
A Flexible Convolutional Solver for Fast Style Transfers

Gilles Puy

Technicolor

975 Avenue des Champs Blancs

F-35576 Cesson-Sévigné

gilles.puy@technicolor.com

Patrick Pérez

Valeo.ai

15 Rue de la Baume

F-75008 Paris

patrick.perez@valeo.com

Abstract

We propose a new flexible deep convolutional neural net-

work (convnet) to perform fast neural style transfers. Our

network is trained to solve approximately, but rapidly, the

artistic style transfer problem of [15] for arbritary styles.

While solutions already exist, our network is uniquely flex-

ible by design: it can be manipulated at runtime to enforce

new constraints on the final output. As examples, we show

that it can be modified to perform tasks such as fast photo

style transfer, or fast video style transfer with short term

consistency, with no retraining. This flexibility stems from

the proposed architecture which is obtained by unrolling the

gradient descent algorithm used in [15]. Regularisations

added to [15] to solve a new task can be reported on-the-fly

in our network, even after training.

1. Introduction

Style transfer is a longstanding problem [12, 23, 38, 13]

for which impressive results have recently been obtained

with deep convnets. In [15], a stylised image is obtained

by minimisation of a loss built from features provided by a

pre-trained convnet. The loss involves two terms: the first

preserves the content of one image; the second transfers the

style of another image. The drawback of this method is its

speed as the stylised image is the result of a long optimi-

sation process. Nevertheless, this method is highly flexi-

ble as the original style transfer loss can be manipulated to

guide the solution towards a desired result. This flexibility

allows one to control perceptual factors during style trans-

fer [16]. It permits one to augment the original style loss

with regularisers favouring temporal consistency to perform

video style transfer [40, 41]. It also allows one to achieve

photo style transfer with the use of a regulariser encourag-

ing the transformation to be locally affine [33]. This flexi-

bility is crucial to construct a tool giving maximum freedom

to an artist. A methodological challenge is thus to make the

method of [15] faster while keeping most of its original flex-

ibility, hence avoiding retraining for any new style transfer

feature one wishes to add.

All the methods solving [15] rapidly rely on the same

principle: a deep network taking as input a natural image

is trained to estimate a minimiser of the style transfer loss,

hence obtaining a stylised version of the input. The first fast

methods [26, 48] crucially lacked flexibility as one network

needed to be trained for each style. This shortcoming was

partly addressed by subsequent works showing that the style

can be encoded by a small subset of the network parameters

[6, 11]. Recent works show that it is possible to train a net-

work that takes as inputs any pair of painting and content

images and produces a stylised image, even for paintings

not viewed at training time [17, 25, 29]. Deep networks

trained for fast artistic style transfer have thus gained more

and more flexibility. Yet, these fast style transfer methods

are not as flexible as the method of [15] as one cannot plug

easily a new feature in them. For example, fast video style

transfer is achieved after adaptation of the network archi-

tecture and specific retraining [5, 20, 24, 41]. Similarly, the

authors of [30] had to adapt the network architecture of [29]

and retrain it to get it to work for fast photo style transfer.

Contributions. Specialising a network for each style

transfer task is a cumbersome work. Our main contribu-

tion is to propose instead a new flexible network that is

(a) trained to solve rapidly the artistic style transfer prob-

lem of [15] for arbitrary styles via unsupervised learning

and (b) which can be modified at test time to take into ac-

count important modifications of the artistic style transfer

loss. These modifications do not need to be known at train-

ing time. No retraining is required when adding them in the

network. This high level of flexibility stems from the pro-

posed network architecture that has the structure of the gra-

dient descent algorithm used in [15]: modifications brought

to the initial style transfer loss can be reported directly in

our trained network. Like existing methods, our network

yields fast controllable artistic style transfer results but, un-

like them, it can be used to perform several other tasks with-

out retraining. This flexibility permits us to make this net-

18963



work perform photo style transfer faster than the state-of-

the-art methods, which constitutes our second contribution.

Our third contribution is to show that we can introduce, at

testing time, a regulariser to stylise videos without suffering

from flickering artefacts. In comparison, existing state-of-

the-art methods which, like ours, are not specifically de-

signed for this task suffers from flickering even when using

the same regulariser. As a last illustration of the network’s

flexibility, we show that it can be used for user-guided1 tex-

ture super-resolution, again without retraining. Finally, let

us highlight that, unlike several works, we train our network

without using any painting as style but show that it gener-

alises to paintings.

2. Other related works

Related works about visual style transfer are discussed

in the introduction. We discuss here related works that in-

spired the design of our network architecture.

Algorithms unrolling. A wide range of classic itera-

tive solvers amount to repeated applications of linear and

component-wise non-linear maps. Unfolding such an algo-

rithm over a fixed number of iterations allows one to see

it as several layers of a neural network with shared, pre-

defined weights. This can be taken as the starting point

for an actual, trainable neural net. This idea was intro-

duced by [19] in the context of sparse coding: the itera-

tive shrinkage thresholding algorithm (ISTA) [2] gives rise

of a learnable network (LISTA) for fast approximate sparse

coding. Each layer has independent trainable weights and

the whole network is trained under supervision. In the re-

lated context of linear inverse problems, including com-

pressed sensing [3, 36, 37, 34, 52] and image restoration

[39, 7, 32, 35, 49, 51], several works have followed this un-

rolling approach. In some cases, all the weights (tied or un-

tied) are trained for the specific task to solve, e.g., [49]. In

some other cases, only the weights defining the image prior

are trained, the other weights being defined by the data fi-

delity term of the problem to solve, e.g., [7]. Note that, by

essence of such inverse problems, full supervision is pos-

sible: input-output samples of the transform to be inverted

are indeed readily obtained, e.g., by sensing or artificially

degrading natural images. By contrast, our approach is fully

unsupervised, as other fast style transfer alternatives.

Unsupervised neural solvers. Training without super-

vision a (fast) feed-forward network to solve approximately

a complex optimization problem is a challenging problem,

with important applications. Using the cost function of in-

terest as training loss seems straightforward, but the amount

of actual guidance provided by the loss must be sufficient

for such an unsupervised training to succeed. Besides works

1We consider a setting where the user provides a texture example to

guide the result of the super-resolution algorithm.

in fast style transfer, other recent works have demonstrated

successful instances of this paradigm. In [46], efficient fluid

simulation is addressed. Within each time step of a classic

solver of the incompressible Euler equation, the costly solv-

ing of the Poisson equation on the pressure field is replaced

by a trained 3D convnet. In this case the loss amounts to the

divergence square norm. In a different context, [45] learn a

deep neural solver for a complex inverse rendering problem:

estimating the shape, expression and reflectance of a face

in a single image, by minimization of the pixel-wise dis-

crepancy between rendered and real faces. In both works,

trained solvers provide good approximation of the solutions

of the initial minimisation problem, but with massive accel-

eration compared to iterative solvers. In the present paper,

we also propose to learn an unsupervised neural solver for a

complex optimization problem, but following the unrolling

principle explained above. As a consequence, the acceler-

ation, already obtained by others, is not our main contri-

bution. More importantly, the unrolling approach gives the

possibility to adapt at runtime our network in order to ac-

commodate important changes to the original cost function.

3. Network architecture

3.1. Style transfer by gradient descent

Style transfer consists in transforming an image Xc ∈
R

n×3 – of n pixels and 3 color channels2 – to give it the

“style” of another image Xs ∈ R
n′

×3 while preserving the

“content” in Xc. In [15], the content and style of an im-

age are defined using deep features obtained from VGG-19

[44]. The style transfer method then consists in solving a

minimisation problem involving these deep features. The

minimisation is done over an image X ∈ R
n×3. We denote

by Fℓ,Cℓ ∈ R
nℓ×cℓ and Sℓ ∈ R

n′

ℓ
×cℓ the features at the ℓth

layer of VGG-19 for the images X,Xc and Xs, respectively.

In [15], the features Cℓ encode the content of Xc while the

Gram matrices S
⊺

ℓ Sℓ encode the style of Xs. The loss to

minimise for style transfer thus takes the form

L(X) = Lc(X,Xc) + Ls(X,Xs), (1)

where the content loss Lc(X,Xc) =
∑

ℓ∈Ic
λℓ
c ‖Fℓ − Cℓ‖

2
F /(nℓ cℓ), with λℓ

c > 0, ensures

transfer of the content of Xc to the final image (‖·‖F
stands for matrix Frobenius norm), while the style loss

Ls(X,Xs) =
∑

ℓ∈Is
λℓ
s L

ℓ
s(X,Xs) with

Lℓ
s(X,Xs) =

1

c2ℓ

∥

∥

∥

∥

1

nℓ

F
⊺

ℓFℓ −
1

n′
ℓ

S
⊺

ℓ Sℓ

∥

∥

∥

∥

2

F

(2)

and λℓ
s > 0, ensures transfer of the style of Xs to the final

image. We use Is = {conv1 1, conv2 1, conv3 1, conv4 1,

2Throughout, the two spatial dimensions of images and features maps

are flattened into a single vector dimension for notational convenience.

8964



Figure 1. Comparison of the architecture of VGG-19 and our for-

ward maps fℓ.

conv5 1} for the style loss and Ic = {conv4 2} for the con-

tent loss, as, e.g., in [15].

A stylised image X∗ can be obtained by starting from an

image X(0) and by progressively updating it to minimise the

loss L (1) by gradient descent:

X
(t+1) = X

(t) − µ ∇L(X(t)), (3)

where µ > 0 is the stepsize. While achieving impressive

results, this method is nevertheless slow but convnets have

been designed to minimise (1) approximately at a much

lower computational cost [17, 26, 48].

3.2. Learned gradient descent for style transfer

3.2.1 Global architecture

We propose a new convnet to achieve fast style transfer.

Its architecture follows the update rule of the gradient de-

scent algorithm (3) where the actual gradient is replaced by

a learned update gt:

X
(t+1) = X

(t) − gt

(

X
(t),Xs

)

, t = 0, . . . , N − 1, (4)

where N is the number of unrolled iterations. Note that the

proposed network can be viewed as a residual network [22].

If one follows exactly the idea of unrolling [19], the com-

putational architecture of gt should be identical to the ar-

chitecture of ∇L. To reduce the computational costs and

number of parameters to train, we allow ourselves to make

few simplifications. While the gradient ∇L is made of a

content term and a style term, we design gt by mimicking

the computational architecture of ∇Ls only; hence, the sole

dependence of gt on Xs in (4). However, as in [26], we ini-

tialise X(0) with the RGB image Xc, instead of the classic

random initialization of the gradient descent, and we use the

complete cost L in the training loss. This allows us to keep

the content of Xc in the final image X(N).

3.2.2 Architecture of gt.

The gradient ∇Ls, which gt should replace, is obtained in

4 steps:

(i) computing each feature Fℓ via a forward-pass in

VGG-19;

(ii) computing the partial derivative:

∂Lℓ
s

∂Fℓ

∝ Fℓ ·

[

1

nℓ

F
⊺

ℓFℓ −
1

n′
ℓ

S
⊺

ℓ Sℓ

]

; (5)

(iii) back-propagating this partial derivative to the input to

obtain ∇Lℓ
s;

(iv) compute the weighted sum ∇Ls =
∑

ℓ∈Is
λℓ
s∇Lℓ

s.

We construct gt by mimicking these 4 steps, but we re-

place the original VGG-19 by a new convnet whose filters

are trained to stylize any natural image in N learned updates

(4). To simplify notation, we drop the iteration index t be-

low. However, we highlight that all the filters are different

at each iteration t (untied weights) in our implementation.

[Transforming Step (i)] We replace the VGG-19 fea-

tures Fℓ by new features fℓ(X), ℓ = conv1 1, . . ., conv5 1

(see Fig. 1). We call each fℓ a forward map as it replaces

the forward pass in VGG-19. For each VGG-19 layer that is

involved in the style loss, we have a corresponding layer. In

both architectures, the spatial dimensions are successively

halved and the number of channels doubled (except at the

last layer). VGG-19 has at least an extra convolutional layer

before any pooling. The initial number of channels is 64 in

VGG-19 and L in our network.

[Transforming Step (ii)] The computation of this partial

derivative can be transformed by substituting fℓ(X) for Fℓ

in (5):

fℓ(X) ·

(

1

nℓ

fℓ(X)
⊺ fℓ(X) −

1

n′
ℓ

G
⊺

ℓ S
⊺

ℓ Sℓ Hℓ

)

. (6)

However, we faced sudden explosions of the loss during

training when using (6). We suspect that this effect is due

to the matrix product fℓ(X)fℓ(X)
⊺fℓ(X) as it can amplify

large values during inference and backpropagation. There-

fore, we substituted

fℓ(X) ·

(

1

n′
ℓ

G
⊺

ℓ S
⊺

ℓ Sℓ Hℓ

)

(7)

for (6). The learned matrices Gℓ,Hℓ reduce the dimension

of the VGG-19 style matrix S
⊺

ℓ Sℓ to make it compatible

with the channel dimension of our network. The matrix

G
⊺

ℓ S
⊺

ℓ Sℓ Hℓ, called style filter in Fig. 2, governs the style

that is applied to the input image. This filter corrects fℓ(X)
so that the style of X gets closer to the target style after

(mimicked) backpropagation. Any style can be applied at

runtime by computing the VGG-19 features Sℓ of the cho-

sen style image. Let us clarify that we use the original pre-

trained VGG-19 to compute the features Sℓ.

8965



Figure 2. Structure of one learned iteration gt for fast style transfer. The features Sℓ are the VGG-19 features of the style image, allowing

application of arbitrary styles at runtime. The matrices Gℓ,Hℓ, and all convolutional filters are learned. The parameter L governs the

number of channels at each layer and the number of filters in one learned iteration.

[Transforming (iii)] We mimic backpropagation using

backwards maps bℓ. The structure of each bℓ is symmetric

to the structure of the corresponding map fℓ. Each bℓ takes

as input the partial derivative (7) at layer ℓ and transforms it

to a learned update for this scale:

bℓ

(

1

n′
ℓ

fℓ(X) · G
⊺

ℓ S
⊺

ℓ Sℓ Hℓ

)

. (8)

Note that during exact backpropagation to compute ∇Lℓ
s,

the non-linearities applied are not ReLUs but subgradients

of ReLU. Similarly, the non-linearities we use in bℓ are also

subgradients of ReLU. These non-linearities have the form

B · h(ReLU(A)) (see Fig. 2), where “ · ” denotes the point-

wise multiplication and h(·) is the heaviside step function:

h (ReLU(A))jc = h (A)jc =

{

0, if Ajc 6 0,
1, if Ajc > 0,

(9)

where j, c index the spatial position and the feature chan-

nel, respectively. This choice of non-linearities allowed us

to obtain better results than when using ReLU in both fℓ
and bℓ, as usually done in encoder-decoder architectures

(see Sec. 5). During backpropagation, the gradient satis-

fies ∂B · h(A) + B · ∂h(A) = ∂B · h(A), as ∂h(A) = 0
(with a discontinuity at 0 treated below). Hence the gra-

dient continues to flow wherever A > 0. Concerning the

discontinuity at 0, one should note that A is obtained after

convolution and before ReLU. There is low probability that

any value of A is exactly 0. If this event occurs, we can set

∂h(0) = 0.

[Transforming (iv)] The global learned update is ob-

tained by summing up the learned updates (8) for the 5
scales Is involved in the style loss:

g (X,Xs) =
∑

ℓ∈Is

λℓ
s bℓ

(

1

n′
ℓ

fℓ(X)× G
⊺

ℓ S
⊺

ℓ Sℓ Hℓ

)

. (10)

The complete structure of gt is presented in Fig. 2. All

convolutions are computed using reflection padding. Note

that the matrix multiplication denoted by “ × ” in (7) can

be implemented as a convolution with a filter of spatial size

1× 1, so that the whole network is convolutional.

3.2.3 Connections with existing methods

Our convnet architecture is fundamentally different from

the one proposed by [26] and by follow-up works such as

[11, 17]. Beyond the residual architecture, the main dif-

ference resides in the control of the style: we control it by

filtering the features fℓ independently at each scale, while

the style is controlled by instance normalisation parameters

in [11, 17]. Our convnet architecture shares more simi-

larities with [6, 29, 30]. While these architectures do not

mimick the iterative procedure of the gradient descent algo-

rithm, the style is also controlled by filtering deep features.

We note however that [29, 30] require matrix inversions for

style transfer, whereas ours does not.

4. Runtime restructuring

In this section, we explain how our network can be

restructured at runtime to enforce new properties on the

stylised image. Results obtained via various such restruc-

turings are given in Section 5.

4.1. Runtime modification of the style loss Ls(X,Xs)

In [16], the authors leverage the flexibility of the method

of [15] to control perceptual factors during style transfer.

Such controls are done via modifications of the original

style loss Ls. As our network has the same structure as

∇Ls, these modifications brought to Ls can be transferred

in our network, at runtime, in a systematic way. It indeed

8966



suffices to study the consequences of this change in ∇Ls

and report them in our network. We give 3 examples below.

In the method of [15], one can control the effect of each

style scale during stylisation by adapting the weights λℓ
s

in (1). Any change of these weights directly impacts the

weighted sum in Step (iv) of the computation of ∇Ls. We

can thus control the effect of each style scale in our network

by using the new value of λℓ
s in (10).

One can also wish to mix different style images Xi
s for

stylisation. Such a mixing is possible in [15, 16] by using

Ls

(

X, {Xi
s}
)

=
∑

i αi Ls(X,X
i
s), with

∑

i αi = 1, as new

style loss. The partial derivatives (ii) for this new loss sim-

plify to

Fℓ ·

(

1

nℓ

F
⊺

ℓFℓ −
1

n′
ℓ

∑

i

αi S
⊺

ℓ [X
i
s]Sℓ[X

i
s]

)

, (11)

where Sℓ[X
i
s] denotes the features of the image Xi

s at the ℓth

layer of VGG-19. By propagating this modification, we can

mix different styles in our network by changing (7) to

1

n′
ℓ

fℓ(X) ·

[

G
⊺

ℓ

(

∑

i

αi S
⊺

ℓ [X
i
s]Sℓ[X

i
s]

)

Hℓ

]

. (12)

Finally, one can refine the above mixture of styles with

spatial control, e.g., by associating each style Xi
s to a differ-

ent region in the content image. This is done by introducing

masks in the style loss [16]. Let Mi
ℓ denote the mask at

layer ℓ for the ith style and ith region. The masked style loss

satisfies

∑

ℓ∈Is

λℓ
s

c2ℓ

∑

i

∥

∥

∥

∥

1

nℓ

(Mi
ℓFℓ)

⊺(Mi
ℓFℓ)−

1

n′
ℓ

S
⊺

ℓ [X
i
s]Sℓ[X

i
s]

∥

∥

∥

∥

2

F

.

After propagation of these changes in our network, spa-

tial control of the style is obtained by changing (7) to
∑

i n
′
ℓ
−1

Mi
ℓfℓ(X) ·

(

G
⊺

ℓ S
⊺

ℓ [X
i
s]Sℓ[X

i
s]Hℓ

)

.

4.2. Adding new regularisers

Beyond the control of the style loss, one can easily im-

pose additional constraints on the solution. Indeed, let

R(X) denote a regulariser and augment (1) with it:

min
X

L(X) +R(X). (13)

A strategy to solve this problem is to use the proximal gra-

dient descent algorithm whose iterations satisfy

X
(t+1) = PµR

[

X
(t) − µ∇L

(

X
(t)
)]

, (14)

where PµR is the proximal operator associated to R:

PµR (Y) ∈ argmin
X

1

2
‖X− Y‖

2
F + µR(X). (15)

Proximal operators, which generalise projection operators,

are widely used in optimisation [8]. Note that if L and R
were convex, then the above algorithm would converge to

a solution of (13) [8]. In the non-convex case, the above

algorithm converges to a saddle point of (13) upon some

conditions on L and R [1].

We remark that the only difference between (3) and (14)

is the computation of PµR after each gradient update. By

copying this modification in our network, the updates (4)

become

X
(t+1) = PR

[

X
(t) − gt

(

X
(t),Xs

)]

. (16)

Hence, we are able to add the effect of any regulariser in our

network at runtime – without any retraining. Our network

inherits the flexibility of optimisation algorithms.

4.2.1 Photo style transfer

Minimizing (1) yields good results when the style is a paint-

ing. Unfortunately, the results are less impressive when

the style is a photograph as the result is often not photo-

realistic. To solve this issue, [33] propose to favour trans-

formations from the content image to the final image that

are locally affine. This is done by adding a penalty term

to L in (1) which becomes L(X) + λL Tr(X
⊺LX), where

L is the Matting Laplacian [28] of Xc. This regularisa-

tion can be integrated in our network easily via (16) with

R(X) = λL Tr(X
⊺LX). Note that in this case, PR (Y) =

(I+ 2λLL)
−1

Y. We remark that [30] propose to post-

process the output of their network by multiplying it a ma-

trix similar to (I+ 2λLL)
−1

. In our network, this process-

ing is done after each learned update, as done in the proxi-

mal gradient algorithm. Let us highlight another difference

with [30]: we never invert the matrix (I+ 2λLL) to compute

PR (Y). Instead, we use a computationally efficient method

from graph signal processing [43]. The method is detailed

in the supplementary material. In few words, it consists in

viewing the estimation of PR (Y) as filtering Y on a graph

with Laplacian L. The corresponding filter can be approxi-

mated by a polynomial, which induces a fast graph filtering

algorithm. This graph filtering technique is used for, e.g.,

efficient wavelet decompositions on graphs [21], fast spec-

tral clustering [47], or deep learning on graphs [9].

4.2.2 Video style transfer

One of the challenges in video style transfer is ensuring

temporal consistency. The authors of [40] solve this prob-

lem by augmenting (1) with regularisers enforcing such a

consistency. These regularisers can easily be integrated in

our network. For simplicity, we consider the short term con-

sistency regulariser proposed in [40] and limit ourselves to

an online scenario: obtaining the (i + 1)th stylised image

8967



Xc - Xs

LTV(X(N)) :

h - N :1 - L:64

0.33 ± 0.07

h - N :2 - L:64

0.27 ± 0.06

h - N :3 - L:64

0.26 ± 0.06

h - N :3 - L:16

0.29 ± 0.07

h - N :3 - L:32

0.27 ± 0.06

h - N :4 - L:64

0.24 ± 0.05

ReLU-N :3-L:64

0.27 ± 0.06
Xc - Xs ReLU h Xc - Xs ReLU h

Figure 3. Effect of the choice of N , L, and non-linearity (h(·) or

ReLU). The style appears in the bottom left corner of the con-

tent image. First and second rows: The mean achieved LTV (±

the standard deviation) on 1000 pairs of validation images appears

below each model. Third row: Additional results obtained with

h(·) or ReLU (N = 3, L = 64).

X(i+1) of a video sequence while X(i) was computed pre-

viously. Let wi(·) be the function that warp the original

image X
(i)
c onto X

(i+1)
c , and Mi the binary mask indicat-

ing where this warping is valid (removing disocclusions and

motion boundaries as in [40]). The (i + 1)th stylised im-

age can be obtained as a solution of (13) using R(X) =

λR

∥

∥Mi ⊙ (wi(X
(i))− X)

∥

∥

2

F
, where ⊙ is the pointwise

multiplication. A solution of this problem can be estimated

rapidly using our trained network via the updates (16).

The proximal operator PR is fast to compute and satisfies

PR (Y) =
[

Y + 2λRM2
i ⊙ wi(X

(i))
]

⊙
[

I+ 2λRM2
i

]−1
,

where the inverse is computed elementwise.

4.2.3 User-guided texture super-resolution

We consider the problem of upscaling a low-resolution tex-

ture Xlow in a user-guided scenario. First, a user provides a

high-resolution image Xref of a texture that he judges sim-

ilar to Xlow. Then, we exploit this information to upscale

Xlow by using the fact that two similar textures have sim-

ilar VGG-19 Gram matrices [14]. This is done by min-

imising Ls(X,Xref), where X is the image we are opti-

mising on for upscaling Xlow. We also seek to minimise

R(X) = λR ‖Xlow − DX‖
2
F, where D models the down-

sampling operator, to ensure consistency of the solution

with Xlow. In total, we propose to solve minX Lc(X,Xbic)+
Ls(X,Xref) + R(X). The image Xbic denotes the bicubic

upsampled version of Xlow, and the term Lc(X,Xbic) acts

as a second regulariser ensuring consistency between the

Xc & Xs Up to conv2 1 Up to conv3 1 Up to conv4 1 Up to conv5 1

Xc & Xs ×0.2 ×0.6 ×1.0 ×1.4

Xc, X1
s

& X
2
s

0.2X1
s

- 0.8X2
s

0.4X1
s

- 0.6X2
s

0.6X1
s

- 0.4X2
s

0.8X1
s

- 0.2X2
s

Figure 4. Choice of style scales (top row), global style intensity

(middle), and mixing of styles at runtime. The styles used appear

in the bottom corners of the content images (first column).

observed low-resolution texture and the solution. A solu-

tion of this minimisation problem can be estimated rapidly

using our trained network via the updates (16), starting from

X(0) = Xbic. Note that the computation of PR can be esti-

mated by, e.g., gradient descent.

Let us acknowledge that this application was inspired by

[42] where the resolution of a skin texture is improved using

a database of such high-resolution textures.

5. Style transfer experiments

5.1. Training

As done in [26] for example, we augment L with the To-

tal Variation (TV) regularisation and use
∑N

t=1 LTV(X
(t)),

with LTV(X) = L(X) + λTV TV(X), as training loss. The

TV regularisation favours visual “naturalness” of X(N). The

pixel values of X(t) are clipped between 0 and 1 before eval-

uation of the loss. All filters are initialised using Xavier

initialisation [18], and trained using Adam [27] with a step-

size of 2·10−5 on the 2014 MS-COCO training dataset [31].

The training images are centrally cropped to the largest pos-

sible square and resized to 320 × 320. At each iteration,

two images are drawn at random: the first is used as a con-

tent image, the second as a style image. Independent draws

of zero-mean uniform noise of amplitude randomly cho-

sen in [0, 0.1) is added to both images at each iteration.

Note that, unlike in several works on artistic style trans-

fer, we thus do not train our network on any painting. We

use λconv4 2
c = 0.02, λTV = 0.3, and λℓ

s = βℓ/α where

α =
∑

ℓ∈Is
‖S⊺ℓ Sℓ‖

2

F
/(c2ℓ n

′2
ℓ) and βℓ are independent ran-

dom variables taking value 0 or 0.9−1 with probability 0.9
for the latter. The normalisation α favours visually similar

degree of stylization across styles. The variables βℓ permit

us to disentangle, via (10), the effect of each style scale ℓ in

8968



Xc & Xs [15] [25] [29] Ours Xc & Xs [15] [25] [29] Ours

LTV(X): 0.107 0.235 0.254 0.210 LTV(X): 0.079 0.288 0.250 0.217

LTV(X): 0.131 0.208 0.216 0.225 LTV(X): 0.136 0.277 0.291 0.233

Xc & Xs [33] [30] Ours Xc & Xs [33] [30] Ours

Figure 5. Top: Artistic style transfer results obtained with [15, 25, 29] and our method. The achieved loss LTV(X) is reported below each

image. Bottom: Photorealistic style transfer results obtained with [33, 30], and our method.

the final result. New βℓ are drawn at each iteration.

5.2. Study of the architecture

We present in Fig. 3 artistic style transfer results for 7
different networks trained during 30 epochs: N = 1, 2, 3, 4
with L = 64 and L = 16, 32, 64 with N = 3. We remark

that the stylisation is visually improved when both N and L
increase. The mean loss achieved over 1000 pairs of content

and style images taken from the 2014 MS-COCO validation

set also improves when these parameters increase. Finally,

when using classical ReLU-decoders as backward maps, we

remark in Fig. 3 ellipsoidal structures and white artifacts

overlaid on the results. We hypothesise that the pointwise

multiplication with h(·) forces the network to better pre-

serve the contours and edges of the content image, avoiding

the presence of these parasite structures. These artefacts

appeared when training the network for arbitrary styles but

were absent when using few fixed styles.

For all remaining experiments, we fix N = 4, L = 64,

and train this network for 50 epochs.

5.3. Fast artistic style transfer

To illustrate that our network is, at least, as flexible as ex-

isting state-of-the art solutions, we present in Fig. 4 results

where we control, at runtime, the number of style scales, the

global style intensity, and where we mix different styles.

We present in Fig. 5 artistic style transfer results ob-

tained with our network and compare them with those of

[15, 25, 29]. We use βℓ = 1 for all ℓ. For [15], we minimise

LTV(X) using the L-BFGS algorithm initialised with Xc,

as our network is trained to minimise this loss starting from

this image. Qualitatively, our results are similar to those of

state-of-the-art methods. Quantitatively, the method of [15]

reaches the lowest value for LTV(X) and all the fast meth-

ods obtain similar values. The second best value is, most of

the times, obtained by our network but this is expected as it

is trained to minimise LTV (while the others are not).

5.4. Fast photo style transfer.

Photo style transfer results obtained with [30, 33] and our

method are presented in Fig. 5. We use βℓ = 1 for all ℓ and

λL = 50. We achieve stylisations of similar visual quality

as the alternative methods. Nevertheless, no methods are

exempt of artifacts. The color in our results are sometimes

“flattened”, as also noticeable in [30]. This is due to the

matting Laplacian filtering: because of it, neighboring re-

gions that are similar in the content image and that get styl-

ized slightly differently, are finally averaged. All methods

would benefit from a better filter/regularisation.

The mean computation times measured on an Nvidia

Tesla P100 Pascal GPU are reported below. Our method

method is nearly twice faster than the one of [30] at all

resolutions (columns “With Laplacian”). This advantage

is mainly due to the graph filtering technique. After re-

moving any processing involving the matting Laplacian in

both methods (hence removing the photorealistic prior), our

method is still the fastest except at the highest resolution:

With Laplacian No Laplacian

Resolution [30] Ours [30] Ours

256× 128 0.79 0.44 0.20 0.04

512× 256 3.12 1.86 0.23 0.11

1024× 512 15.23 8.11 0.34 0.37

8969



Xc & Xs [29] Ours Xc & Xs [30] Ours

Ground truth & Xref SRCNN [10] Ours - Not guided Ours - Guided Ground truth & Xref SRCNN [10] Ours - Not guided Ours - Guided

PSNR - SNR Gram 25.5 dB - 4.75 dB 28.7 dB - 6.26 dB 26.5 dB - 16.5 dB PSNR - SNR Gram 28.1 dB - 6.45 dB 32.6 dB - 8.67 dB 32.1 dB - 10.9 dB

Figure 6. Top: Frames of two video sequences stylised with [29] or [30], and with our method using temporal regularisation. The style

appears in the bottom left corner of original frames. Bottom: Informed texture super-resolution (×3 in both directions) using a user

provided texture Xref (bottom left in ground truth image). The PSNR between the reconstructed and ground truth images, and the SNR

between the VGG-19 Gram matrices of the same images are provided below each result. Results are better viewed when zooming in.

5.5. Video style transfer.

We present in Fig. 6 video style transfer results. We com-

pare our method, which includes short-term consistency,

with those of [29] for artistic style transfer and [30] for

photo style transfer. We use a video from the MPI Sin-

tel dataset [4] for artistic style transfer. To enforce both

photorealism and short-term consistency, we compose the

corresponding proximal operators for simplicity. The op-

tical flows between images are pre-computed using Deep-

Flow [50] but any fast flow estimation method could be

used. We use λR = 0.37. The videos are provided in the

supplementary material.

We remark flickering artefacts in the videos obtained

with [29, 30]. This flickering is reduced with our method

thanks to the short-term consistency regularisation. One

can argue that it is also possible to apply the temporal con-

sistency proximal operator on the results of [29, 30]. This

indeed attenuates flickering. Nevertheless, the videos pro-

vided in the supplementary material show that our results

present less flickering than the post-processed results of

[29, 30]. In Fig. 6, the lack of temporal consistency is better

noticed on the hair of the main character in the video ob-

tained with [29], and in the sky in the video obtained with

[30]. Finally, we acknowledge that the stylisation in itself

is quite different for the methods of [29, 30] and ours (even

without using the temporal consistency proximal operator).

5.6. User­guided texture super­resolution

We present in Fig. 6 user-guided super-resolution results

of textures. The downsampling operator D consists of a

Gaussian filter of size 17 × 17 with σ = 3, followed by a

downsampling with stride 3. Note that we only process the

luminance. Colors are added back for visualisation only.

We present results obtained using SRCNN [10], with our

method using βℓ = 0 for all ℓ – hence not user-guided –

and with βℓ = 1 for ℓ = conv1 1, conv2 1, conv3 1, conv4 1,

βconv5 1 = 0 for the complete proposed method. We set

λR = 50. We measure the PSNR between the reconstructed

and ground truth images and the SNR between the VGG-19

Gram matrices of the same images (as these matrices are

similar for similar textures [14]).

Our method performs better than SRCNN. This is proba-

bly explained by the fact that SRCNN is specifically trained

for bicubic downsampling, whereas we use a strided Gaus-

sian filtering. Concerning our results, similar PSNRs are

reached with and without user inputs but the SNRs between

the Gram matrices are improved with the user inputs. We

hence obtain a better reconstruction of the overall texture,

even though not pixel-accurate. Visually, our method with

user guidance permits to enhance high-frequencies.

6. Conclusion

We proposed a new deep, fully convolutional network for

fast artistic style transfer which has a key advantage: it can

be restructured at runtime to incorporate important modi-

fications of the artistic style transfer loss. Thanks to this

property, it is possible to perform photo style transfer faster

than state-of-the-art methods, video style transfer without

suffering from flickering artefacts, and user-guided super-

resolution, all without retraining. We provide additional re-

sults and discuss some limitations of the technique in the

supplementary material.

8970



References

[1] Heddy Attouch, Jérôme Bolte, and Benar F. Svaiter. Conver-

gence of descent methods for semi-algebraic and tame prob-

lems: proximal algorithms, forward–backward splitting, and

regularized Gauss–Seidel methods. Math. Program., 137(1-

2):91–129, 2013.

[2] Amir Beck and Marc Teboulle. A fast iterative shrinkage-

thresholding algorithm for linear inverse problems. SIAM J.

on Imaging Sci., 2(1):183–202, 2009.

[3] Mark Borgerding, Philip Schniter, and Sundeep Rangan.

AMP-inspired deep networks for sparse linear inverse prob-

lems. IEEE Trans. on Signal Processing, 65(16):4293–4308,

2017.

[4] Daniel J. Butler, Jonas Wulff, Garrett B. Stanley, and

Michael J. Black. A naturalistic open source movie for op-

tical flow evaluation. In European Conference on Computer

Vision (ECCV), pages 611–625, 2012.

[5] Dongdong Chen, Jing Liao, Lu Yuan, Nenghai Yu, and Gang

Hua. Coherent online video style transfer. In IEEE Interna-

tional Conference on Computer Vision (ICCV), pages 1114–

1123, 2017.

[6] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang

Hua. Stylebank: An explicit representation for neural image

style transfer. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2770–2779, 2017.

[7] Yunjin Chen and Thomas Pock. Trainable nonlinear reaction

diffusion: A flexible framework for fast and effective image

restoration. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 39(6):1256–1272, 2017.

[8] Patrick L. Combettes and Jean-Christophe Pesquet. Fixed-

Point Algorithms for Inverse Problems in Science and Engi-

neering, chapter Proximal Splitting Methods in Signal Pro-

cessing, pages 185–212. Springer Optimization and Its Ap-

plications. Springer New York, 2011.

[9] Michaël Defferrard, Xavier Bresson, and Pierre Van-

dergheynst. Convolutional neural networks on graphs with

fast localized spectral filtering. In Advances in Neural Infor-

mation Processing Systems, pages 3844–3852, 2016.

[10] Chao Dong, Chen Change Loy, He Kaiming, and Xiaoou

Tang. Learning a deep convolutional network for image

super-resolution. In European Conference on Computer Vi-

sion (ECCV), pages 184–199, 2014.

[11] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.

A learned representation for artistic style. In International

Conference on Learning Representations, 2017.

[12] Alexei A. Efros and William T. Freeman. Image quilting for

texture synthesis and transfer. In Conference on Computer

graphics and interactive techniques (SIGGRAPH), pages

341–346, 2001.

[13] Oriel Frigo, Neus Sabater, Julie Delon, and Pierre Hellier.

Split and match: Example-based adaptive patch sampling for

unsupervised style transfer. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

553–561, 2016.

[14] Leon Gatys, Alexander S. Ecker, and Matthias Bethge. Tex-

ture synthesis using convolutional neural networks. In Ad-

vances in Neural Information Processing Systems (NIPS),

pages 262–270, 2015.

[15] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

Image style transfer using convolutional neural networks. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 2414–2423, 2016.

[16] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, Aaron

Hertzmann, and Eli Shechtman. Controlling perceptual fac-

tors in neural style transfer. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 3730–

3738, 2017.

[17] Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent

Dumoulin, and Jonathon Shlens. Exploring the structure of

a real-time, arbitrary neural artistic stylization network. In

British Machine Vision Conference (BMVC), 2017.

[18] Xavier Glorot and Yoshua Bengio. Understanding the diffi-

culty of training deep feedforward neural networks. In Inter-

national Conference on Artificial Intelligence and Statistics,

volume 9, pages 249–256, 2010.

[19] Karol Gregor and Yann LeCun. Learning fast approxima-

tions of sparse coding. In International Conference on In-

ternational Conference on Machine Learning (ICML), pages

399–406, 2010.

[20] Agrim Gupta, Justin Johnson, Alexandre Alahi, and Li Fei-

Fei. Characterizing and improving stability in neural style

transfer. In 2017 IEEE International Conference on Com-

puter Vision (ICCV), pages 4087–4096, 2017.

[21] David K. Hammond, Pierre Vandergheynst, and Rémi Gri-

bonval. Wavelets on graphs via spectral graph theory. Appl.

Comput. Harmon. Anal., 30(2):129–150, 2011.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, 2016.

[23] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian

Curless, and David H. Salesin. Image analogies. In Confer-

ence on Computer graphics and interactive techniques (SIG-

GRAPH), pages 327–340, 2001.

[24] Haozhi Huang, Hao Wang, Wenhan Luo, Lin Ma, Wenhao

Jiang, Xiaolong Zhu, Zhifeng Li, and Wei Liu. Real-time

neural style transfer for videos. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 7044–

7052, 2017.

[25] Xun Huang and Serge Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. In IEEE In-

ternational Conference on Computer Vision (ICCV), pages

1510–1519, 2017.

[26] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Percep-

tual losses for real-time style transfer and super-resolution.

In European Conference on Computer Vision (ECCV), pages

694–711, 2016.

[27] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv:1412.6980, 2014.

[28] Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form

solution to natural image matting. IEEE Trans. Pattern Anal.

Mach. Intell., 30(2):228–242, 2008.

8971



[29] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Universal style transfer via feature

transforms. In Advances in Neural Information Processing

Systems (NIPS), pages 386–396, 2017.

[30] Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and

Jan Kautz. A closed-form solution to photorealistic im-

age stylization. European Conference on Computer Vision

(ECCV), pages 468–483, 2018.

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollar, and C. Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

European Conference on Computer Vision (ECCV), 2014.

[32] Risheng Liu, Xin Fan, Shichao Cheng, Xiangyu Wang,

and Zhongxuan Luo. Proximal alternating direction net-

work: A globally converged deep unrolling framework.

arXiv:1711.07653, 2017.

[33] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala.

Deep photo style transfer. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 6997–7005,

2017.

[34] Morteza Mardani, Qingyun Sun, David Donoho, Vardan Pa-

pyan, Hatef Monajemi, Shreyas Vasanawala, and John Pauly.

Neural proximal gradient descent for compressive imaging.

arXiv:1806.03963, 2018.

[35] Tim Meinhardt, Michael Moller, Caner Hazirbas, and Daniel

Cremers. Learning proximal operators: Using denoising net-

works for regularizing inverse imaging problems. In IEEE

International Conference on Computer Vision (ICCV), pages

1799–1808, 2017.

[36] Chris Metzler, Ali Mousavi, and Richard Baraniuk. Learned

d-amp: Principled neural network based compressive image

recovery. In Advances in Neural Information Processing Sys-

tems (NIPS), pages 1772–1783, 2017.

[37] Ali Mousavi and Richard G. Baraniuk. Learning to invert:

Signal recovery via deep convolutional networks. In IEEE

International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 2272–2276, 2017.

[38] Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter

Shirley. Color transfer between images. IEEE Computer

graphics and applications, 21(5):34–41, 2001.

[39] J. H. Rick Chang, Chun-Liang Li, Barnabas Poczos, B. V. K.

Vijaya Kumar, and Aswin C. Sankaranarayanan. One net-

work to solve them all — solving linear inverse problems

using deep projection models. In IEEE International Confer-

ence on Computer Vision (ICCV), pages 5889–5898, 2017.

[40] Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox.

Artistic style transfer for videos. In German Conference on

Pattern Recognition, pages 26–36, 2016.

[41] Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox.

Artistic style transfer for videos and spherical images. Inter-

national Journal of Computer Vision, 126(11):1199–1219,

2018.

[42] Shunsuke Saito, Lingyu Wei, Liwen Hu, Koki Nagano, and

Hao Li. Photorealistic facial texture inference using deep

neural networks. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2326–2335, 2017.

[43] David I. Shuman, Sunil K. Narang, Pascal Frossard, Anto-

nio Ortega, and Pierre Vandergheynst. The emerging field

of signal processing on graphs: Extending high-dimensional

data analysis to networks and other irregular domains. IEEE

Signal Processing Magazine, 30(3):83–98, 2013.

[44] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. Interna-

tional Conference on Learning Representations, 2015.

[45] Ayush Tewari, Michael Zollhöfer, Hyeongwoo Kim, Pablo

Garrido, Florian Bernard, Patrick Pérez, and Christian

Theobalt. Mofa: Model-based deep convolutional face au-

toencoder for unsupervised monocular reconstruction. In

IEEE International Conference on Computer Vision (ICCV),

pages 3735–3744, 2017.

[46] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann,

and Ken Perlin. Accelerating Eulerian fluid simulation with

convolutional networks. International Conference on Ma-

chine Learning, 70:3424–3433, 2017.

[47] Nicolas Tremblay, Gilles Puy, Rémi Gribonval, and Pierre

Vandergheynst. Compressive spectral clustering. In Interna-

tional Conference on Machine Learning (ICML), volume 48,

pages 1002–1011, 2016.

[48] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Vic-

tor Lempitsky. Texture networks: Feed-forward synthesis

of textures and stylized images. In International Conference

on Machine Learning (ICML), volume 48, pages 1349–1357,

2016.

[49] Shenlong Wang, Sanja Fidler, and Raquel Urtasun. Proximal

deep structured models. In Advances in Neural Information

Processing Systems (NIPS), 2016.

[50] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and

Cordelia Schmid. Deepflow: Large displacement optical

flow with deep matching. In IEEE International Conference

on Computer Vision (ICCV), pages 1385–1392, 2013.

[51] Dong Yang and Jian Sun. Proximal dehaze-net: A prior

learning-based deep network for single image dehazing. In

European Conference on Computer Vision (ECCV), pages

702–717, 2018.

[52] Jian Zhang and Bernard Ghanem. ISTA-Net: Interpretable

optimization-inspired deep network for image compressive

sensing. IEEE International Conference on Computer Vision

(CVPR), 2018.

8972


