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Abstract

A well-trained Convolutional Neural Network can easily

be pruned without significant loss of performance. This is

because of unnecessary overlap in the features captured by

the network’s filters. Innovations in network architecture

such as skip/dense connections and Inception units have

mitigated this problem to some extent, but these improve-

ments come with increased computation and memory re-

quirements at run-time. We attempt to address this problem

from another angle - not by changing the network structure

but by altering the training method. We show that by tem-

porarily pruning and then restoring a subset of the model’s

filters, and repeating this process cyclically, overlap in the

learned features is reduced, producing improved general-

ization. We show that the existing model-pruning criteria

are not optimal for selecting filters to prune in this con-

text and introduce inter-filter orthogonality as the ranking

criteria to determine under-expressive filters. Our method

is applicable both to vanilla convolutional networks and

more complex modern architectures, and improves the per-

formance across a variety of tasks, especially when applied

to smaller networks.

1. Introduction

Convolutional Neural Networks have achieved state-of-

the-art results in various computer vision tasks [1, 2]. Much

of this success is due to innovations of a novel, task-

specific network architectures [3, 4]. Despite variation in

network design, the same core optimization techniques are

used across tasks. These techniques consider each indi-

vidual weight as its own entity and update them indepen-

dently. Limited progress has been made towards developing

a training process specifically designed for convolutional

networks, in which filters are the fundamental unit of the

network. A filter is not a single weight parameter but a stack

of spatial kernels.

Because models are typically over-parameterized, a

trained convolutional network will contain redundant fil-

ters [5, 6]. This is evident from the common practice of

0 20 40 60 80 100
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Train - RePr
Train - Standard

A
B

0 20 40 60 80 100
Epoch

0.5

0.6

0.7

0.8

0.9

1.0
Test - RePr
Test - Standard

C

D

E
F

Figure 1: Performance of a three layer ConvNet with 32 filters

each over 100 epochs using standard scheme and our method -

RePr on CIFAR-10. The shaded regions denote periods when only

part of the network is trained. Left: Training Accuracy, Right: Test

Accuracy. Annotations [A-F] are discussed in Section 4.

pruning filters [7, 8, 6, 9, 10, 11], rather than individual

parameters [12], to achieve model compression. Most of

these pruning methods are able to drop a significant num-

ber of filters with only a marginal loss in the performance

of the model. However, a model with fewer filters can-

not be trained from scratch to achieve the performance of

a large model that has been pruned to be roughly the same

size [6, 11, 13]. Standard training procedures tend to learn

models with extraneous and prunable filters, even for ar-

chitectures without any excess capacity. This suggests that

there is room for improvement in the training of Convolu-

tional Neural Networks (ConvNets).

To this end, we propose a training scheme in which,

after some number of iterations of standard training, we

select a subset of the model’s filters to be temporarily

dropped. After additional training of the reduced network,

we reintroduce the previously dropped filters, initialized

with new weights, and continue standard training. We ob-

serve that following the reintroduction of the dropped fil-

ters, the model is able to achieve higher performance than

was obtained before the drop. Repeated application of this

process obtains models which outperform those obtained by

standard training as seen in Figure 1 and discussed in Sec-

tion 4. We observe this improvement across various tasks

and over various types of convolutional networks. This

training procedure is able to produce improved performance

across a range of possible criteria for choosing which filters
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to drop, and further gains can be achieved by careful selec-

tion of the ranking criterion. According to a recent hypothe-

sis [14], the relative success of over-parameterized networks

may largely be due to an abundance of initial sub-networks.

Our method aims to preserve successful sub-networks while

allowing the re-initialization of less useful filters.

In addition to our novel training strategy, the second ma-

jor contribution of our work is an exploration of metrics

to guide filter dropping. Our experiments demonstrate that

standard techniques for permanent filter pruning are subop-

timal in our setting, and we present an alternative metric

which can be efficiently computed, and which gives a sig-

nificant improvement in performance. We propose a metric

based on the inter-filter orthogonality within convolutional

layers and show that this metric outperforms state-of-the-art

filter importance ranking methods used for network prun-

ing in the context of our training strategy. We observe that

even small, under-parameterized networks tend to learn re-

dundant filters, which suggests that filter redundancy is not

solely a result of over-parameterization, but is also due to

ineffective training. Our goal is to reduce the redundancy

of the filters and increase the expressive capacity of Con-

vNets and we achieve this by changing the training scheme

rather than the model architecture.

2. Related Work

Training Scheme Many changes to the training

paradigm have been proposed to reduce over-fitting and im-

prove generalization. Dropout [15] is widely used in train-

ing deep nets. By stochastically dropping the neurons it

prevents co-adaption of feature detectors. A similar ef-

fect can be achieved by dropping a subset of activations

[16]. Wu et al. [15] extend the idea of stochastic dropping

to convolutional neural networks by probabilistic pooling

of convolution activations. Yet another form of stochastic

training recommends randomly dropping entire layers [17],

forcing the model to learn similar features across various

layers which prevent extreme overfitting. In contrast, our

technique encourages the model to use a linear combination

of features instead of duplicating the same feature. Han

et al. [18] propose Dense-Sparse-Dense (DSD), a similar

training scheme, in which they apply weight regulariza-

tion mid-training to encourage the development of sparse

weights, and subsequently remove the regularization to re-

store dense weights. While DSD works at the level of in-

dividual parameters, our method is specifically designed to

apply to convolutional filters.

Neuron ranking Interest in finding the least salient neu-

rons/weights has a long history. LeCun [19] and Hassibiet

al. [20] show that using the Hessian, which contains second-

order derivative, identifies the weak neurons and performs

better than using the magnitude of the weights. Computing

the Hessian is expensive and thus is not widely used. Han et

al. [12] show that the norm of weights is still effective rank-

ing criteria and yields sparse models. The sparse models

do not translate to faster inference, but as a neuron ranking

criterion, they are effective. Hu et al. [21] explore Aver-

age Percentage of Zeros (APoZ) in the activations and use a

data-driven threshold to determine the cut-off. Molchanov

et al. [9] recommend the second term from the Taylor ex-

pansion of the loss function.We provide detail comparison

and show results on using these metrics with our training

scheme in Section 5.

3. Motivation for Orthogonal Features

A feature for a convolutional filter is defined as the point-

wise sum of the activations from individual kernels of the

filter. A feature is considered useful if it helps to im-

prove the generalization of the model. A model that has

poor generalization usually has features that, in aggregate,

capture limited directions in activation space [22]. On the

other hand, if a model’s features are orthogonal to one an-

other, they will each capture distinct directions in activation

space, leading to improved generalization. For a trivially-

sized ConvNet, we can compute the maximally expressive

filters by analyzing the correlation of features across lay-

ers and clustering them into groups [23]. However, this

scheme is computationally impractical for the deep Con-

vNets used in real-world applications. Alternatively, a com-

putationally feasible option is the addition of a regulariza-

tion term to the loss function used in standard SGD train-

ing which encourages the minimization of the covariance

of the activations, but this produces only limited improve-

ment in model performance [24, 5]. A similar method, in

which the regularization term instead encourages the or-

thogonality of filter weights, has also produced marginal

improvements [25, 26, 27, 28]. Shang et al. [29] discov-

ered the low-level filters are duplicated with opposite phase.

Forcing filters to be orthogonal will minimize this duplica-

tion without changing the activation function. In addition

to improvements in performance and generalization, Saxe

et al. [30] show that the orthogonality of weights also im-

proves the stability of network convergence during train-

ing. The authors of [28, 31] further demonstrate the value

of orthogonal weights to the efficient training of networks.

Orthogonal initialization is common practice for Recurrent

Neural Networks due to their increased sensitivity to ini-

tial conditions [32], but it has somewhat fallen out of fa-

vor for ConvNets. These factors shape our motivation for

encouraging orthogonality of features in the ConvNet and

form the basis of our ranking criteria. Because features are

dependent on the input data, determining their orthogonal-

ity requires computing statistics across the entire training

set, and is therefore prohibitive. We instead compute the or-

thogonality of filter weights as a surrogate. Our experiments

show that encouraging weight orthogonality through a regu-

10667



Layer 1

Layer 2

fi
lt
e
r i
=

0
,1

,.
.3

2

filteri=0,1,..32

0.0

1.0

0.8

0.6

0.4

0.2

Correlation Matrix
5 4 3 2 1 0

Drop in accuracy (%)
0

2

4

6

8

10

12

14

16

Fi
lte

r C
ou

nt

Layer 1
Layer 2

Figure 2: Left: Canonical Correlation Analysis of activations

from two layers of a ConvNet trained on CIFAR-10. Right: Dis-

tribution of change in accuracy when the model is evaluated by

dropping one filter at a time.

larization term is insufficient to promote the development of

features which capture the full space of the input data man-

ifold. Our method of dropping overlapping filters acts as an

implicit regularization and leads to the better orthogonality

of filters without hampering model convergence.

We use Canonical Correlation Analysis [33] (CCA) to

study the overlap of features in a single layer. CCA finds

the linear combinations of random variables that show max-

imum correlation with each other. It is a useful tool to de-

termine if the learned features are overlapping in their rep-

resentational capacity. Li et al. [34] apply correlation anal-

ysis to filter activations to show that most of the well-known

ConvNet architectures learn similar representations. Raghu

et al. [35] combine CCA with SVD to perform a correlation

analysis of the singular values of activations from various

layers. They show that increasing the depth of a model does

not always lead to a corresponding increase of the model’s

dimensionality, due to several layers learning representa-

tions in correlated directions. We ask an even more elemen-

tary question - how correlated are the activations from var-

ious filters within a single layer? In an over-parameterized

network like VGG-16, which has several convolutional lay-

ers with 512 filters each, it is no surprise that most of the

filter activations are highly correlated. As a result, VGG-

16 has been shown to be easily pruned - more than 50%

of the filters can be dropped while maintaining the perfor-

mance of the full network [9, 34]. Is this also true for signif-

icantly smaller convolutional networks, which under-fit the

dataset?

We will consider a simple network with two convolu-

tional layers of 32 filters each, and a softmax layer at the

end. Training this model on CIFAR-10 for 100 epochs

with an annealed learning rate results in test set accuracy

of 58.2%, far below the 93.5% achieved by VGG-16. In the

case of VGG-16, we might expect that correlation between

filters is merely an artifact of the over-parameterization of

the model - the dataset simply does not have a dimension-

ality high enough to require every feature to be orthogonal

to every other. On the other hand, our small network has

clearly failed to capture the full feature space of the training

data, and thus any correlation between its filters is due to

inefficiencies in training, rather than over-parameterization.

Given a trained model, we can evaluate the contribution

of each filter to the model’s performance by removing (ze-

roing out) that filter and measuring the drop in accuracy on

the test set. We will call this metric of filter importance

the “greedy Oracle”. We perform this evaluation indepen-

dently for every filter in the model, and plot the distribution

of the resulting drops in accuracy in Figure 2 (right). Most

of the second layer filters contribute less than 1% in accu-

racy and with first layer filters, there is a long tail. Some

filters are important and contribute over 4% of accuracy but

most filters are around 1%. This implies that even a tiny

and under-performing network could be filter pruned with-

out significant performance loss. The model has not effi-

ciently allocated filters to capture wider representations of

necessary features. Figure 2 (left) shows the correlations

from linear combinations of the filter activations (CCA) at

both the layers. It is evident that in both the layers there is a

significant correlation among filter activations with several

of them close to a near perfect correlation of 1 (bright yel-

low spots �). The second layer (upper right diagonal) has

lot more overlap of features the first layer (lower right). For

a random orthogonal matrix any value above 0.3 (lighter

than dark blue �) is an anomaly. The activations are even

more correlated if the linear combinations are extended to

kernel functions [36] or singular values [35]. Regardless,

it suffices to say that standard training for convolutional fil-

ters does not maximize the representational potential of the

network.

4. Our Training Scheme : RePr

We modify the training process by cyclically removing

redundant filters, retraining the network, re-initializing the

removed filters, and repeating. We consider each filter (3D

tensor) as a single unit, and represent it as a long vec-

tor - (f ). Let M denote a model with F filters spread

across L layers. Let F̂ denote a subset of F filters, such

that MF denotes a complete network whereas, M
F−F̂

de-

notes a sub-network without that F̂ filters. Our training

scheme alternates between training the complete network

(MF ) and the sub-network (M
F−F̂

). This introduces two

hyper-parameters. First is the number of iterations to train

each of the networks before switching over; let this be S1

for the full network and S2 for the sub-network. These have

to be non-trivial values so that each of the networks learns

to improve upon the results of the previous network. The

second hyper-parameter is the total number of times to re-

peat this alternating scheme; let it be N . This value has

minimal impact beyond certain range and does not require

tuning.

The most important part of our algorithm is the metric

used to rank the filters. Let R be the metric which asso-
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ciates some numeric value to a filter. This could be a norm

of the weights or its gradients or our metric - inter-filter

orthogonality in a layer. Here we present our algorithm ag-

nostic to the choice of metric. Most sensible choices for

filter importance results in an improvement over standard

training when applied to our training scheme (see Ablation

Study 6).

Our training scheme operates on a macro-level and is not

a weight update rule. Thus, is not a substitute for SGD or

other adaptive methods like Adam [37] and RmsProp [38].

Our scheme works with any of the available optimizers and

shows improvement across the board. However, if using an

optimizer that has parameters specific learning rates (like

Adam), it is important to re-initialize the learning rates cor-

responding to the weights that are part of the pruned filters

(F̂). Corresponding Batch Normalization [39] parameters

(γ&β) must also be re-initialized. For this reason, compar-

isons of our training scheme with standard training are done

with a common optimizer.

We reinitialize the filters (F̂) to be orthogonal to its

value before being dropped and the current value of non-

pruned filters (F − F̂). We use the QR decomposition on

the weights of the filters from the same layer to find the

null-space and use that to find an orthogonal initialization

point.

Our algorithm is training interposed with Re-initializing

and Pruning - RePr (pronounced: reaper). We summarize

our training scheme in Algorithm 1.

Algorithm 1: RePr Training Scheme

1 for N iterations do

2 for S1 iterations do

3 Train the full network: MF

4 end

5 Compute the metric : R(f) ∀f ∈ F

6 Let F̂ be bottom p% of F using R(f)
7 for S2 iterations do

8 Train the sub-network : M
F−F̂

9 end

10 Reinitialize the filters (F̂) s.t. F̂ ⊥ F
11 (and their training specific parameters

12 from BatchNorm and Adam, if applicable)

13 end

We use a shallow model to analyze the dynamics of our

training scheme and its impact on the train/test accuracy. A

shallow model will make it feasible to compute the greedy

Oracle ranking for each of the filters. This will allow us

to understand the impact of training scheme alone without

confounding the results due to the impact of ranking crite-

ria. We provide results on larger and deeper convolutional

networks in Section Results 8.

Consider a n layer vanilla ConvNet, without a skip or

dense connections, with X filter each, as shown below:

Img 7−→

[
CONV(X) → RELU

]n
7−→ FC 7−→ Softmax

We will represent this architecture as Cn(X). Thus, a

C3(32) has 96 filters, and when trained with SGD with a

learning rate of 0.01, achieves test accuracy of 73%. Fig-

ure 1 shows training plots for accuracy on the training set

(left) and test set (right). In this example, we use a RePr

training scheme with S1 = 20, S2 = 10, N = 3, p% = 30
and the ranking criteria R as a greedy Oracle. We exclude

a separate validation set of 5K images from the training set

to compute the Oracle ranking. In the training plot, annota-

tion [A] shows the point at which the filters are first pruned.

Annotation [C] marks the test accuracy of the model at this

point. The drop in test accuracy at [C] is lower than that

of training accuracy at [A], which is not a surprise as most

models overfit the training set. However, the test accuracy

at [D] is the same as [C] but at this point, the model only has

70% of the filters. This is not a surprising result, as research

on filter pruning shows that at lower rates of pruning most

if not all of the performance can be recovered [9].

What is surprising is that test accuracy at [E], which is

only a couple of epochs after re-introducing the pruned fil-

ters, is significantly higher than point [C]. Both point [C]

and point [E] are same capacity networks, and higher ac-

curacy at [E] is not due to the model convergence. In the

standard training (orange line) the test accuracy does not

change during this period. Models that first grow the net-

work and then prune [40, 41], unfortunately, stopped shy

of another phase of growth, which yields improved perfor-

mance. In their defense, this technique defeats the purpose

of obtaining a smaller network by pruning. However, if we

continue RePr training for another two iterations, we see

that the point [F], which is still at 70% of the original filters

yields accuracy which is comparable to the point [E] (100%
of the model size.

Another observation we can make from the plots is that

training accuracy of RePr model is lower, which signifies

some form of regularization on the model. This is evident

in the Figure 4 (Right), which shows RePr with a large num-

ber of iterations (N = 28). While the marginal benefit of

higher test accuracy diminishes quickly, the generalization

gap between train and test accuracy is reduced significantly.

5. Our Metric : inter-filter orthogonality

The goals of searching for a metric to rank least impor-

tant filters are twofold - (1) computing the greedy Oracle is

not computationally feasible for large networks, and (2) the

greedy Oracle may not be the best criteria. If a filter which

captures a unique direction, thus not replaceable by a lin-

ear combination of other filters, has a lower contribution to
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accuracy, the Oracle will drop that filter. On a subsequent

re-initialization and training, we may not get back the same

set of directions.

The directions captured by the activation pattern ex-

presses the capacity of a deep network [42]. Making or-

thogonal features will maximize the directions captured and

thus expressiveness of the network. In a densely connected

layer, orthogonal weights lead to orthogonal features, even

in the presence of ReLU [32]. However, it is not clear how

to compute the orthogonality of a convolutional layer.

A convolutional layer is composed of parameters

grouped into spatial kernels and sparsely share the incoming

activations. Should all the parameters in a single convolu-

tional layer be considered while accounting for orthogonal-

ity? The theory that promotes initializing weights to be or-

thogonal is based on densely connected layers (FC-layers)

and popular deep learning libraries follow this guide1 by

considering convolutional layer as one giant vector disre-

garding the sparse connectivity. A recent attempt to study

orthogonality of convolutional filters is described in [31]

but their motivation is the convergence of very deep net-

works (10K layers) and not orthogonality of the features.

Our empirical study suggests a strong preference for requir-

ing orthogonality of individual filters in a layer (inter-filter

& intra-layer) rather than individual kernels.

A filter of kernel size k × k is commonly a 3D tensor of

shape k × k × c, where c is the number of channels in the

incoming activations. Flatten this tensor to a 1D vector of

size k ∗ k ∗ c, and denote it by f . Let Jℓ denote the number

of filters in the layer ℓ, where ℓ ∈ L, and L is the number

of layers in the ConvNet. Let W ℓ be a matrix, such that the

individual rows are the flattened filters (f ) of the layer ℓ.
Let Ŵℓ = Wℓ/||Wℓ|| denote the normalized weights.

Then, the measure of Orthogonality for filter f in a layer

ℓ (denoted by Of
ℓ ) is computed as shown in the equations

below.

P ℓ = |Ŵℓ × Ŵℓ

T
− I| (1)

Of
ℓ =

∑
Pℓ[f ]

Jℓ
(2)

P ℓ is a matrix of size Jℓ × Jℓ and P [i] denotes ith row

of P . Off-diagonal elements of a row of P for a filter f
denote angle (direction overlap) with all the other filters in

the same layer with f . The sum of a row is minimum when

other filters are orthogonal to this given filter. We rank the

filters least important (thus subject to pruning) if this value

is largest among all the filters in the network. While we

compute the metric for a filter over a single layer, the rank-

ing is computed over all the filters in the network. We do not

enforce per layer rank because that would require learning

a hyper-parameter p% for every layer and some layers are

1tensorflow:ops/init ops.py#L543 & pytorch:nn/init.py#L350
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more sensitive than others. Our method prunes more filters

from deeper layers compared to the earlier layers. This is

in accordance with the distribution of contribution of each

filter in a given network (Figure 2 right).

Computation of our metric does not require expensive

calculations of the inverse of Hessian [19] or the second

order derivatives [20] and is feasible for any sized net-

works. The most expensive calculations are L matrix prod-

ucts of size Jℓ × Jℓ, but GPUs are designed for fast matrix-

multiplications. Still, our method is more expensive than

computing norm of the weights or the activations or the Av-

erage Percentage of Zeros (APoZ).

Given the choice of Orthogonality of filters, an obvi-

ous question would be to ask if adding a soft penalty to

the loss function improve this training? A few researchers

[25, 26, 27] have reported marginal improvements due to

added regularization in the ConvNets used for task-specific

models. We experimented by adding λ ∗
∑

ℓ P ℓ to the loss

function, but we did not see any improvement. Soft regular-

ization penalizes all the filters and changes the loss surface

to encourage random orthogonality in the weights without

improving expressiveness.

6. Ablation study

Comparison of pruning criteria We measure the corre-

lation of our metric with the Oracle to answer the question

- how good a substitute is our metric for the filter impor-

tance ranking. Pearson correlation of our metric, henceforth

referred to as Ortho, with the Oracle is 0.38. This is not
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a strong correlation, however, when we compare this with

other known metrics, it is the closest. Molchanov et al. [9]

report Spearman correlation of their criteria (Taylor) with

greedy Oracle at 0.73. We observed similar numbers for

Taylor ranking during the early epochs but the correlation

diminished significantly as the models converged. This is

due to low gradient value from filters that have converged.

The Taylor metric is a product of the activation and the gra-

dient. High gradients correlate with important filters during

early phases of learning but when models converge low gra-

dient do not necessarily mean less salient weights. It could

be that the filter has already converged to a useful feature

that is not contributing to the overall error of the model or

is stuck at a saddle point. With the norm of activations, the

relationship is reversed. Thus by multiplying the terms to-

gether hope is to achieve a balance. But our experiments

show that in a fully converged model, low gradients domi-

nate high activations. Therefore, the Taylor term will have

lower values as the models converge and will no longer be

correlated with the inefficient filters. While the correlation

of the values denotes how well the metric is the substitute

for predicting the accuracy, it is more important to measure

the correlation of the rank of the filters. Correlation of the

values and the rank may not be the same, and the corre-

lation with the rank is the more meaningful measurement

to determine the weaker filters. Ortho has a correlation of

0.58 against the Oracle when measured over the rank of the

filters. Other metrics show very poor correlation using the

rank. Figure 3 (Left and Center) shows the correlation plot

for various metrics with the Oracle. The table on the right

of Figure 3 presents the test accuracy on CIFAR-10 of var-

ious ranking metrics. From the table, it is evident that Or-

thogonality ranking leads to a significant boost of accuracy

compared to standard training and other ranking criteria.

Percentage of filters pruned One of the key factors in

our training scheme is the percentage of the filters to prune

at each pruning phase (p%). It behaves like the Dropout

parameter, and impacts the training time and generalization

ability of the model (see Figure: 4). In general the higher

the pruned percentage, the better the performance. How-

ever, beyond 30%, the performances are not significant. Up

to 50%, the model seems to recover from the dropping of fil-

ters. Beyond that, the training is not stable, and sometimes

the model fails to converge.

Number of RePr iterations Our experiments suggest

that each repeat of the RePr process has diminishing returns,

and therefore should be limited to a single-digit number (see

Figure 4 (Right)). Similar to Dense-Sparse-Dense [18] and

Born-Again-Networks [43], we observe that for most net-

works, two to three iterations is sufficient to achieve the

maximum benefit.

Optimizer and S1/S2 Figure 5 (left) shows variance in

improvement when using different optimizers. Our model
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Figure 5: Left: Impact of using various optimizers on RePr train-

ing scheme. Right: Results from using different S1/S2 values. For

clarity, these experiments only shows results with S1 = S2
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Figure 6: Test accuracy of a three layer ConvNet with 32 filters

each over 100 epochs using standard scheme and our method -

RePr on CIFAR-10. The shaded regions denote periods when only

part of the network is trained for RePr. Left: Fixed Learning Rate

schedule of 0.1, 0.01 and 0.001.Right: Cyclic Learning Rate with

periodicity of 50 Epochs, and amplitude of 0.005 and starting LR

of 0.001.

works well with most well-known optimizers. Adam and

Momentum perform better than SGD due to their added sta-

bility in training. We experimented with various values of

S1 and S2, and there is not much difference if either of

them is large enough for the model to converge temporarily.

Learning Rate Schedules SGD with a fixed learn-

ing rate does not typically produce optimal model perfor-

mance. Instead, gradually annealing the learning rate over

the course of training is known to produce models with

higher test accuracy. State-of-the-art results on ResNet,

DenseNet, Inception were all reported with a predetermined

learning rate schedule. However, the selection of the exact

learning rate schedule is itself a hyperparameter, one which

needs to be specifically tuned for each model. Cyclical

learning rates [44] can provide stronger performance with-

out exhaustive tuning of a precise learning rate schedule.

Figure 6 shows the comparison of our training technique

when applied in conjunction with fixed schedule learning

rate scheme and cyclical learning rate. Our training scheme

is not impacted by using these schemes, and improvements

over standard training is still apparent.

7. Orthogonality and Distillation

Our method, RePr and Knowledge Distillation (KD) are

both techniques to improve performance of compact mod-
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Figure 7: Comparison of orthogonality of filters (Ortho-sum - eq

2) in standard training and RePr training with and without Knowl-

edge Distillation. Lower value signifies less overlapping filters.

Dashed vertical lines denotes filter dropping.

C3(32) Std KD RePr KD+RePr

CIFAR-10 72.1 74.8 76.4 83.1

CIFAR-100 47.2 56.5 58.2 64.1

Table 1: Comparison of Knowledge Distillation with RePr.

els. RePr reduces the overlap of filter representations and

KD distills the information from a larger network. We

present a brief comparison of the techniques and show that

they can be combined to achieve even better performance.

RePr repetitively drops the filters with most overlap in

the directions of the weights using the inter-filter orthogo-

nality, as shown in the equation 2. Therefore, we expect this

value to gradually reduce over time during training. Fig-

ure 7 (left) shows the sum of this value over the entire net-

work with three training schemes. We show RePr with two

different filter ranking criteria - Ortho and Oracle. It is not

surprising that RePr training scheme with Ortho ranking has

lowest Ortho sum but it is surprising that RePr training with

Oracle ranking also reduces the filter overlap, compared to

the standard training. Once the model starts to converge, the

least important filters based on Oracle ranking are the ones

with the most overlap. And dropping these filters leads to

better test accuracy (table on the right of Figure 3). Does

this improvement come from the same source as the that due

to Knowledge Distillation? Knowledge Distillation (KD) is

a well-proven methodology to train compact models. Us-

ing soft logits from the teacher and the ground truth signal

the model converges to better optima compared to standard

training. If we apply KD to the same three experiments (see

Figure 7, right), we see that all the models have significantly

larger Ortho sum. Even the RePr (Ortho) model struggles to

lower the sum as the model is strongly guided to converge

to a specific solution. This suggests that this improvement

due to KD is not due to reducing filter overlap. Therefore,

a model which uses both the techniques should benefit by

even better generalization. Indeed, that is the case as the

combined model has significantly better performance than
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Figure 8: Accuracy improvement using RePr over standard train-

ing on Vanilla ConvNets across many layered networks [Cn(32)]

ResNet-20 on CIFAR-10

Baseline Various Training Schemes

Original

[1]

Our

Impl

DSD

[18]

BAN

[43]

RePr

Weights

RePr

Ortho

8.7 8.4 7.8 8.2 7.7 6.9

Table 2: Comparison of test error from using various techniques.

either of the individual models, as shown in Table 1.

8. Results

We present the performance of our training scheme,

RePr, with our ranking criteria, inter-filter orthogonality,

Ortho, on different ConvNets [45, 1, 46, 47, 48]. For all the

results provided RePr parameters are: S1 = 20, S2 = 10,

p% = 30, and with three iterations, N = 3.

We compare our training scheme with other similar

schemes like BAN and DSD in table 2. All three schemes

were trained for three iterations i.e. N=3. All models were

trained for 150 epochs with similar learning rate sched-

ule and initialization. DSD and RePr (Weights) perform

roughly the same function - sparsifying the model guided

by magnitude, with the difference that DSD acts on indi-

vidual weights, while RePr (Weights) acts on entire filters.

Thus, we observe similar performance between these tech-

niques. RePr (Ortho) outperforms the other techniques and

is significantly cheaper to train compared to BAN, which

requires N full training cycles.

Compared to modern architectures, vanilla ConvNets

show significantly more inefficiency in the allocation of

their feature representations. Thus, we find larger improve-

ments from our method when applied to vanilla ConvNets,

as compared to modern architectures. Table 3 shows test

errors on CIFAR 10 & 100. Vanilla CNNs with 32 filters

each have high error compared to DenseNet or ResNet but

their inference time is significantly faster. RePr training im-

proves the relative accuracy of vanilla CNNs by 8% on

CIFAR-10 and 25% on CIFAR-100. The performance of

baseline DenseNet and ResNet models is still better than

vanilla CNNs trained with RePr, but these models incur

more than twice the inference cost. For comparison, we

also consider a reduced DenseNet model with only 5 layers,

which has similar inference time to the 3-layer vanilla Con-

vNet. This model has many fewer parameters (by a factor
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CIFAR-10 CIFAR-100

Layers
Params

(×000)

Inf. Time

(relative)
Std RePr Std RePr

Vanilla CNN [32 filters / layer]

3 20 1.0 27.9 23.6 52.8 41.8

8 66 1.7 26.8 19.5 50.9 36.8

13 113 2.5 26.6 20.6 51.0 37.9

18 159 3.3 28.2 22.5 51.9 39.5

DenseNet [k=12]

5 1.7 0.9 39.4 36.2 43.5 40.9

40 1016 8.0 6.8 6.2 26.4 25.2

100 6968 43.9 5.3 5.6 22.2 22.1

ResNet

20 269 1.7 8.4 6.9 32.6 31.1

32 464 2.2 7.4 6.1 31.4 30.1

110 1727 7.1 6.3 5.4 27.5 26.4

182 2894 11.7 5.6 5.1 26.0 25.3

Table 3: Comparison of test error on Cifar-10 & Cifar-100 of vari-

ous ConvNets using Standard training vs RePr Training. Inf. Time

shows the inference times for a single pass. All time measure-

ments are relative to Vanilla CNN with three layers. Parameter

count does not include the last fully-connected layer.

of 11×) than the vanilla ConvNet, leading to significantly

higher error rates, but we choose to equalize inference time

rather than parameter count, due to the importance of infer-

ence time in many practical applications. Figure 8 shows

more results on vanilla CNNs with varying depth. Vanilla

CNNs start to overfit the data, as most filters converge to

similar representation. Our training scheme forces them to

be different which reduces the overfitting (Figure 4 - right).

This is evident in the larger test error of 18-layer vanilla

CNN with CIFAR-10 compared to 3-layer CNN. With RePr

training, 18 layer model shows lower test error.

RePr is also able to improve the performance of ResNet

and shallow DenseNet. This improvement is larger on

CIFAR-100, which is a 100 class classification and thus is a

harder task and requires more specialized filters. Similarly,

our training scheme shows bigger relative improvement on

ImageNet, a 1000 way classification problem. Table 4

presents top-1 test error on ImageNet [49] of various Con-

vNets trained using standard training and with RePr. RePr

was applied three times (N=3), and the table shows errors

after each round. We have attempted to replicate the results

of the known models as closely as possible with suggested

hyper-parameters and are within ±1% of the reported re-

sults. More details of the training and hyper-parameters are

provided in the supplementary material. Each subsequent

RePr leads to improved performance with significantly di-

minishing returns. Improvement is more distinct in archi-

tectures which do not have skip connections, like Inception

v1 and VGG and have lower baseline performance.

Our model improves upon other computer vision tasks

that use similar ConvNets. We present a small sample of

ImageNet

Standard RePr Training Relative

Model Training N=1 N=2 N=3 Change

ResNet-18 30.41 28.68 27.87 27.31 -11.35

ResNet-34 27.50 26.49 26.06 25.80 -6.59

ResNet-50 23.67 22.79 22.51 22.37 -5.81

ResNet-101 22.40 21.70 21.51 21.40 -4.67

ResNet-152 21.51 20.99 20.79 20.71 -3.86

VGG-16 31.30 27.76 26.45 25.50 -22.75

Inception v1 31.11 29.41 28.47 28.01 -11.07

Inception v2 27.60 27.15 26.95 26.80 -2.99

Table 4: Comparison of test error (Top-1) on ImageNet with dif-

ferent models at various stages of RePr. N=1, N=2, N=3 are results

after each round of RePr.

results from visual question answering and object detec-

tion tasks. Both these tasks involve using ConvNets to

extract features, and RePr improves their baseline results.

For object detection on COCO [50], using Feature Pyra-

mid Network [51] and ResNet-50, mAP improves from 38.2
to 42.3. For visual question answering on VQAv1, using

VQA-LSTM-CNN model [52], accuracy on Open-Ended

questions increases from 60.3% to 64.6%.

9. Conclusion

We have introduced RePr, a training paradigm which

cyclically drops and relearns some percentage of the least

expressive filters. After dropping these filters, the pruned

sub-model is able to recapture the lost features using the re-

maining parameters, allowing a more robust and efficient

allocation of model capacity once the filters are reintro-

duced. We show that a reduced model needs training before

re-introducing the filters, and careful selection of this train-

ing duration leads to substantial gains. We also demonstrate

that this process can be repeated with diminishing returns.

Motivated by prior research which highlights inefficien-

cies in the feature representations learned by convolutional

neural networks, we further introduce a novel inter-filter

orthogonality metric for ranking filter importance for the

purpose of RePr training, and demonstrate that this met-

ric outperforms established ranking metrics. Our train-

ing method is able to significantly improve performance in

under-parameterized networks by ensuring the efficient use

of limited capacity, and the performance gains are comple-

mentary to knowledge distillation. Even in the case of com-

plex, over-parameterized network architectures, our method

is able to improve performance across a variety of tasks.
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