
Representation Flow for Action Recognition

AJ Piergiovanni and Michael S. Ryoo

Department of Computer Science, Indiana University, Bloomington, IN 47408

{ajpiergi,mryoo}@indiana.edu

Abstract

In this paper, we propose a convolutional layer inspired

by optical flow algorithms to learn motion representations.

Our representation flow layer is a fully-differentiable layer

designed to capture the ‘flow’ of any representation channel

within a convolutional neural network for action recognition.

Its parameters for iterative flow optimization are learned in

an end-to-end fashion together with the other CNN model

parameters, maximizing the action recognition performance.

Furthermore, we newly introduce the concept of learning

‘flow of flow’ representations by stacking multiple representa-

tion flow layers. We conducted extensive experimental evalu-

ations, confirming its advantages over previous recognition

models using traditional optical flows in both computational

speed and performance. The code is publicly available. 1

1. Introduction

Activity recognition is an important problem in computer

vision with many societal applications including surveillance,

robot perception, smart environment/city, and more. Use of

video convolutional neural networks (CNNs) have become

the standard method for this task, as they can learn more op-

timal representations for the problem. Two-stream networks

[20], taking both RGB frames and optical flow as input, pro-

vide state-of-the-art results and have been extremely popular.

3-D spatio-temporal CNN models, e.g., I3D [3], with XYT

convolutions also found that such two-stream design (RGB

+ optical flow) increases their accuracy. Abstracting both

appearance information and explicit motion flow benefits the

recognition.

However, optical flow is expensive to compute. It often

requires hundreds of optimization iterations every frame, and

causes learning of two separate CNN streams (i.e., RGB-

stream and flow-stream). This requires significant computa-

tion cost and a great increase in the number of model param-

eters to learn. Further, this means that the model needs to

compute optical flow every frame even during inference and

1Code/models available here: https://piergiaj.github.io/rep-flow-site/

Figure 1: Comparing the results of (b) TVL-1 and (c) our

learned flow when applied to RGB images. Our layer is able

to capture similar motion information to TVL-1. However,

compared to TVL-1, our layer is faster, is learnable, and

can be applied directly to any intermediate CNN feature

maps. With the representation flow layer, optical flow pre-

extraction is no longer needed and a single-stream CNN

design becomes possible.

run two parallel CNNs, limiting its real-time applications.

There were previous works to learn representations captur-

ing motion information without using optical flow as input,

such as motion feature networks [15] and ActionFlowNet

[16]. However, although they were more advantageous in

terms of the number of model parameters and computation

speed, they suffered from inferior performance compared

to two-stream models on public datasets such as Kinetics

[13] and HMDB [14]. We hypothesize that the iterative op-

timization performed by optical flow methods produces an

important feature that other methods fail to capture.

In this paper, we propose a CNN layer inspired by optical

flow algorithms to learn motion representations for action

recognition without having to compute optical flow. Our rep-

resentation flow layer is a fully-differentiable layer designed

to capture ‘flow’ of any representation channels within the

model. Its parameters for iterative flow optimization are

learned together with other model parameters, maximizing

the action recognition performance. This is also done with-

out having/training multiple network streams, reducing the

number of parameters in the model. Further, we newly intro-

duce the concept of learning ‘flow of flow’ representations

by stacking multiple representation flow layers. We conduct

19945

extensive action classification experimental evaluation of

where to compute optical flow and various hyperparameters,

learning parameters, and fusion techniques.

Our contribution is the introduction of a new differen-

tiable CNN layer that unrolls the iterations of the TV-L1

optical flow method. This allows for learning of the optical

flow parameters, application to any CNN feature maps (i.e.,

intermediate representations), and lower computational cost

while maintaining performance.

2. Related Works

Capturing motion and temporal information has been stud-

ied for activity recognition. Early, hand-crafted approaches

such as dense trajectories [24] captured motion information

by tracking points through time. Many algorithms have been

developed to compute optical flow as a way to capture mo-

tion in video [8]. Other works have explored learning the

ordering of frames to summarize a video in a single ‘dynamic

image’ used for activity recognition [1].

Convolutional neural networks (CNNs) have been applied

to activity recognition. Initial approaches explored methods

to combine temporal information based on pooling or tem-

poral convolution [12, 17]. Other works have explored using

attention to capture sub-events of activities [18]. Two-stream

networks have been very popular: they take input of a single

RGB frame (captures appearance information) and a stack

of optical flow frames (captures motion information). Often,

the two network streams of the model are separately trained

and the final predictions are averaged together [20]. There

were other two-stream CNN works exploring different ways

to ‘fuse’ or combine the motion CNN with the appearance

CNN [7, 6]. There were also large 3D XYT CNNs learn-

ing spatio-temporal patterns [26, 3], enabled by large video

datasets such as Kinetics [13]. However, these approaches

still rely on optical flow input to maximize their accuracies.

While optical flow is known to be an important feature,

flows optimized for activity recognition are often different

from the true optical flow [19], suggesting that end-to-end

learning of motion representations is beneficial. Recently,

there have been works on learning such motion represen-

tations using convolutional models. Fan et al. [5] imple-

mented the TV-L1 method using deep learning libraries to

increase its computational speed and allow for learning some

parameters. The result was fed to a two-stream CNN for

the recognition. Several works explored learning a CNN

to predict optical flow, which also can be used for action

recognition [4, 9, 11, 16, 21]. Lee et al. [15] shifted features

from sequential frames to capture motion in a non-iterative

fashion. Sun et al. [21] proposed an optical flow guided

feature (OFF) by computing the gradients of representations

and temporal differences, but it lacked the iterative optimiza-

tion necessary for accurate flow computation. Further, it

requires a three-stream model taking RGB, optical flow, and

RGB differences to achieve state-of-the-art performance.

Unlike prior works, our proposed model with representa-

tion flow layers relies only on RGB input, learning far fewer

parameters while correctly representing motion with the it-

erative optimization. It is significantly faster than the video

CNNs requiring optical flow input, while still performing as

good as or even better than the two-stream models. It clearly

outperforms existing motion representation methods includ-

ing TVNet [5] and OFF [21] in both speed and accuracy,

which we experimentally confirm.

3. Approach

Our method is a fully-differentiable convolutional layer

inspired by optical flow algorithms. Unlike traditional opti-

cal flow methods, all the parameters of our method can be

learned end-to-end, maximizing action recognition perfor-

mance. Furthermore, our layer is designed to compute the

‘flow’ of any representation channels, instead of limiting its

input to be traditional RGB frames.

3.1. Review of Optical Flow Methods

Before describing our layer, we briefly review how optical

flow is computed. Optical flow methods are based on the

brightness consistency assumption. That is, given sequential

images I1, I2, a point x, y in I1 is located at x+∆x, y+∆y

in I2, or I1(x, y) = I2(x + ∆x, y + ∆y). These methods

assume small movements between frames, so this can be

approximated with a Taylor series: I2 = I1+
δI
δx
∆x+ δI

δy
∆y,

where u = [∆x,∆y]. These equations are solved for u to

obtain the flow, but can only be approximated due to the two

unknowns.

The standard, variational methods for approximating op-

tical flow (e.g., Brox [2] and TV-L1 [27] methods) take

sequential images I1, I2 as input. Variational optical flow

methods estimate the flow field, u, using an iterative opti-

mization method. The tensor u ∈ R2×W×H is the x and y

directional flow for every location in the image. Taking two

sequential images as input, I1, I2, the methods first compute

the gradient in both x and y directions: ∇I2. The initial flow

is set to 0, u = 0. Then ρ, which captures the motion resid-

ual between two frames, based on the current flow estimate

u, can be computed. For efficiency, the constant part of ρ,

ρc is pre-computed:

ρc = I2 −∇xI2 · ux −∇yI2 · uy − I1 (1)

The iterative optimization is then performed, each updat-

9946

ing u:

ρ = ρc +∇xI2 · ux +∇yI2 · uy (2)

v =











u+ λθ∇I2 ρ < −λθ|∇I2|
2

u− λθ∇I2 ρ > λθ|∇I2|
2

u− ρ ∇I2
|I2|2

otherwise

(3)

u = v + θ · divergence(p) (4)

p =
p+ τ

θ
∇u

1 + τ
θ
|∇u|

(5)

Here θ controls the weight of the TV-L1 regularization

term, λ controls the smoothness of the output and τ controls

the time-step. These hyperparameters are manually set. p is

the dual vector fields, which are used to minimize the energy.

The divergence of p, or backward difference, is computed

as:

divergence(p) = px,i,j − px,i−1,j + py,i,j − py,i,j−1 (6)

where px is the x direction and py is the y direction, and p

contains all the spatial locations in the image.

The goal is to minimize the total variational energy:

E = |∇u|+ λ|∇I1 ∗ u+ I1 − I2| (7)

Approaches run this iterative optimization for multiple

input scales, from small to large, and use the previous flow

estimate u to warp I2 at the larger scale, providing a coarse-

to-fine optical flow estimation. These standard approaches

require multiple scales and warpings to obtain a good flow

estimate, taking thousands of iterations.

3.2. Representation Flow Layer

Inspired by the optical flow algorithm, we design a fully-

differentiable, learnable, convolutional representation flow

layer by extending the general algorithm outlined above.

The main differences are that (i) we allow the layer to cap-

ture flow of any CNN feature map, and that (ii) we learn

its parameters including θ, λ, and τ as well as the diver-

gence weights. We also make several key changes to reduce

computation time: (1) we only use a single scale, (2) we

do not perform any warping, and (3) we compute the flow

on a CNN tensor with a smaller spatial size. Multiple scale

and warping are computationally expensive, each requiring

many iterations. By learning the flow parameters, we can

eliminate the need for these additional steps. Our method is

applied on lower resolution CNN feature maps, instead of

the RGB input, and is trained in an end-to-end fashion. This

not only benefits its speed, but also allows the model to learn

a motion representation optimized for activity recognition.

We note that the brightness consistency assumption can

similarly be applied to CNN feature maps. Instead of cap-

turing pixel brightness, we capture feature value consistency.

i=0

Eq. 2 Eq. 3

Eq. 4

Eq. 5

u1u0

p1p0v0⍴0

i=1

u2

p2v1⍴1
Eq. 2 Eq. 3

Eq. 4

Eq. 5

F1

F2

...

i=n-1

un

pnvi⍴i
Eq. 2 Eq. 3

Eq. 4

Eq. 5

Figure 2: Illustration of our flow layer. It unrolls the it-

erations of the TV-L1 algorithm as a sequence of tensor

operations, while sharing parameters across the iterations.

This same assumption holds as CNNs are designed to be spa-

tially invariant; i.e., they produce roughly the same feature

value for the same object as it moves.

Given the input F1, F2, a single channel from sequential

CNN feature maps (or input image), we compute the feature-

map-gradient by convolving the input feature maps with the

Sobel filter:

∇F2x =





1 0 −1
2 0 −2
1 0 −1



∗F2, ∇F2y =





1 2 1
0 0 0
−1 −2 −1



∗F2

(8)

We set u = 0,p = 0 initially, each having width and

height matching the input, then we can compute ρc = F2 −
F1. Next, following Algorithm 1, we repeatedly apply the

operations in Eqs. 2-5 for a fixed number of iterations to

enable the iterative optimization. To compute the divergence,

we zero-pad p on the first column (x-direction) or row (y-

direction) then convolve it with weights, wx, wy to compute

Eq. 6:

divergence(p) = px ∗ wx + py ∗ wy (9)

where initially wx =
[

−1 1
]

and wy =

[

−1
1

]

. Note that

these parameters are also differentiable and can be learned

with backpropagation. We compute ∇u as

∇ux =





1 0 −1
2 0 −2
1 0 −1



∗ux, ∇uy =





1 2 1
0 0 0
−1 −2 −1



∗uy

(10)

Representation Flow within a CNN Algorithm 1 and

Fig. 2 describe the process of our representation flow layer.

Our flow layer with multiple iterations could also be inter-

preted as having a sequence of convolutional layers sharing

parameters (i.e., each blue box in Fig. 2), with each layer’s

behavior dependent on its previous layer. As a result of this

formulation, the layer becomes fully differentiable and al-

lows for the learning of all parameters, including (τ, λ, θ) and

the divergence weights (wx, wy). This enables our learned

representation flow layer to be optimized for its task (i.e.,

action recognition).

9947

Initial
Per-Frame CNN

Reduce
Channels

Video
frames

Normalize
Features

Remaining CNN +
Classification

DxHxW D’xHxW

Flow
Layer

Figure 3: Illustration of a video-CNN with our representation flow layer. The CNN computes intermediate feature maps, and

sequential feature maps are used as input to the flow layer. The outputs of the flow layer are used for prediction.

Algorithm 1 Method for the representation flow layer

function REPRESENTATIONFLOW(F1, F2)

u = 0,p = 0
Compute image/feature map gradients (Eq. 8)

ρc = F2 − F1

for n iterations do

ρ = ρc +∇xF2 · ux +∇yF2 · uy

v =











u+ λθ∇F2 ρ < −λθ|∇F2|
2

u− λθ∇F2 ρ > λθ|∇F2|
2

u− ρ ∇F2

|F2|2
otherwise

u = v + θ · divergence(p)

p =
p+ τ

θ
∇u

1+ τ

θ
|∇u|

end for

return u

end function

Computing Flow-of-Flow Standard optical flow algo-

rithms compute the flow for two sequential images. An

optical flow image contains information about the direction

and magnitude of the motion. Applying the flow algorithm

directly on two flow images means that we are tracking

pixels/locations showing similar motion in two consecutive

frames. In practice, this typically leads to a worse perfor-

mance due to inconsistent optical flow results and non-rigid

motion. On the other hand, our representation flow layer

is ‘learned’ from the data, and is able to suppress such in-

consistency and better abstract/represent motion by having

multiple regular convolutional layers between the flow layers.

Fig. 6 illustrates such design, which we confirm its benefits

in the experiment section. By stacking multiple representa-

tion flow layers, our model is able to capture longer temporal

intervals and consider locations with motion consistency.

CNN feature maps may have hundreds or thousands of

channels and our representation flow layer computes the flow

for each channel, which can take significant time and mem-

ory. To address this, we apply a convolutional layer to reduce

the number of channels from C to C ′ before the flow layer

(note that C ′ is still significantly more than traditional optical

flow algorithms, which were only applied to single-channel,

greyscale images). For numerical stability, we normalize

this feature map to be in [0, 255], matching standard image

values. We found that the CNN features were quite small on

average (< 0.5) and the TVL-1 algorithm default hyperpa-

rameters are designed for standard images values in [0, 255],
thus we found this normalization step important. Using the

normalized feature, we compute the flow and stack the x

and y flows, resulting in 2C ′ channels. Finally, we apply

another convolutional layer to convert from 2C ′ channels to

C channels. This is passed to the remaining CNN layers for

the prediction. We average predictions from many frames to

classify each video, as shown in Fig. 3.

3.3. Activity Recognition Model

We place the representation flow layer inside a standard

activity recognition model taking a T × C ×W ×H tensor

as input to a CNN. Here, C is 3 as our model uses direct

9948

RGB frames as an input. T is the number of frames the

model processes, and W and H are the spatial dimensions.

The CNN outputs a prediction per-timestep and these are

temporally averaged to produce a probability for each class.

The model is trained to minimize cross-entropy:

L(v, c) = −

K
∑

i

(c == i) log(pi) (11)

where p = M(v), v is the video, the function M is the

classification CNN and c represents which of the K classes

v belongs. That is, the parameters in our flow layers are

trained together with the other layers, so that it maximizes

the final classification accuracy.

4. Experiments

Implementation details We implemented our represen-

tation flow layer in PyTorch and our code and models are

available. As training CNNs on videos is computationally

expensive, we used a subset of the Kinetics dataset [13] with

100k videos from 150 classes: Tiny-Kinetics. This allowed

testing many models more quickly, while still having suffi-

cient data to train large CNNs. For most experiments, we

used ResNet-34 [10] with input of size 16× 112× 112 (i.e.,

16 frames with spatial size of 112). To further reduce the

computation time for many studies, we used this smaller

input, which reduces performance, but allowed us to use

larger batch sizes and run many experiments more quickly.

Our final models are trained on standard 224× 224 images.

Check Appendix for specific training details.

Where to compute flow? To determine where in the net-

work to compute the flow, we compare applying our flow

layer on the RGB input, after the first conv. layer, and after

the each of the 5 residual blocks. The results are shown in Ta-

ble 1. We find that computing the flow on the input provides

poor performance, similar to the performance of the flow-

only networks, but there is a significant jump after even 1

layer, suggesting that computing the flow of a feature is bene-

ficial, capturing both the appearance and motion information.

However, after 4 layers, the performance begins to decline as

the spatial information is too abstracted/compressed (due to

pooling and large spatial receptive field size), and sequential

features become very similar, containing less motion infor-

mation. Note that our HMDB performance in this table is

quite low compared to state-of-the-art methods due to being

trained from scratch using few frames and low spatial reso-

lution (112 × 112). For the following experiments, unless

otherwise noted, we apply the layer after the 3rd residual

block. In Fig. 7, we visualize the learned motion representa-

tions computer after block 3.

What to learn? As our method is fully differentiable, we

can learn any of the parameters, such as the kernels used

Table 1: Computing the optical flow representation after

various number of CNN layers. Results are video classifica-

tion accuracy on our Tiny-Kinetics and LowRes-HMDB51

datasets using 100 iterations to compute the flow representa-

tion.

Tiny-Kinetics LowRes-HMDB

RGB CNN 55.2 35.5

Flow CNN 35.4 37.5

Two-Stream CNN 57.6 41.5

Flow Layer on RGB Input 37.4 40.5

After Block 1 52.4 42.6

After Block 2 57.4 44.5

After Block 3 59.4 45.4

After Block 4 52.1 43.5

After Block 5 50.3 42.2

Table 2: Comparison of learning different parameters. The

flow was computed after Block 3 using 100 iterations.

Tiny-Kinetics LowRes-HMDB

None (all fixed) 59.4 45.4

Sobel kernels 58.5 43.5

Divergence (wx, wy) 60.2 46.4

τ, λ, θ 59.9 46.2

All 59.2 46.2

Divergence + τ, λ, θ 60.7 46.8

to compute image gradients, the kernels for the divergence

computation and even τ, λ, θ. In Table 2, we compare the

effects of learning different parameters. We find that learning

the Sobel kernel values reduces performance due to noisy

gradients particularly when the batch size is limited, but

learning the divergence and τ, λ, θ is beneficial.

How many iterations for flow? To confirm that the it-

erations are important and determine how many we need,

we experiment with various numbers of iterations. We

compare the number of iterations needed for both learning

(divergence+τ, λ, θ) and not learning parameters. The flow

is computed after 3 residual blocks. The results are shown in

Table 3. We find that learning provides better performance

with fewer iterations (similar to the finding in [5]), and that

iteratively computing the feature is important. We use 10 or

20 iterations in the remaining experiments as they provide

good performance and are fast.

Two-stream fusion? Two-stream CNNs fusing both RGB

and optical flow features has been heavily studied [20, 7].

Based on these works, we compare various ways of fusing

RGB and our flow representation, shown in Fig. 4. We

compare no fusion, late fusion (i.e., separate RGB and flow

9949

Table 3: Effect of the number of iterations on our Tiny-

Kinetics dataset for learning and not learning.

Not learned Learned

1 iteration 46.7 49.5

5 iterations 51.3 55.4

10 iterations 52.4 59.4

20 iterations 53.6 60.7

50 iterations 59.2 60.9

100 iterations 59.4 60.7

Figure 4: Different approaches to fusing RGB and flow in-

formation. (a) No fusion (b) Late fusion (c) The circle repre-

sents elementwise addition/multiplication or concatenation.

We experimentally find that no fusion performs comparably,

when applied to after 3rd residual block.

CNNs) and addition/multiplication/concatenation fusion. In

Table 4, we compare different fusion methods for different

locations in the network. We find that fusing RGB informa-

tion is very important “when computing flow directly from

RGB input”. However, it is not as beneficial when com-

puting the flow of representations as the CNN has already

abstracted much appearance information away. We found

that concatenation of the RGB and flow features perform

poorly compared to the others. We do not use two-stream

fusion in any other experiments, as we found that computing

the representation flow after the 3rd residual block provides

sufficient performance even without any fusion.

Flow-of-flow We can stack our layer multiple times, com-

puting the flow-of-flow (FoF). This has the advantage of

combining more temporal information into a single feature.

Our results are shown in Table 5. Applying the TV-L1 al-

gorithm twice gives quite poor performance, as optical flow

features do not really satisfy the brightness consistency as-

sumption, as they capture magnitude and direction of motion

(shown in Fig. 5). Applying our representation flow layer

twice performs significantly better than TV-L1 twice, but still

(a) (b) (c)

Figure 5: Example (a) RGB image, (b) TVL-1 flow image

and (c) TVL-1 applied twice (i.e., Flow-of-Flow). Directly

computing flow-of-flow results in poor input, as the inputs

of magnitude and directions do not follow the brightness

consistency assumption.

Figure 6: Illustration of how our model computes the FoF.

Adding the intermediate conv layer allows for the smoothing

of flow and conversion from magnitude+direction to feature

values. This allows a second flow layer to further refine the

motion feature.

Table 4: Different fusion methods for flow computed at dif-

ferent locations in the network on our Tiny-Kinetics dataset

using 10 iterations with flow parameter learning.

RGB 1 Block 3 Blocks

None 37.4 52.4 59.4

Late 61.3 60.4 61.5

Add 59.7 57.2 56.5

Multiply 58.3 58.1 57.8

Layer + Multiply 60.1 61.7 61.7

Concat 42.4 48.5 47.6

worse than our baseline of not doing so. However, we can

add a convolutional layer between the first and second flow

layer, flow-conv-flow (FcF), (Fig. 6), allowing the model to

better learn longer-term flow representations. We find this

performs best, as this intermediate layer is able to smooth

the flow and produce a better input for the representation

flow layer. However, we find adding a third flow layer re-

duces performance as the motion representation becomes

unreliable, due to the large spatial receptive field size. In Fig.

7, we visualize the learned flow-of-flow, which is a smoother,

acceleration-like feature with abstract motion patterns.

Flow of 3D CNN Feature Since 3D convolutions capture

some temporal information, we test computing our flow rep-

9950

Table 5: Computing the FoF representation. TV-L1 twice

provides poor performance, using two flow layers with a

conv. in between provides the best performance. Experi-

ments used 10 iterations and learning flow parameters.

Tiny-Kinetics

TVL-1 twice 12.2

Single Flow Layer 59.4

Flow-of-Flow 47.2

Flow-Conv-Flow (FcF) 62.3

Flow-Conv-Flow-Conv-Flow 56.5

(a) (b) (c)

Figure 7: Visualization of learned representation flows. Note

these are after the 3rd residual block and are low-resolution

(28x28). (a) Examples of rep. flow for various activities.

(b) Example of different channels capturing different mo-

tions: (left) hands (right) other motion. (c) Flow-of-flow

is an acceleration-like feature with smoother, more abstract

motion patterns.

resentation on features from a 3D CNN. As 3D CNNs are

expensive to train, we follow the method of I3D [3] to in-

flate a ResNet-18 pretrained on ImageNet to a 3D CNN for

videos. We also compare to the (2+1)D method of spatial

conv. followed by temporal conv from [26], which produces

a similar feature combining spatial and temporal information.

We find our flow layer increases performance even with 3D

and (2+1)D CNNs already capturing some temporal informa-

tion: Tables 6 and 7. These experiments used 10 iterations

and learning the flow parameters. In these experiments, FcF

was not used.

We also compared to the OFF [21] using (2+1)D and

3D CNNs. We observe that this method does not result in

meaningful performance increases using CNNs that capture

temporal information, while our approach does.

Comparison to other motion representations We com-

pare to existing CNN-based motion representation methods

to confirm the usefulness of our representation flow. For

these experiments, when available, we used code provided

by the authors and otherwise implemented the methods our-

selves. To better compare to existing works, we used (16×)

224× 224 images. Table 8 shows the results. MFNet [15]

captures motion by spatially shifting CNN feature maps,

then summing the results, TVNet [5] applies a convolutional

optical flow method to RGB inputs, and ActionFlowNet

Table 6: Computing representation flow using 3D ResNet-18.

We find that even though 3D CNNs capture some tempo-

ral information, the use of the iterative representation flow

further improves performance.

Tiny-Kinetics

RGB 3D ResNet-18 54.6

TVL-1 3D ResNet-18 37.6

Two-Stream 3D ResNet 57.5

RGB-Only OFF [21] 54.8

Input (RGB) 38.5

After Block 1 58.4

After Block 3 59.7

Table 7: Computing representation flow using (2+1)D

ResNet-18. We find that the representation flow layer is

beneficial with this base network, confirming it captures

features standard spatio-temporal convolution does not.

Tiny-Kinetics

RGB (2+1)D ResNet-18 53.4

TVL-1 (2+1)D ResNet-18 36.3

Two-Stream (2+1)D ResNet 55.6

RGB-Only OFF [21] 53.7

Input (RGB) 39.2

After Block 1 57.3

After Block 3 60.7

Table 8: Comparisons to other CNN-based motion repre-

sentations, using 10 iterations and learning flow parameters.

This is without FcF and two-stream fusion.

Tiny-Kinetics HMDB

ActionFlownet [16] 51.8 56.2

MFNet [15] 52.5 56.8

TVNet [5] 39.4 57.5

RGB-OFF [21] 55.6 56.9

Ours 61.1 65.4

[16] trains a CNN to jointly predict optical flow and activity

classes. We also compare to OFF [21] using only RGB in-

puts. Note that the HMDB performance in [21] was reported

using their three-stream model (i.e., RGB + RGB-diff + op-

tical flow inputs), and here we compare to the version only

using RGB. Our method, which applies the iterative flow

computation on CNN feature maps, performs the best.

Computation time We compare our representation flow

to state-of-the-art two-stream approaches in terms of run-

time and number of parameters. All timings were measured

9951

Table 9: Comparison to the state-of-the-art action classifications. ‘HMDB(+Kin)’ means that the model was pre-trained on

Kinetics before training/testing with HMDB. Missing results are due to those papers not reporting that setting. We marked the

best performances (per dataset) with bold texts. Note that all our models have a single-stream design.

Kinetics HMDB HMDB(+Kin) Run-time (ms)

2D CNNs

RGB 61.3 53.4 59.4 225 ±15
Flow 48.2 57.3 61.2 8039 ±140
Two-stream 64.5 62.4 66.6 8546 ±147
TVNet (+RGB) [5] - 71.0 - 785 ±21
OFF (RGB Only) [21] - 57.1 - 365 ±26
OFF (RGB + Flow + RGB Diff) [21] - 74.2 - 9520 ±156
Ours (2D CNN + Rep. Flow) 68.5 73.5 76.4 524 ±24
Ours (2D CNN + FcF) 69.4 74.4 77.3 576 ±22

(2+1)D CNNs

RGB R(2+1)D [23] 74.3 - 74.5 471 ±18
Two-Stream R(2+1)D [23] 75.4 - 78.7 8623 ±152
Ours ((2+1)D CNN + Rep. Flow) 75.5 - 77.1 622 ±23
Ours ((2+1)D CNN + FcF) 77.1 - 81.1 654 ±21
Ours ((2+1)D CNN + FcF) + Non-local 77.9 - 81.1 865 ±21

3D CNNs

RGB S3D [26] 74.7 - 75.9 525 ±22
Two-Stream S3D [26] 77.2 - - 8886 ±162
I3D (RGB) [3] 71.1 49.8 74.3 594 ±23
I3D (Flow) 63.4 61.9 77.3 8845 ±148
I3D (Two-Stream) 74.2 66.4 80.7 9354 ±154
ResNet-101 + Non-local [25] 77.7 - - 3750 ±125

using a single Pascal Titan X GPU, for a batch of videos

with size 32 × 224 × 224. The flow/two-stream CNNs in-

clude the time to run the TV-L1 algorithm (OpenCV GPU

version) to compute the optical flow. All CNNs were based

on the ResNet-34 architecture. As also shown in Table 9,

our method is significantly faster than two-stream models

relying on TV-L1 or other optical flow methods, while per-

forming similarly or better. The number of parameters our

model has is half of its two-stream competitors (e.g., 21M

vs. 42M, in the case of 2D CNNs).

Comparison to state-of-the-arts We also compared our

action recognition accuracies with the state-of-the-arts on

Kinetics and HMDB. For this, we train our models using

32× 224× 224 inputs with the full kinetics dataset, using

8 V100s. We used the 2D ResNet-50 as the architecture.

Based on our experiments, we applied our representation

flow layer after the 3rd residual block, learned the hyper-

parameters and divergence kernels, and used 20 iterations.

We also compare our flow-of-flow model. Following [22],

the evaluation is performed using a running average of the

parameters over time. Our results, shown in Table 9, confirm

that this approach clearly outperforms existing models using

RGB only inputs, and is competitive against expensive two-

stream networks. Our model performs the best among those

not using optical flow inputs (i.e., among the models only

taking ∼600ms per video). The models requiring optical

flow were more than 10 times slower, including two-stream

versions of [3, 25, 26]

5. Conclusion

We introduced a learnable representation flow layer in-

spired by optical flow algorithms. We experimentally com-

pared various forms of our layer to confirm that the iterative

optimization and learnable parameters are important. Our

model clearly outperformed existing methods in both speed

and accuracy on standard datasets. We also introduced the

concept of ‘flow of flow’ to compute longer-term motion

representations and showed it benefits performance.

Acknowledgement This work was supported in part by

the National Science Foundation (IIS-1812943 and CNS-

1814985).

9952

References

[1] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould.

Dynamic image networks for action recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016. 2

[2] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-

curacy optical flow estimation based on a theory for warping.

In Proceedings of European Conference on Computer Vision

(ECCV), 2004. 2

[3] J. Carreira and A. Zisserman. Quo vadis, action recognition?

a new model and the kinetics dataset. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2017. 1, 2, 7, 8

[4] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,

V. Golkov, P. Van Der Smagt, D. Cremers, and T. Brox.

Flownet: Learning optical flow with convolutional networks.

In Proceedings of the IEEE International Conference on Com-

puter Vision (ICCV), 2015. 2

[5] L. Fan, W. Huang, S. E. Chuang Gan, B. Gong, and J. Huang.

End-to-end learning of motion representation for video under-

standing. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018. 2, 5, 7,

8

[6] C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal

residual networks for video action recognition. In Advances

in Neural Information Processing Systems (NIPS), 2016. 2

[7] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional

two-stream network fusion for video action recognition. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1933–1941, 2016. 2, 5

[8] D. Fortun, P. Bouthemy, and C. Kervrann. Optical flow mod-

eling and computation: a survey. Computer Vision and Image

Understanding, 134:1–21, 2015. 2

[9] R. Gao, B. Xiong, and K. Grauman. Im2flow: Motion halluci-

nation from static images for action recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. 2

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016.

5

[11] T.-W. Hui, X. Tang, and C. C. Loy. Liteflownet: A lightweight

convolutional neural network for optical flow estimation. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018. 2

[12] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convolu-

tional neural networks. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 1725–1732, 2014. 2

[13] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vi-

jayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al.

The kinetics human action video dataset. arXiv preprint

arXiv:1705.06950, 2017. 1, 2, 5

[14] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.

HMDB: a large video database for human motion recogni-

tion. In Proceedings of the IEEE International Conference

on Computer Vision (ICCV), 2011. 1

[15] M. Lee, S. Eui Lee, S. Joon Son, G. Park, and N. Kwak.

Motion feature network: Fixed motion filter for action recog-

nition. In Proceedings of European Conference on Computer

Vision (ECCV), 2018. 1, 2, 7

[16] J. Y.-H. Ng, J. Choi, J. Neumann, and L. S. Davis. Action-

flownet: Learning motion representation for action recogni-

tion. In IEEE Winter Conference on Applications of Computer

Vision (WACV). IEEE, 2018. 1, 2, 7

[17] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,

R. Monga, and G. Toderici. Beyond short snippets: Deep

networks for video classification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 4694–4702. IEEE, 2015. 2

[18] A. Piergiovanni, C. Fan, and M. S. Ryoo. Learning latent

sub-events in activity videos using temporal attention filters.

In Proceedings of the American Association for Artificial

Intelligence (AAAI), 2017. 2

[19] L. Sevilla-Lara, Y. Liao, F. Güney, V. Jampani, A. Geiger, and

M. J. Black. On the integration of optical flow and action

recognition. In German Conference on Pattern Recognition,

pages 281–297. Springer, 2018. 2

[20] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In Advances in

Neural Information Processing Systems (NIPS), pages 568–

576, 2014. 1, 2, 5

[21] S. Sun, Z. Kuang, L. Sheng, W. Ouyang, and W. Zhang.

Optical flow guided feature: A fast and robust motion repre-

sentation for video action recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2018. 2, 7, 8

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2818–2826, 2016. 8

[23] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and

M. Paluri. A closer look at spatiotemporal convolutions for

action recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2018.

8

[24] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action recog-

nition by dense trajectories. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR),

pages 3169–3176. IEEE, 2011. 2

[25] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local

neural networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. 8

[26] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy. Rethink-

ing spatiotemporal feature learning for video understanding.

arXiv preprint arXiv:1712.04851, 2017. 2, 7, 8

[27] C. Zach, T. Pock, and H. Bischof. A duality based approach

for realtime tv-l 1 optical flow. In Joint Pattern Recognition

Symposium, pages 214–223. Springer, 2007. 2

9953

