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Abstract

Scene graph generation refers to the task of automati-

cally mapping an image into a semantic structural graph,

which requires correctly labeling each extracted object and

their interaction relationships. Despite the recent success in

object detection using deep learning techniques, inferring

complex contextual relationships and structured graph rep-

resentations from visual data remains a challenging topic.

In this study, we propose a novel Attentive Relational Net-

work that consists of two key modules with an object de-

tection backbone to approach this problem. The first mod-

ule is a semantic transformation module utilized to cap-

ture semantic embedded relation features, by translating

visual features and linguistic features into a common se-

mantic space. The other module is a graph self-attention

module introduced to embed a joint graph representation

through assigning various importance weights to neighbor-

ing nodes. Finally, accurate scene graphs are produced

by the relation inference module to recognize all entities

and the corresponding relations. We evaluate our proposed

method on the widely-adopted Visual Genome Dataset, and

the results demonstrate the effectiveness and superiority of

our model.

1. Introduction

Visual scene understanding [11, 15, 49] is a fundamen-

tal problem in computer vision. It aims at capturing the

structural information in an image including the object en-

tities and pair-wise relationships. As is shown in Figure 1,

each entity and relation should be processed with a broader

context to correctly understand the image at the semantic

∗Equal contribution.
†Corresponding author.

Figure 1. Illustration of the task of scene graph generation. Us-

ing our proposed Attentive Relational Network, an image can be

mapped to a scene graph, which captures individual entities (e.g.

boy, tree and grass) and their relationships (e.g. <boy-riding-

skateboard> and <weeds-behind-boy>).

level. During recent years, deep neural network based ob-

ject detection models such as Faster R-CNN [8, 31] and

YOLO [30] have achieved great improvements. However,

such conventional object detection approaches cannot cap-

ture and infer the relationships within an image.

Because of its ability to enrich semantic analysis and

clearly describe how objects interact with each other (e.g.

“a boy is riding a skateboard” in Figure 1), generating scene

graphs from images plays a significant role in multiple com-

puter vision applications, such as image retrieval [11, 28],

image captioning [16, 19, 40], visual question answer-

ing [17, 33] and video analysis [27, 43]. The highly diverse

visual appearances and the large numbers of distinct visual

relations make scene graph generation a challenging task.

Previous scene graph generation methods [9, 18, 19, 22,

37, 38, 44] locate and infer the visual relationship as a triplet

in the form <subject-predicate-object>, and the predicate

is a word used to link a pair of objects, e.g. <boy-wearing-

hat> in Figure 1. There exist various kinds of relationships

between two objects, including spatial positions (e.g. un-
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der, above), attributes/ prepositions (e.g. with, of), compar-

atives (e.g. taller, shorter) and actions/ verb (e.g. play, ride).

Most of the existing works neglect the semantic relation-

ship between the visual features and linguistic knowledge,

and the intra-triplet connections.

Moreover, previous works invariably utilize conven-

tional deep learning models such as Convolutional Neural

Networks (CNN) [18, 19, 22, 38] or Recurrent Neural Net-

works (RNN) [9, 37, 44] for scene graph generation. These

methods require to know the graph structure beforehand and

contain computationally intensive matrix operations during

approximation. In addition, most of them follow a step-

by-step manner to capture the representation of nodes and

edges, leading to neglect the global structure and informa-

tion in whole image. Effectively extracting a whole joint

graph representation to model the entire scene graph for rea-

soning is promising but remains an arduous problem.

To address the aforementioned issues, we propose a

novel Attentive Relational Network that maps images to

scene graphs. To be specific, the proposed method first

adopts an object detection module to extract the location

and category probability of each entity and relation. Then

a semantic transformation module is introduced to trans-

late entities and relation features as well as their linguis-

tic representation into a common semantic space. In ad-

dition, we present a graph self-attention module to jointly

embed an adaptive graph representation through measur-

ing the importance of the relationship between neighboring

nodes. Finally, a relation inference module is leveraged to

classify each entity and relation by a Multi-Layer Percep-

tron (MLP), and to generate an accurate scene graph. Our

main contributions are summarized as follows:

• A novel Attentive Relational Network is proposed for

scene graph generation, which translates visual infor-

mation to a graph-structured representation.

• A semantic transformation module is designed to in-

corporate relation features with entity features and lin-

guistic knowledge, by simultaneously mapping word

embeddings and visual features into a common space.

• A graph self-attention module is introduced to embed

the joint graph representation by implicitly specifying

different weights to different neighboring nodes.

• Extensive experiments on the Visual Genome Dataset

verify the superior performance of the proposed

method compared to the state-of-the-art methods.

2. Related Work

Scene Graph Generation. Significant efforts have been

devoted to this task during recent years, which can

be divided into two categories: Recurrent Neural Net-

works (RNN)-based methods [9, 37, 44] and Convolutional

Neural Networks (CNN)-based approaches [18, 19, 22, 38].

Xu et al. [37] employ RNNs to infer scene graphs by mes-

sage passing. Zellers et al. [44] introduce motifs to capture

the common substructures in scene graphs. To minimize

the effect of different input factors’ order, Herzig et al. [9]

propose a permutation invariant structure prediction model.

Li et al. [19] construct a dynamic graph to address multi

tasks jointly. While Newell et al. [22] present an associa-

tive embedding technique [23] for predicting graphs from

pixels. Yang et al. [38] propose a Graph R-CNN by utiliz-

ing graph convolutional network [12] for structure embed-

ding. Li et al. [18] present a Factorizable Net to capture

subgraph-based representations. Unlike previous work, our

proposed model focuses on discovering semantic relations

through jointly embedding linguistic knowledge and visual

representations simultaneously.

Visual Relationship Detection. Early efforts in visual

relationship detection [2, 5, 29, 32] tend to adopt a joint

model regarding the relation triplet as a unique class. The

visual embedding-based approaches [21, 36, 42, 45, 50]

place objects in a low-dimensional relation space and in-

tegrates extra knowledge. However, these works can not

learn graph structural representation, which denotes the po-

sitional and logical relationships between objects in the im-

age. Plummer et al. [26] combine different cues with learn-

ing weights for grounded phrase. Liang et al. [20] adopt

variation-structured reinforcement learning to sequentially

discover object relationships. Dai et al.. [4] exploit the

statistical dependencies between objects and their relation-

ships. Recently, various studies [10, 13, 17, 25, 39, 41, 46,

47, 48] propose relationship proposal networks by employ-

ing pair-wise regions for fully or weakly supervised visual

relation detection. However, most of them are designed for

detecting relationship one-by-one, which is inappropriate

for describing the structure of the whole scene. Our pro-

posed graph self-attention based model aims at embedding

a joint graph representation to describe all relationships, and

applying it for scene graph generation.

3. Proposed Approach

3.1. Overview

Problem Definition: We define the scene graph of an

image I as G, which describes the category of each en-

tity and semantic inter-object relationships. A set of entity

bounding boxes as B = {b1, ..., bn}, bi ∈ R
4 and their cor-

responding class label set O = {o1, ..., on}, oi ∈ C, where

C is object categories set. The set of binary relationships

between objects are referred to as R = {r1, ..., rm}. Each

relationship rk ∈ R is a triplet in a <subject-predictive-

object> format, where a subject node (bi, oi) ∈ B × O,

a relationship label lij ∈ R and an object node (bj , oj) ∈

3958



Figure 2. Overview of the proposed Attentive Relational Network. Our model mainly consists of four parts: (1) Object Detection Mod-

ule: capturing the visual feature and the location of each entity bounding box with their pair-wise relation bounding boxes. Then a softmax

function is employed to obtain initial classification scores for each entity and relation; (2) Semantic Transformation Module: producing the

semantic embedded representations by transforming label word embeddings and visual features into a common semantic space; (3) Graph

Self-Attention Module: leveraging a self-attention mechanism to embed entities via constructing an adjacency matrix based on the space

position of nodes; (4) Relation Inference Module: creating the joint global graph representation and predicting entity and relationship labels

as final scene graph result.

B ×O. R is the set of all predicates1.

Graph Inference: Each Scene graph comprises of a col-

lection of bounding boxes B, entity labels O and relation

labels R. The possibility of inferring a scene graph from an

image can be formulated as the following:

Pr(G|I) = Pr(B|I)Pr(O|B, I)Pr(R|B,O, I). (1)

The formulation can be regarded as the factorization with-

out independence assumptions. Pr(B|I) can be inferred by

the object detection module in our model described in 3.2,

while Pr(O|B, I) and Pr(R|B,O, I) can be inferred by

the rest of modules proposed in our model.

Figure 2 presents the overview of our proposed Attentive

Relational Network, which contains four modules, namely

object detection module, semantic transformation module,

graph self-attention module and relation inference module.

Our model aims at producing a joint global graph represen-

tation for the image, which contains the semantic relation

translated representation learned in semantic transforma-

tion module, and the whole entity embedded representation

captured in graph self-attention module. Finally, we com-

bine the learned global graph representation and each en-

tity/relation feature for reasoning in relation inference mod-

ule. Next we will respectively introduce the four proposed

modules in detail.

1We also adding extra ‘bg’ referred to ‘background’, denoting there is

no relationship or edge between objects.

3.2. Object Detection Module

We employ Faster R-CNN [31] as our object detector.

Then a set of predictable entity proposals B = {b1, ..., bn}
from each input image I , including their locations and ap-

pearance features, are obtained. In order to represent the

contextual information for visual relation, we generate an

union bounding box to cover object pairs with a small mar-

gin. Two types of features can be adopted for describing en-

tities and relations, i.e. the appearance feature and the spa-

tial feature (the coordinates of the bounding box). Finally,

we utilize the softmax function to recognize the category

of each entity and relation, and achieve their corresponding

classification confidence scores as the initial input to the fol-

lowing modules.

3.3. Semantic Transformation Module

Inspired by Translation Embedding (TransE) [3, 45] and

visual-semantic embedding [6], we introduce a semantic

transformation module to effectively represent <subject-

predicate-object> in the semantic domain. As depicted in

Figure 3, the proposed module leverages both visual fea-

tures and textual word features to learn the semantic rela-

tionship between pair-wise entities. It then explicitly maps

them into a common relation space. For any relation, we

define vs, vp and vo to represent the word embedding vec-

tors of category labels for subject, predicate and object. To

generate specific word embedding vectors for subject, pred-

icate and object, label scores obtained from Object Detec-
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Figure 3. Illustration of Semantic Transformation Mod-

ule. (Top): Mapping visual feature and word embedding to a

common semantic space, and inferring their relationship in the

relation space. (Bottom): An example of relation translation.

Concatenating the visual features of entities and relation (i.e. fi,

fj and fij) and their corresponding label embedding features (i.e.

‘boy’, ‘riding’ and ‘skateboard’: vs, vp and vo), and translating

them based on <subject-predicate-object> template via learned

weight matrices (i.e. W1, W2 and W3).

tion Module and word embedding of all labels are com-

bined with element-wise multiplication. In computational

linguistics, it is known that a valid semantic relation can be

expressed as the following [24]:

vs + vp ≈ vo, (2)

Similarly, we assume such a semantic relation exists among

the corresponding visual features:

fi + fij ≈ fj , (3)

where fi, fj and fij are defined as the visual representations

of entity bi, bj and their relation rij , respectively.

It is worth noting that the visual feature and word embed-

ding should be projected into a common space. Hence, we

adopt a linear model with three learnable weights to jointly

approximate Eq. (2) and Eq. (3). L2 loss is used to guide

the learning process:

Lsemantic = ‖W3 ·[fj , vo]−(W1 ·[fi, vs]+W2 ·[fij , vp])‖
2

2
,

(4)

where W1, W2 and W3 refer to the weights respectively,

and [·] denotes the concatenation operation. These learned

weight matrices can be regarded as the semantic knowledge

in relation space.

Then we need to map the visual features of detected enti-

ties (i.e. nodes) and relations (i.e. edges) with such linguistic

knowledge into a common semantic domain. The semantic

transformed representation of relation fij in the scene graph

Figure 4. Illustration of Graph Self-Attention Module for each sin-

gle node. The output feature of the i-th node can be calculated

based on its neighboring nodes’ features fj , fk, fm and fn with

their corresponding pair-wise attention weight α. Different color

arrows refer to independent attention computations as multi-head

attention (e.g. k=3 in this figure). The aggregated attentive feature

of node i is denoted as f
′

i via concatenation operation.

can be denoted as Θ(fij):

Θ(fij) = [(W1 · [fi, vs]), (W2 · [fij , vp]), (W3 · [fj , vo])],
(5)

where [·] denotes concatenation operation. Then we obtain

the embedded representation of each relation in an image.

3.4. Graph Self­Attention Module

The attention mechanism maps the input to a weighted

representation over the values. Especially, self-attention has

been demonstrated to be effective in computing representa-

tions of a single sequence [12, 34, 35]. To compute a rela-

tional representation of a singe node sequence, we introduce

a graph self-attention module that takes both node represen-

tations and their neighborhood features into consideration.

By adopting the self-attention mechanism, each node’s hid-

den state can be extracted by attending over its neighbors

and simultaneously preserve the structural relationship.

As shown in Figure 4, we define a collection of in-

put node (entity) features Fnode = {f1, f2, ..., fN}, fi ∈
R

M , and their corresponding output features F ′
node =

{f ′
1
, f ′

2
, ..., f ′

N}, f ′
i ∈ R

M ′

, where N , M and M ′ are the

number of nodes, input feature dimension and output fea-

ture dimension respectively. The attention coefficients eij
can be learned to denote the importance of node j to node

i:

eij = Λ(U · fi, U · fj), (6)

where Λ denotes attention weight vector implemented with

a single feed-forward layer. U ∈ R
M ′×M refers to learn-

able parameter weight.

We compute the eij for each neighboring node j ∈ Ni,

where Ni denotes the neighboring set of node i. Then we
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normalize the coefficients across all neighboring nodes by

the softmax function, for effective comparison with differ-

ent nodes:

αij = softmaxj(eij) =
exp(eij)

∑

k∈Ni
exp(eik)

. (7)

Therefore the coefficients computed can be formulated as:

αij =
exp(φ(ΛT [U · fi, U · fj ]))

∑

k∈Ni
exp(φ(ΛT [U · fi, U · fk]))

, (8)

where φ and [·] represent Leaky ReLU nonlinear activa-

tion and concatenation operation. Final node representa-

tion is then obtained by applying the attention weights on

all the neighboring node features. Inspired by [34], we em-

ploy multi-head attention to capture different aspect rela-

tionships from neighboring nodes. The overall output of the

i-th node is a concatenated feature through K independent

attention heads, denoted as Φ(fi):

Φ(fi) = ConcatKk=1
σ(

∑

j∈Ni

αk
ijU

kfj), (9)

where αk
ij are normalized attention coefficients by the k-th

attention mechanism, σ refers to nonlinear function, and Uk

is the input linear transformation’s weight matrix2.

Setting of Adjacent Matrix: In order to compute adja-

cent matrices, we design four strategies to determine node

neighbors based on spacial clues. Concretely, given two

bounding boxes bi and bj as two nodes, their normal-

ized coordinates of locations can be denoted as (xi, yi)
and (xj , yj), and their distance can be denoted as dij =
√

(xj − xi)2 + (yj − yi)2. Then four neighbor classifica-

tion settings are: (1) Inside Neighbor: if bi completely in-

cludes bj ; (2) Cover Neighbor: if bi is fully covered by bj ;

(3) Overlap Neighbor: if the IoU between bi and bj is larger

than 0.5; (4) Relative Neighbor: if the ratio between the rel-

ative distance dij and the diagonal length of the whole im-

ages is less than 0.5.

3.5. Relation Inference Module

After obtaining the whole relation embedded represen-

tation and entity embedded representation based on Eq. (5)

and Eq. (9) respectively, we can construct a global scene

graph representation denoted as Ω(G):

Ω(G) =

n
∑

i=1

Φ(f ′
i),

where f ′
i = [fi,

∑

j 6=i

Θ(fij)],
(10)

2In our experiments, we set k=8 following [34].

where n refers to the number of entities in the image, and
∑

and [·] denote element-wise sum and concatenation op-

eration. Then we perform recognition of entity and relation

with three layers MLP as the following:

o′i = MLP([fi,Ω(G)]),

l′ij = MLP([fij ,Ω(G)]),
(11)

where o′ and l′ refer to the predicted label of entity and re-

lation, respectively. We adopt two cross-entropy loss func-

tions in this module, and define o and l as the ground truth

label for entity and relation, respectively:

Lentity = −
∑

i

o′i log(oi),

Lrelation = −
∑

i

∑

j 6=i

l′ij log(lij).
(12)

In summary, the joint objective loss function in our Atten-

tive Relational Network can be formulated as follows:

L = λ1Lentity+λ2Lrelation+λ3Lsemantic+‖W‖2
2
, (13)

where λ1, λ2 and λ3 denote hyper-parameters to tune the

function, and W refers to all learned weights in our model.

4. Experimental Results

To validate our proposed model, extensive experiments

are conducted on the public Visual Genome Dataset [14].

4.1. Experimental Settings

Visual Genome (VG) [14] includes 108,077 images an-

notated with bounding boxes, entities and relationships.

There are 75,729 unique object categories, and 40,480

unique relationship predicates in total. Considering the

effect of long-tail distribution, we choose the most fre-

quent 150 object categories and 50 predicates for evalu-

ation [22, 37, 44]. For a fair comparison with previous

works, we follow the experimental setting in [37], and split

the dataset into 70K/5K/32K as train/validation/test sets.

Metrics: Following [1, 21], we adopt the image-wise

Recall@100 and Recall@50 as our evaluation metrics.

Recall@X is used to compute the fraction of occurring times

when the correct relationship is predicted in the top x con-

fident predictions. The rank strategy is based on confidence

scores of objects and predicates. While, we do not choose

mAP as a metric, because we can not exhaustively annotate

all possible relationships, and some true relationships may

be missing, as discussed in [21]. Besides, we also report

per-type Recall@5 of classifying individual predicate.

Task Settings: In this work, our goal is to infer the scene

graph of an image given the confidence scores of entities

and relations, while the object detection is not our main ob-

jective. Therefore, we conduct two sub-tasks of scene graph
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Table 1. Comparison results of our model and existing state-of-the-art methods on constrained scene graph classification (SGCls) and

predicate classification (PredCls) on Visual Genome (VG) [14] test set. Ours w/o ST+GSA, Ours w/ GSA, Ours w/ ST and Ours-Full

denote our baseline model, our model only with Graph Self-Attention Module, our model only with Semantic Transformation Module and

our full model, respectively. † means the results obtained from corresponding papers. Results based on our implementation is marked by

∗. The best performances are in bold.

Dataset Model
SGCls PredCls

Recall@50 Recall@100 Recall@50 Recall@100

VG

LP [21] 11.8 14.1 27.9 35.0

Message Passing [37] 21.7 24.4 44.8 53.0

Graph R-CNN [38] 29.6 31.6 54.2 59.1

Neural Motif [44] 35.8 36.5 55.8∗/65.2† 58.3∗/67.1†

GPI [9] 36.5 38.8 56.3∗/65.1† 60.7∗/66.9†

ST-GSA-nosemanticloss-sum 36.6 38.8 56.4 60.3

ST-GSA-nosemanticloss-multiply 34.0 36.8 53.5 59.7

ST-GSA-nosemanticloss-concat 36.2 38.4 55.4 59.9

ST-GSA-sum 36.9 39.1 56.6 61.1

ST-GSA-multiply 36.6 38.4 56.2 60.7

ST-GSA-nowordembed 37.3 39.8 55.7 60.6

ST-GSA-singlehead 37.9 40.1 56.3 60.9

Ours w/o ST+GSA 34.6 35.3 54.3 57.6

Ours w/ GSA 37.2 39.4 54.8 59.9

Ours w/ ST 37.3 40.1 55.2 60.9

Ours-Full 38.2 40.4 56.6 61.3

Ours-Full-unconstrained 41.4 46.0 61.6 68.9

generation to evaluate our proposed method following [37,

9]. (1)Scene Graph Classification (SGCls): Given ground

truth bounding boxes of entities, the goal is to predict the

category of all entities and relations in an image. This task

needs to correctly detect the triplet of <subject-predicate-

object>. (2)Predicate Classification (PredCls): Given a

set of ground truth entity bounding boxes with their corre-

sponding localization and categories, the goal is to predict

all relations between entities. In all of our experiments, we

perform graph-constrained evaluation, which means the re-

turned triplets must be consistent with a scene graph. In

addition, we report the results in unconstrained setting.

Compared Methods: We compare our proposed ap-

proach with the following methods on VG: Language

Prior (LP) [21], Iterative Message Passing (IMP) [37], Neu-

ral Motif [44], Graph R-CNN [38], GPI [9]. In all experi-

ments, the parameter settings of the above-mentioned meth-

ods are adopted from the corresponding papers. Note that

some of previous methods use slightly different pre-training

procedures or data split or extra supervisions. For a fair

comparison, we re-train Nerual Motif and GPI with their

released codes for evaluation, and ensure all the methods

are based on the same backbone.

4.2. Implementation Details

We implement our model based on TensorFlow [7]

framework on a single NVIDIA 1080 Ti GPU. Similar to

prior work in scene graph generation [19, 37], we adopt

Faster R-CNN (with ImageNet pretrained VGG16) [31]

as backbone in our object detection module. Follow-

ing [19, 37, 44], we adopt two-stage training, where the

object detection module is pre-trained for capturing la-

bel category possibility as our high-level feature. Further-

more, the semantic transformation module is implemented

as three 300-size layers for semantic projection, and one

fully-connected (FC) layers for feature embedding that out-

put a vector of size 500, and the word vectors were learned

from the text data of Visual Genome with Glove [24]; the

graph self-attention module is implemented by one FC layer

that outputs a vector of size 500, and we set k = 8 in Eq. (9)

as multi-head attention; the Relation Inference Module is

implemented as three FC layers of size 500 and outputs an

entity probability vector of size 150 and relation probabil-

ity vector of size 51 corresponding to the semantic labels

in the datasets. We perform an end-to-end training by em-

ploying Adam as the optimizer with initial learning rate of

1 × 10−4, and the exponential decay rate for the 1st and

2nd moment estimates are set as 0.9 and 0.999, respec-

tively. We adopt a mini-batch training with batch size 20.

The hyper-parameters in our joint loss function Eq. (12) are

set as λ1 : λ2 : λ3 = 4 : 1 : 1.

4.3. Quantitative Comparisons

As depicted in Table 1, we compare the performances

of our model with the state-of-the-art methods on Visual

Genome. We can see that our model outperforms all pre-

vious methods on the task of SGCls. Our full model

“Ours-Full” achieves 38.2% and 40.4% w.r.t Recall@50 and
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Table 2. Predicate classification recall of our full model on the test

set of Visual Genome. Top 20 most frequent types are shown. The

evaluation metric is recall@5.

predicate ours predicate ours

on 98.54 sitting on 80.89

has 98.18 between 78.62

of 96.17 under 66.17

wearing 99.46 riding 93.01

in 90.85 in front of 66.29

near 93.41 standing on 77.84

with 88.20 walking on 90.05

behind 88.72 at 73.19

holding 91.44 attached to 84.01

wears 95.90 belonging to 81.62

Recall@100, which surpass the strong baseline method GPI

by about 2% in terms of both metrics. It indicates the su-

perior capability of our model in capturing relations be-

tween entity pairs. Moreover, our full model also gener-

ates better performance in terms of PredCls, demonstrating

our model’s ability in recognizing relationship accurately.

Noting that the PredCls task is simply trying to detect pred-

icate that requires less structural information. While our

proposed semantic transformation model and graph self-

attention module perform the best in jointly learning the

graph structure. Compared to other similar graph-based

approach, e.g. Iterative Message Passing (IMP) [37] and

Graph R-CNN [38], our model can capture each node’s

representation by attending on the neighboring nodes to in-

corporate more context information and preserve the struc-

tural relationship in the image. These advantages make our

model superior to [37] and [38]. In addition, Table 2 illus-

trates per-type predicate recall performances of our mod-

els on the Visual Genome test set. We find that our model

achieves high Recall@5 of over 0.85 in most of the frequent

predicates, as well as some less frequent ones that are harder

to learn, e.g. ‘walking on’ and ‘riding’. The reason is that

our framework is able to overcome the uneven relationship

distribution by better modeling contextual information and

diverse graph representations.

4.4. Ablation Study

In this subsection, we perform ablation studies to better

examine the effectiveness of the introduced two modules.

Graph Self-Attention Module: As shown in Table 1,

the graph self-attention module (“Ours w/ GSA”) brings a

large improvement compared to our baseline model (“Ours

w/o ST+GSA”). Moreover, our model with only graph self-

attention module (“Ours w/ GSA”) outperforms Neural Mo-

tif and Graph R-CNN by 2% and 8%, respectively. The im-

provement is mainly brought by the attentive features gen-

erated from weighted neighbour embedding, which helps

each node to focus on neighbor node features according to

context relations. The overall module is thus able to cap-

ture more meaningful context across the entire graph and

Figure 5. An example of Graph Self-Attention Module. The left

illustrates the test image with object detection results. The top

right shows the attention weights from other entities to the entity

‘man’, and the bottom right depicts the ground truth scene graph.

Figure 6. An example of Semantic Transformation Module. The

left is a sample image with its entity bounding boxes visualized.

The right is a PCA visualization of entity and relation features in

three dimensional space on Scene Graph Classification. The red

dots represent detected labels for objects, predicates and subjects.

enhance the scene graph generation. In addition, we ex-

ploit the effectiveness of our proposed multi-head atten-

tion mechanism in the module. As shown in the middle

part of Table 1, ours model with multi-head obtains slightly

better performance than ours with single-head in terms of

SGCls and PredCls, suggesting the multi-head can better

capture useful information. Figure 5 illustrates an exam-

ple of graph self-attention helping to generate the scene

graph. Our model assigns higher attention weights on ‘ski’

to ‘man’ (0.667) and ‘snow’ to ‘man’ (0.154) than ‘moun-

tain’ to ‘man’ (0.099), denoting the module learns to attend

on more significant neighbor entities (e.g. ‘ski’ and ‘snow’).

The ground truth scene graph demonstrates the detected re-

lationships match the ground truth.

Semantic Transformation Module: As shown in Ta-

ble 1, our model with only semantic transformation mod-

ule (“Ours w/ ST”) outperforms all state-of-the-art results

and other variants of our model, i.e. “Ours w/o ST+GSA”

and “Ours w/ GSA”. This indicates the importance of

the proposed semantic transformation module in generat-

ing better scene graphs. Furthermore, we examine the

proposed semantic transformation loss function Lsemantic

and different approaches of feature fusion. We intro-

duce three variants with no semantic loss for feature fu-

sion, i.e. concatenate (“ST-GSA-nosemanticloss-concat”),

sum up (“ST-GSA-nosemanticloss-sum”) and element-wise

multiply (“ST-GSA-nosemanticloss-multiply”). Moreover,
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Figure 7. Qualitative results on our proposed Attentive Relational Network. Green and brown bounding boxes are correct and wrong

predictions respectively (As for brown labels, our predictions are outside the brackets, while ground truths are inside the brackets). In

scene graphs, green and brown cuboids are correct and wrong relation predictions respectively. The dotted lines denote the ground truth

relations mistakenly classified by our model. Only predicted boxes that overlap with the ground truth are shown.

we have examined other three variants with semantic

loss, i.e. sum up (“ST-GSA-sum”), element-wise multi-

ply (“ST-GSA-multiply”), visual feature only (“ST-GSA-

nowordembed”). As shown in Table 1, concatenating

projected features through our semantic transformation

achieves the best performance, suggesting our loss func-

tion, incorporating word embedding and concatenation op-

eration is effective and necessary. By examining the PCA

visualization in a 3D space illustrated in Figure 6, we dis-

cover semantic affinities among the entity type and relation

embedding of our module. Meanwhile, we notice apparent

clusters of object nodes, predicate nodes and subject nodes

in three dimension. Moreover, we find that the existing vi-

sual relationship can be translated into a common seman-

tic space (denoted as orange circle in Figure 6), where the

entity and relation nodes are connected in an approximate

linearity, e.g. <train-has-window>, <track-for-train> and

<man-near-train>. It demonstrates that our proposed mod-

ule can learn semantic knowledge to transform visual fea-

ture and word embedding into relation space which benefits

the scene graph generation tasks.

4.5. Qualitative Results

To qualitatively verify the constructed scene graph and

visual relations learned by our proposed model, Figure 7

illustrates a number of visualization examples for scene

graph generation on the Visual Genome dataset. The results

demonstrate that our model is able to semantically predict

most of visual relations in images correctly. As an example,

all of visual relationships in the scene graph are correctly

detected in Figure 7 (a), which has a complex structure and

several different types of objects. Moreover, our model is

able to resolve the ambiguity in the object-subject direc-

tion. For instance, <ear-of-man> and <man-wearing-tie>

are predicted correctly by our model in Figure 7 (b). In

addition, we observe that our model can predict predicates

more accurately than the ground truth annotations and make

more reasonable correct predictions, e.g. in Figure 7 (d)

and (f) our model outputs <elephant-has-leg> and <man-

wearing-shirt>, while the ground truth are <elephant-on-

leg> and <man-has-shirt> that are not inappropriate for

the situation. However, there are still some failure cases in

our model. First, certain mistakes stem from predicate am-

biguity, e.g. our model mislead in predicting <bottle-above-

counter> and <wire-hanging from-desk> by <bottle-on-

counter> and <wire-on-desk> in Figure 7 (f) and (e). Sec-

ond, some mistakes are caused by the failure of the detec-

tor. For example, our model fails to detect any relation be-

tween ‘food’ and ‘man’ in Figure 7 (f), and some entities

are detected inaccurately, e.g. ‘door’ and ‘stand’ are mis-

led by ‘screen’ and ‘cabinet’ in Figure 7 (b), respectively.

Advanced object detection model will be beneficial for im-

proving the performance.

5. Conclusion

In this paper, we present a novel Attentive Relational

Network for scene graph generation. We introduce a se-

mantic transformation module that projects visual features

and linguistic knowledge into a common space, and a

graph self-attention module for joint graph representation

embedding. Extensive experiments are conducted on the

Visual Genome Dataset and our method outperforms the

state-of-the-art methods on scene graph generation, which

demonstrates the effectiveness of our model.
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