see some local parts, we are able to infer the

relative directions to other parts.

Our approach essentially creates a vector-field represen-

tation for keypoint localization. In contrast to coordinate or

heatmap based representations, learning such a representa-

tion enforces the network to focus on local features of ob-

jects and spatial relations between object parts. As a result,

the location of an invisible part can be inferred from the vis-

ible parts. In addition, this vector-field representation is able

to represent object keypoints that are even outside the input

image. All these advantages make it an ideal representation

for occluded or truncated objects. Xiang et al. [40] proposed

a similar idea to detect objects and here we use it to localize

keypoints.

Another advantage of the proposed approach is that

the dense outputs provide rich information for the PnP

solver to deal with inaccurate keypoint predictions. Specifi-

cally, RANSAC-based voting prunes outlier predictions and

also gives a spatial probability distribution for each key-

point. Such uncertainties of keypoint locations give the PnP

solver more freedom to identify consistent correspondences

for predicting the final pose. Experiments show that the

uncertainty-driven PnP algorithm improves the accuracy of

pose estimation.

We evaluate our approach on LINEMOD [15], Occlu-

sion LINEMOD [2] and YCB-Video [40] datasets, which

are widely-used benchmark datasets for 6D pose estimation.

Across all datasets, PVNet exhibits state-of-the-art perfor-

mances. We also demonstrate the capability of our approach

to handle truncated objects on a new dataset called Trunca-

tion LINEMOD which is created by randomly cropping im-

ages of LINEMOD. Furthermore, our approach is efficient,

which runs 25 fps on a GTX 1080ti GPU, to be used for

real-time pose estimation.

In summary, this work has the following contributions:

• We propose a novel framework for 6D pose estima-

tion using a pixel-wise voting network (PVNet), which

learns a vector-field representation for robust 2D key-

point localization and naturally deals with occlusion

and truncation.

• We propose to utilize an uncertainty-driven PnP algo-

rithm to account for uncertainties in 2D keypoint loca-

tions, based on the dense predictions from PVNet.

• We demonstrate significant performance improve-

ments of our approach compared to the state of the

art on benchmark datasets (ADD: 86.3% vs. 79% and

40.8% vs. 30.4% on LINEMOD and OCCLUSION,

respectively). We also create a new dataset for evalua-

tion on truncated objects.

2. Related work

Holistic methods. Given an image, some methods aim to

estimate the 3D location and orientation of the object in a

single shot. Traditional methods mainly rely on template

matching techniques [16, 12, 14, 42], which are sensitive to

cluttered environments and appearance changes. Recently,

CNNs have shown significant robustness to environment

variations. As a pioneer, PoseNet [19] introduces a CNN

architecture to directly regress a 6D camera pose from a

single RGB image, a task similar to object pose estima-

tion. However, directly localizing objects in 3D is difficult

due to a lack of depth information and the +large search

space. To overcome this problem, PoseCNN [40] localizes

objects in the 2D image and predicts their depths to obtain

the 3D location. However, directly estimating the 3D rota-

tion is also difficult, since the non-linearity of the rotation

space makes CNNs less generalizable. To avoid this prob-

lem, [38, 33, 23, 35] discretize the rotation space and cast

the 3D rotation estimation into a classification task. Such

discretization produces a coarse result and a post-refinement

is essential to get an accurate 6DoF pose.

Keypoint-based methods. Instead of directly obtaining

the pose from an image, keypoint-based methods adopt a

two-stage pipeline: they first predict 2D keypoints of the ob-

ject and then compute the pose through 2D-3D correspon-

dences with a PnP algorithm. 2D keypoint detection is rel-

atively easier than 3D localization and rotation estimation.

For objects of rich textures, traditional methods [24, 32, 1]

detect local keypoints robustly, so the object pose is esti-

mated both efficiently and accurately, even under cluttered

scenes and severe occlusions. However, traditional methods

have difficulty in handling texture-less objects and process-

ing low-resolution images [20]. To solve this problem, re-

cent works define a set of semantic keypoints and use CNNs

as keypoint detectors. [30] uses segmentation to identify

image regions that contain objects and regresses keypoints

from the detected image regions. [36] employs the YOLO

architecture [31] to estimate the object keypoints. Their net-

works make predictions based on a low-resolution feature

map. When global distractions occur, such as occlusions,
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Figure 2. Overview of the keypoint localization: (a) An image of the Occlusion LINEMOD dataset. (b) The architecture of PVNet. (c)

Pixel-wise vectors pointing to the object keypoints. (d) Semantic labels. (e) Hypotheses of the keypoint locations generated by voting. The

hypotheses with higher voting scores are brighter. (f) Probability distributions of the keypoint locations estimated from hypotheses. The

mean of a distribution is represented by a red star and the covariance matrix is shown by ellipses.

the feature map is interfered [27] and the pose estimation

accuracy drops. Motivated by the success of 2D human

pose estimation [26], another category of methods [29, 27]

outputs pixel-wise heatmaps of keypoints to address the is-

sue of occlusion. However, since heatmaps are fix-sized,

these methods have difficulty in handling truncated objects,

whose keypoints may be outside the input image. In con-

trast, our method makes pixel-wise predictions for 2D key-

points using a more flexible representation, i.e., vector field.

The keypoint locations are determined by voting from the

directions, which is applicable to truncated objects.

Dense methods. In these methods, every pixel or patch

produces a prediction for the desired output, and then casts

a vote for the final result in a generalized Hough voting

scheme [22, 34, 11]. [2, 25] use a random forest to predict

3D object coordinates for each pixel and produce 2D-3D

correspondence hypotheses using geometric constraints. To

utilize the powerful CNNs, [18, 7] densely sample image

patches and use networks to extract features for the latter

voting. However, these methods require RGB-D data. In

the presence of RGB data alone, [3] uses an auto-context

regression framework [37] to produce pixel-wise distribu-

tions of 3D object coordinates. Compared with sparse key-

points, object coordinates provide dense 2D-3D correspon-

dences for pose estimation, which is more robust to occlu-

sion. But regressing object coordinates is more difficult

than keypoint detection due to the larger output space. Our

approach makes dense predictions for keypoint localization.

It can be regarded as a hybrid of keypoint-based and dense

methods, which combines advantages of both methods.

3. Proposed approach

In this paper, we propose a novel framework for 6DoF

object pose estimation. Given an image, the task of pose es-

timation is to detect objects and estimate their orientations

and translations in the 3D space. Specifically, 6D pose is

represented by a rigid transformation (R; t) from the object

coordinate system to the camera coordinate system, where

R represents the 3D rotation and t represents the 3D trans-

lation.

Inspired by recent methods [29, 30, 36], we estimate

the object pose using a two-stage pipeline: we first de-

tect 2D object keypoints using CNNs and then compute 6D

pose parameters using the PnP algorithm. Our innovation

is in a new representation for 2D object keypoints as well

as a modified PnP algorithm for pose estimation. Specif-

ically, our method uses PVNet to detect 2D keypoints in
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a RANSAC-like fashion, which robustly handles occluded

and truncated objects. The RANSAC-based voting also

gives a spatial probability distribution of each keypoint,

allowing us to estimate the 6D pose with an uncertainty-

driven PnP.

3.1. Voting­based keypoint localization

Figure 2 overviews the proposed pipeline for keypoint

localization. Given an RGB image, PVNet predicts pixel-

wise object labels and vectors that represent the direction

from every pixel to every keypoint. Given the directions

to a certain object keypoint from all pixels belonging to that

object, we generate hypotheses of 2D locations for that key-

point as well as the confidence scores through RANSAC-

based voting. Based on these hypotheses, we estimate the

mean and covariance of the spatial probability distribution

for each keypoint.

In contrast to directly regressing keypoint locations from

an image window [30, 36], the task of predicting pixel-

wise directions enforces the network to focus more on lo-

cal features of objects and alleviates the influence of clut-

tered background. Another advantage of this approach is

the ability to represent keypoints that are occluded or out-

side the image. Even if a keypoint is invisible, it can be

correctly located according to the directions estimated from

other visible parts of the object.

More specifically, PVNet performs two tasks: seman-

tic segmentation and vector-field prediction. For a pixel p,

PVNet outputs the semantic label that associates it with a

specific object and the vector vk(p) that represents the di-

rection from the pixel p to a 2D keypoint xk of the object.

A vector vk(p) could be the offset between pixel p and key-

point xk, namely xk−p. Using semantic labels and offsets,

we obtain the target object pixels and add the offsets to gen-

erate a set of keypoint hypotheses.

However, these offsets are sensitive to the scale changes

of object, which limits the generalization ability of PVNet.

Therefore, we further propose a scale-invariant vector

vk(p) =
xk − p

‖xk − p‖2
, (1)

which only cares the relative direction between object parts.

We will compare the performances of the two types of vec-

tors in Section 5.3.

Given target object pixels and unit vectors, we generate

keypoint hypotheses in a RANSAC-based voting scheme.

First, we randomly choose two pixels and take the intersec-

tion of their vectors as a hypothesis hk,i for the keypoint xk.

This step is repeated N times to generate a set of hypothe-

ses {hk,i|i = 1, 2, ..., N} that represent possible keypoint

locations. Then, all pixels of the object vote for these hy-

potheses. Specifically, the voting score wk,i of a hypothesis

hk,i is defined as

(a) (b) (c)

Figure 3. (a) A 3D object model and its 3D bounding box. (b)

Hypotheses produced by PVNet for a bounding box corner. (c)

Hypotheses produced by PVNet for a keypoint selected on the ob-

ject surface. The smaller variance of the surface keypoint shows

that it is easier to localize the surface keypoint than the bounding

box corner in our approach.

wk,i =
∑

p∈O

I

(

(hk,i − p)T

‖hk,i − p‖2
vk(p) ≥ θ

)

, (2)

where I represents the indicator function, θ is a threshold

(0.99 in all experiments), and p ∈ O means that the pixel

p belongs to the object O. Intuitively, a higher voting score

means that a hypothesis is more confident as it coincides

with more predicted directions.

The resulting hypotheses characterize the spatial proba-

bility distribution of a keypoint in the image. Figure 2(e)

shows an example. Finally, the mean µk and the covariance

Σk for a keypoint xk are estimated by:

µk =

∑N

i=1
wk,ihk,i

∑N

i=1
wk,i

, (3)

Σk =

∑N

i=1
wk,i(hk,i − µk)(hk,i − µk)

T

∑N

i=1
wk,i

, (4)

which are used latter for uncertainty-driven PnP described

in Section 3.2.

Keypoint selection. The keypoints need to be defined

based on the 3D object model. Many recent methods [30,

36, 27] use the eight corners of the 3D bounding box of the

object as the keypoints. An example is shown in Figure 3(a).

These bounding box corners may be far from the object pix-

els in the image. Longer distance to the object pixels results

in a larger localization error, since the keypoint hypotheses

are generated using the vectors that start at the object pixels.

Figure 3(b) and (c) show the hypotheses of a bounding box

corner and a keypoint selected on the object surface, respec-

tively, which are generated by our PVNet. The keypoint on

the object surface usually has a much smaller variance in

localization.

Therefore, the keypoints should be selected on the ob-

ject surface in our approach. Meanwhile, these keypoints

should spread out on the object to make the PnP algorithm

more stable. Considering the two requirements, we select K
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cat duck iron driller

Figure 4. Keypoints of four objects in the LINEMOD dataset.

kepoints using the farthest point sampling (FPS) algorithm.

First, we initialize the keypoint set by adding the object cen-

ter. Then, we repeatedly find a point on the object surface,

which is farthest to the current keypoint set, and add it to the

set until the size of the set reaches K. The empirical results

in Section 5.3 show that this strategy produces better results

than using the bounding box corners. We also compare the

results using different numbers of keypoints. Considering

both accuracy and efficiency, we suggest K = 8 according

to the experiment results. Figure 4 visualizes the selected

keypoints of some objects.

Multiple instances. Our method can handle multiple in-

stances based on the strategy proposed in [40, 28]. For

each object class, we generate the hypotheses of the object

centers and their voting scores using our proposed voting

scheme. Then, we find the modes among the hypotheses

and mark these modes as centers of different instances. Fi-

nally, the instance masks are obtained by assigning pixels

to the nearest instance center they vote for.

3.2. Uncertainty­driven PnP

Given 2D keypoint locations for each object, its 6D pose

can be computed by solving the PnP problem using an off-

the-shelf PnP solver, e.g., the EPnP [21] used in many pre-

vious methods [36, 30]. However, most of them ignore the

fact that different keypoints may have different confidences

and uncertainty patterns, which should be considered when

solving the PnP problem.

As introduced in Section 3.1, our voting-based method

estimates a spatial probability distribution for each key-

point. Given the estimated mean µk and covariance matrix

Σk for k = 1, · · · ,K, we compute the 6D pose (R, t) by

minimizing the Mahalanobis distance:

minimize
R,t

K
∑

k=1

(x̃k − µk)
TΣ−1

k (x̃k − µk),

x̃k = π(RXk + t),

(5)

where Xk is the 3D coordinate of the keypoint, x̃k is the 2D

projection of Xk, and π is the perspective projection func-

tion. The parameters R and t are initialized by EPnP [21]

based on four keypoints, whose covariance matrices have

the smallest traces. Then, we solve (5) using the Levenberg-

Marquardt algorithm. In [8], the authors also consider

the feature uncertainties by minimizing the approximated

Sampson errors. In our method, we directly minimize the

reprojection errors.

4. Implementation details

Assuming there are C classes of objects and K keypoints

for each class, PVNet takes as input the H ×W × 3 image,

processes it with a fully convolutional architecture, and out-

puts an H ×W × (K × 2×C) tensor representing vectors

and an H×W ×(C+1) tensor representing class probabil-

ities. We use a pretrained ResNet-18 [13] as the backbone

network, and we make three modifications on it. First, when

the feature map of the network has a size of H/8×W/8, we

do not downsample the feature map anymore by discarding

the subsequent pooling layers. Second, to keep the receptive

fields unchanged, the subsequent convolutions are replaced

with suitable dilated convolutions [41]. Third, the fully con-

nected layers in the original ResNet-18 are replaced with

convolution layers. Then, we repeatedly perform skip con-

nection, convolution and upsampling on the feature map,

until its size reaches H ×W , as shown in Figure 2(b). By

applying a 1 × 1 convolution on the final feature map, we

obtain the unit vectors and class probabilities.

4.1. Training strategy

We use the smooth ℓ1 loss proposed in [10] for learning

unit vectors. The corresponding loss function is defined as

ℓ(w) =
K
∑

k=1

∑

p∈O

ℓ1(∆vk(p;w)|x) + ℓ1(∆vk(p;w)|y),

∆vk(p;w) = ṽk(p;w)− vk(p), (6)

where w represents the parameters of PVNet, ṽk is the pre-

dicted vector, vk is the ground truth unit vector, and ∆vk|x
and ∆vk|y represent the two elements of ∆vk, respec-

tively. Note that during testing, we do not need the pre-

dicted vectors to be unit because the subsequent processing

uses only the directions of the vectors.

To prevent overfitting, we add 20,000 synthetic images

to the training set for each object. More details are given in

the supplementary materials.

5. Experiments

5.1. Datasets

LINEMOD [15] is a standard benchmark for 6D object

pose estimation. This dataset exhibits many challenges for

pose estimation: cluttered scenes, texture-less objects, and

lighting condition variations.

Occlusion LINEMOD [2] was created by additionally

annotating a subset of the LINEMOD images. Each im-

age contains multiple annotated objects, and these objects

are heavily occluded.
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Truncation LINEMOD To fully evaluate our method on

truncated objects, we create this dataset by randomly crop-

ping images in the LINEMOD dataset. After cropping, only

40% to 60% of the area of a target object remains in the im-

age. Some examples are shown in Figure 6.

On LINEMOD, we use exactly the same training-test

split as in [36], while the Occlusion LINEMOD and Trun-

cation LINEMOD are used for testing only.

YCB-Video [40] is a recently proposed dataset. The im-

ages are collected from the YCB object set [5]. This dataset

is challenging due to the varying lighting conditions, signif-

icant image noise and occlusions.

5.2. Evaluation metrics

We evaluate our method using two standard metrics: 2D

projection metric [3] and average 3D distance of model

points (ADD) metric [15].

2D Projection metric. This metric computes the mean

distance between the projections of 3D model points given

the estimated pose and the ground-truth pose. A pose is

considered as correct if the distance is less than 5 pixels.

ADD metric. We compute the mean distance between

two transformed model points using the estimated pose and

the ground-truth pose. When the distance is less than 10%

of the model’s diameter, it is claimed that the estimated pose

is correct. For symmetric objects, we use the ADD-S met-

ric [40], where the mean distance is computed based on the

closest point distance. When evaluating on the YCB-Video

dataset, we compute the ADD(-S) AUC proposed in [40].

5.3. Ablation studies

We conduct ablation studies to evaluate the effect of vec-

tor types, different keypoint detection methods, keypoint se-

lection schemes, numbers of keypoints and PnP algorithms,

on the Occlusion LINEMOD dataset. Table 1 summarizes

the results of ablation studies.

Our results are based on the unit vectors, except Col-

umn “Offset 8” that uses the offset vectors. “Offset 8” and

“FPS 8” predict the same set of keypoints and obtain sim-

ilar performances. We attribute this to our sufficient data

augmentation on object scale changes.

To compare PVNet with [36], we re-implement the same

pipeline as [36] but use PVNet to detect the keypoints which

include 8 bounding box corners and the object center. The

result is listed in the column “BBox 8” in Table 1. The

column “Tekin” shows the original result of [36], which di-

rectly regresses coordinates of keypoints via a CNN. Com-

paring the two columns demonstrates that pixel-wise voting

is more robust to occlusion.

methods
Tekin BBox Offset FPS FPS FPS FPS 8

[36] 8 8 4 8 12 + Un

ape 2.48 6.50 12.99 5.31 17.44 15.1 15.81

can 17.48 65.04 69.10 18.81 63.21 64.87 63.30

cat 0.67 15.00 26.12 16.01 17.35 16.68 16.68

duck 1.14 15.95 14.55 13.85 26.12 24.89 25.24

driller 7.66 55.60 65.24 12.19 62.19 64.17 65.65

eggbox - 35.23 41.62 36.77 44.96 41.53 50.17

glue 10.08 42.64 55.48 24.81 47.32 51.94 49.62

holepuncher 5.45 35.06 32.22 15.98 39.50 40.16 39.67

average 6.42 33.88 39.66 17.96 39.76 39.92 40.77

Table 1. Ablation studies on different configurations for pose es-

timation on the Occlusion LINEMOD dataset. These results are

accuracies in terms of the ADD(-S) metric, where glue and eggbox

are considered as symmetric objects. Tekin [36] detects the key-

points by regression, while other configurations use the proposed

voting-based keypoint localization. BBox 8 shows the result of

our method using the keypoints defined in [36]. Offset 8 shows

the result of predicting offsets to keypoints. FPS K means that we

detect K surface keypoints generated by the FPS algorithm. Un

means that we use the uncertainty-driven PnP. In configurations

without Un, the pose is estimated using the EPnP [21].

To analyze the keypoint selection schemes discussed in

Section 3.1, we compare the pose estimation results based

on different keypoint sets: “BBox 8” that includes 8 bound-

ing box corners plus the center and “FPS 8” that includes 8

surface points selected by the FPS algorithm plus the center.

Comparing “BBox 8” with “FPS 8” in Table 1 shows that

the proposed FPS scheme results in better pose estimation.

When exploring the influence of the keypoint number on

pose estimation, we train PVNet to detect 4, 8 and 12 sur-

face keypoints plus the object center, respectively. All the

three sets of keypoints are selected by the FPS algorithm

as described in Section 3.1. Comparing columns “FPS 4”,

“FPS 8” and “FPS 12” shows that the accuracy of pose es-

timation increases with the keypoint number. But the gap

between “FPS 8” and “FPS 12” is negligible. Considering

efficiency, we use “FPS 8” in all the other experiments.

To validate the benefit of considering the uncertainties

in solving the PnP problem, we replace the EPnP [21] used

in “FPS 8” with the uncertainty-driven PnP. The results are

shown in the last column “FPS 8 + Un” in Table 1, which

demonstrate that considering uncertainties of keypoint lo-

cations improves the accuracy of pose estimation.

The configuration “FPS 8 + Un” is the final configura-

tion for our approach, which is denoted by “OURS” in the

following experiments.

5.4. Comparison with the state­of­the­art methods

We compare with other state-of-the-art methods which

take RGB images as input and output 6D object poses.

Performance on the LINEMOD dataset. In Table 2,

we compare our method with [30, 36] on the LINEMOD
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w/o refinement w/ refinement

methods
BB8 Tekin OURS BB8

[30] [36] [30]

ape 95.3 92.10 99.23 96.6

benchwise 80.0 95.06 99.81 90.1

cam 80.9 93.24 99.21 86.0

can 84.1 97.44 99.90 91.2

cat 97.0 97.41 99.30 98.8

driller 74.1 79.41 96.92 80.9

duck 81.2 94.65 98.02 92.2

eggbox 87.9 90.33 99.34 91.0

glue 89.0 96.53 98.45 92.3

holepuncher 90.5 92.86 100.0 95.3

iron 78.9 82.94 99.18 84.8

lamp 74.4 76.87 98.27 75.8

phone 77.6 86.07 99.42 85.3

average 83.9 90.37 99.00 89.3

Table 2. The accuracies of our method and the baseline methods

on the LINEMOD dataset in terms of the 2D projection metric.

w/o refinement w/ refinement

methods
BB8 SSD-6D Tekin OURS BB8 SSD-6D

[30] [17] [36] [30] [17]

ape 27.9 0.00 21.62 43.62 40.4 65

benchwise 62.0 0.18 81.80 99.90 91.8 80

cam 40.1 0.41 36.57 86.86 55.7 78

can 48.1 1.35 68.80 95.47 64.1 86

cat 45.2 0.51 41.82 79.34 62.6 70

driller 58.6 2.58 63.51 96.43 74.4 73

duck 32.8 0.00 27.23 52.58 44.30 66

eggbox 40.0 8.90 69.58 99.15 57.8 100

glue 27.0 0.00 80.02 95.66 41.2 100

holepuncher 42.4 0.30 42.63 81.92 67.20 49

iron 67.0 8.86 74.97 98.88 84.7 78

lamp 39.9 8.20 71.11 99.33 76.5 73

phone 35.2 0.18 47.74 92.41 54.0 79

average 43.6 2.42 55.95 86.27 62.7 79

Table 3. The accuracies of our method and the baseline methods

on the LINEMOD dataset in terms of the ADD(-S) metric, where

glue and eggbox are considered as symmetric objects.

dataset in terms of the 2D projection metric. [30, 36] de-

tect keypoints by regression, while our method uses the pro-

posed voting-based keypoint localization. BB8 [30] trains

another CNN to refine the predicted pose and the refined re-

sults are shown in a separate column. Our method achieves

the best performance on all objects without refinement.

Table 3 shows the comparison of our methods with [30,

17, 36] in terms of the ADD(-S) metric. Note that we com-

pute the ADD-S metric for the eggbox and the glue, which

are symmetric, as suggested in [40]. Comparing to these

methods without using refinement, our method outperforms

them by a large margin of at least 30.32%. SSD-6D [17] sig-

nificantly improves its own performance using edge align-

ment to refine the estimated pose. Nevertheless, our method

still outperforms it by 7.27%.

Robustness to occlusion. We use the model trained

on the LINEMOD dataset for testing on the Occlusion

LINEMOD dataset. Table 4 and Table 5 summarize the

methods
Tekin PoseCNN Oberweger OURS

[36] [40] [27]

ape 7.01 34.6 69.6 69.14

can 11.20 15.1 82.6 86.09

cat 3.62 10.4 65.1 65.12

duck 5.07 31.8 61.4 61.44

driller 1.40 7.4 73.8 73.06

eggbox - 1.9 13.1 8.43

glue 4.70 13.8 54.9 55.37

holepuncher 8.26 23.1 66.4 69.84

average 6.16 17.2 60.9 61.06

Table 4. The accuracies of our method and the baseline methods

on the Occlusion LINEMOD dataset in terms of 2D projection.

methods
Tekin PoseCNN Oberweger OURS

[36] [40] [27]

ape 2.48 9.6 17.6 15.81

can 17.48 45.2 53.9 63.30

cat 0.67 0.93 3.31 16.68

duck 1.14 19.6 19.2 25.24

driller 7.66 41.4 62.4 65.65

eggbox - 22 25.9 50.17

glue 10.08 38.5 39.6 49.62

holepuncher 5.45 22.1 21.3 39.67

average 6.42 24.9 30.4 40.77

Table 5. The accuracies of our method and the baseline methods on

the Occlusion LINEMOD dataset in terms of the ADD(-S) met-

ric, where glue and eggbox are considered as symmetric objects.

objects ape
benc-

cam can cat driller duck
hvise

2D Projection 52.59 58.19 54.87 57.44 61.66 43.27 54.23

ADD(-S) 12.78 42.80 27.73 32.94 25.19 37.04 12.36

objects eggbox glue
holep-

iron lamp phone avg
uncher

2D Projection 87.23 86.64 53.84 46.53 46.94 51.35 58.06

ADD(-S) 44.13 38.11 22.39 42.01 40.91 30.86 31.48

Table 6. Our results on the Truncation LINEMOD dataset in

terms of the 2D projection and the ADD(-S) metrics.

comparison with [36, 40, 27] on the Occlusion LINEMOD

dataset in terms of the 2D projection metric and the ADD(-

S) metric, respectively. For both metrics, our method

achieves the best performance among all methods. In partic-

ular, our method outperforms other methods by a margin of

10.37% in terms of the ADD(-S) metric. Some qualitative

results are shown in Figure 5. The improved performance

demonstrates that the proposed vector-field representation

enables PVNet to learn the relationship between parts of

the object, so that the occluded keypoints can be robustly

recovered by the visible parts.

Robustness to truncation. We evaluate our method on

the Truncation LINEMOD dataset. Note that, the model

used for testing is only trained on the LINEMOD dataset.

Table 6 shows quantitative results in terms of the 2D projec-

tion and ADD(-S) metrics. We also test the released model

from [36], but it does not obtain reasonable results as it is

not designed for this case.

Figure 6 shows some qualitative results. Even the ob-
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Figure 5. Visualization of results on the Occlusion LINEMOD dataset. Green bounding boxes represent the ground-truth poses while blue

bounding boxes represent our predictions.

Figure 6. Visualization of results on the Truncation LINEMOD dataset are shown. The images of the last column are the failure cases,

where the visible parts are too ambiguous to provide enough information for the pose estimation.

methods
PoseCNN Oberweger OURS

[40] [27]

2D Projection 3.72 39.4 47.4

ADD(-S) AUC 61.0 72.8 73.4

Table 7. The accuracies of our and baseline methods on the YCB-

Video dataset in terms of 2D projection and ADD(-S) AUC.

jects are partially visible, our method robustly recovers their

poses. We show two failure cases in the last column of Fig-

ure 6, where the visible parts do not provide enough infor-

mation to infer the poses.

Performance on the YCB-Video dataset. In Table 7,

we compare our method with [40, 27] on the YCB-Video

dataset in terms of the 2D projection and the ADD(-S) AUC

metrics. Our method again achieves the state-of-the-art

performance and surpasses Oberweger [27] which is spe-

cially designed for dealing with occlusion. The results of

PoseCNN were obtained from Oberweger [27].

5.5. Running time

For 480 × 640 input images, our algorithm runs at 25

fps on a desktop with an Intel i7 3.7GHz CPU and a GTX

1080 Ti GPU, which is efficient for real-time pose estima-

tion. Specifically, our implementation takes 10.9 ms for

data loading, 3.3 ms for network forward propagation, 22.8

ms for the RANSAC-based voting scheme, and 3.1 ms for

the uncertainty-driven PnP.

6. Conclusion

We introduced a novel framework for 6DoF object pose

estimation, which consists of the pixel-wise voting net-

work (PVNet) for keypoint localization and the uncertainty-

driven PnP for final pose estimation. We showed that pre-

dicting the vector fields followed by RANSAC-based vot-

ing for keypoint localization gained a superior performance

than direct regression of keypoint coordinates, especially

for occluded or truncated objects. We also showed that con-

sidering the uncertainties of predicted keypoint locations in

solving the PnP problem further improved pose estimation.

We reported the state-of-the-art performances on all three

widely-used benchmark datasets and demonstrated the ro-

bustness of the proposed approach on a new dataset of trun-

cated objects.
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