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Abstract

In recent years, scene parsing has captured increasing

attention in computer vision. Previous works have demon-

strated promising performance in this task. However, they

mainly utilize holistic features, whilst neglecting the rich

semantic knowledge and inter-object relationships in the

scene. In addition, these methods usually require a large

number of pixel-level annotations, which is too expensive

in practice. In this paper, we propose a novel Knowledge

Embedded Generative Adversarial Networks, dubbed as

KE-GAN, to tackle the challenging problem in a semi-

supervised fashion. KE-GAN captures semantic consisten-

cies of different categories by devising a Knowledge Graph

from the large-scale text corpus. In addition to readily-

available unlabeled data, we generate synthetic images to

unveil rich structural information underlying the images.

Moreover, a pyramid architecture is incorporated into the

discriminator to acquire multi-scale contextual information

for better parsing results. Extensive experimental results on

four standard benchmarks demonstrate that KE-GAN is ca-

pable of improving semantic consistencies and learning bet-

ter representations for scene parsing, resulting in the state-

of-the-art performance.

1. Introduction

Scene parsing [22, 23, 42, 45, 47], i.e. assigning seman-

tic class labels to pixels in a scene image, is one of the most

crucial research topics in computer vision. It has a variety

of applications, such as autonomous driving and robot nav-

igation. As shown in Figure 1, every pixel annotated in the

image can be classified into two categories, i.e. stuff (e.g.
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Figure 1. Scene parsing with knowledge embedding. We measure

the semantic consistency between class labels to re-optimize the

parsing result, by utilizing a large-scale knowledge graph to quan-

tify the relationships between labels in the scene image.

sky, field, sea, and beach) and object (e.g. tree, people, and

dog). Because of the diversity of stuff/objects and complex

relationships between them, scene parsing still remains a

very challenging problem.

A variety of significant efforts have been devoted to this

issue in the past decades. The early attempts mainly include

non-parametric methods [40] and parametric ones [19, 37].

However, most of them work in a similar manner as coarse-

level image retrieval, making them arduous to measure ac-

curate similarities between images and pixels. Meanwhile,

these methods are lack of generality due to employing low-

level hand-crafted features for classification. Recently, most

of the state-of-the-art approaches [6, 7, 26, 44] adopt Con-

volutional Neural Network (CNN) based models for scene

parsing and have achieved very promising results. How-

ever, the above CNN based approaches tend to predict all

semantic labels independently from each other, overlook-

ing the semantic relationship between each label and pixel.

This directly leads to some failure cases including inaccu-

rate confusion categories, missing inconspicuous classes,
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and mismatching relationships between labels. Further-

more, these methods often utilize several time-consuming

post-processing procedures to enforce the spatial contiguity

in the output segmentation map, such as Conditional Ran-

dom Field (CRF) [1, 48]. In addition, they require large-

scale fully pixel-level annotated training data, which is too

expensive to obtain.

In this paper, we attempt to tackle the above problems

in a semi-supervised manner, by exploiting the underly-

ing latent structures from unlabeled and synthesized exam-

ples. Furthermore, since pixel-level annotations and inter-

label relationships are not invariably available, we attempt

to guide the training process with some extra knowledge

to capture semantic correlations between different classes.

Specifically, apart from unlabeled real data, we aim to gen-

erate plausible scene images using the Generative Adversar-

ial Networks (GAN) [15]. The generated images can com-

plement the unlabeled real images to provide more mean-

ingful structured features and benefit the subsequent pixel-

level classification task. In terms of the extra knowledge, a

typical way to provide the semantic domain knowledge is

using Knowledge Graph [33], which consists of nodes and

edges for representing concepts and inter-concept relation-

ships, respectively.

Based on the above observations, we propose a novel

GAN-based semi-supervised model for scene parsing,

namely Knowledge Embedded Generative Adversarial Net-

works (KE-GAN). As depicted in Figure 2, our KE-GAN

adopts a deconvolution-based generator to create visual data

with only noise as the auxiliary data, and employs a dis-

criminator with the Fully Convolutional Networks [26] to

parse scene images. Moreover, a pyramid architecture is

incorporated to estimate multi-scale contextual information

in a fine-grained way. The auxiliary semantic knowledge

is derived from the Knowledge Graph and embedded into

the KE-GAN, which enforces high-order semantic consis-

tencies of labels in a scene image. Through the adversarial

training, we optimize a joint objective function that consists

of a conventional multi-class cross-entropy loss with an ad-

versarial term, and a knowledge relation loss. Experimental

results on four datasets demonstrate that our KE-GAN is

beneficial for learning meaningful contextual features and

complex relationships between different labels for accurate

pixel-level classification.

Our main contributions are summarized as follows:

• We propose a novel Generative Adversarial Network

based framework, i.e. KE-GAN, for scene parsing in

a semi-supervised manner. KE-GAN generates extra

scene images for training and captures multi-scale con-

textual features with a pyramid pooling module.

• We develop a knowledge graph guided optimization

strategy during the adversarial training, which incor-

porates extra semantic knowledge into scene parsing

and improves semantic consistencies between differ-

ent labels.

• Extensive experiments on four public benchmarks

comprehensively verify the superior performance of

the proposed KE-GAN compared to the state-of-the-

art methods.

2. Related Work

Semantic Segmentation: Traditional methods [1, 37,

40, 48] utilized graph structures to extract contextual in-

formation of images, e.g. Markov Random Field (MRF) or

Conditional Random Field (CRF). Afterwards, deep learn-

ing based approaches [14, 21, 22, 23, 42, 43, 45, 47] have

been studied in a plethora of works. A multi-scale convo-

lutional network was introduced to label each pixel in [13].

Fully Convolutional Networks (FCN) [26] mapped the in-

put RGB space to a semantic pixel space by an end-to-end

training process with up-sampling filters. Dilated convo-

lutions [26, 44] were adopted to systematically aggregate

multi-scale contextual information without losing resolu-

tion. U-net [36] utilized skip connections for biomedical

image segmentation. Semi-supervised semantic segmen-

tation was tackled with deep neural networks in [18, 31].

However, they both focused on object segmentation and

neglect the semantic knowledge and complex relationships

in scene images, which is the main motivation of our KE-

GAN.

Knowledge Representation: The knowledge in the real

world can be represented as a graph structure where each

node and edge represent one entity/concept and relationship

respectively. RESCAL [30] was one of the earliest knowl-

edge graph embedding models based on matrix factoriza-

tion. TRANSE [3] introduced knowledge graph into trans-

lation embedding. Knowledge Vault [10] was proposed to

extract web-scale probabilistic knowledge repositories from

Web content. Fang et al. [12] introduced knowledge graph

into object detection. Two closely related works to ours

are [22, 45]. Liang et al. [22] adopted a semantic neuron

graph to incorporate the semantic label information. Zhao et

al. [45] employed word embedding for scene parsing. How-

ever, the above two works leveraged the annotated labels

as the extra knowledge, lacking practicality for general ap-

plications. In contrast, our proposed KE-GAN employs

a widely-adopted large-scale knowledge graph into scene

parsing.

Adversarial Learning: Recently, Generative Adver-

sarial Networks (GANs) have exhibited remarkable capa-

bilities in image generation [9, 15, 32] and representa-

tion learning [11, 15, 20, 39]. Briefly, GANs are com-

posed of a generator for synthesizing images that are dif-

ficult to distinguish from real images, and a discrimina-
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Figure 2. Overview of the proposed KE-GAN. A deconvolution based generator G constructs the extra scene images only with the noise

input. The discriminator accepts the generated data, unlabeled data and pixel-level annotated data as the input to learn class-level confidence

maps for each semantic label. Moreover, we employ Fully Convolutional Networks (FCN) to obtain the feature map, and apply a pyramid

pooling module to extract multi-scale rich contextual representations. In addition, knowledge embedding is performed with a knowledge

relation loss to re-optimize the generated scene parsing result, by utilizing a similarity matrix learned from the knowledge graph MIT

ConceptNet.

tor that is optimized to discriminate real images from gen-

erated ones. Deep Convolutional Generative Adversarial

Networks (DCGANs) [34] were introduced in an unsuper-

vised way to construct images by up-sampling. Condi-

tional GANs (cGANs) were firstly introduced for image tag

prediction [29], and then applied in video prediction [28],

text to image synthesis [35], and image-to-image transla-

tion [20, 50]. However, limited works have exploited GANs

for semi-supervised scene parsing. Luc et al. [27] presented

a generator to segment a given image into probability maps

through FCN, and the discriminator was used to distinguish

generated maps from ground truth. Souly et al. [38] pro-

posed semi- and weakly-supervised semantic segmentation

using GANs. However, our proposed KE-GAN incorpo-

rates extra domain knowledge to capture semantic correla-

tions between different classes for better semi-supervised

scene parsing performance.

3. Proposed Approach

3.1. Overview

As illustrated in Figure 2, our KE-GAN consists of a

generator and a discriminator. The generator G is a decon-

volution network, which is frequently used for image gen-

eration. The discriminator D serves as a conventional scene

parser, which adopts Fully Convolutional Networks with a

pyramid pooling module. The input of the discriminator in-

cludes the generated data, unlabeled data, and pixel-level

annotated data. The output of the discriminator is the class-

level confidence maps for each semantic label of the pixel.

The discriminator attempts to suppress the probability of

real classes for the pixel of the generated image and encour-

age high confidence of semantic labels for the pixel of the

unlabeled image through adversarial training. By virtue of

this framework, we can embed extra semantic knowledge

into the adversarial learning process. As a result, a better

knowledge-aware scene parser can be created based on the

framework. Particularly, the knowledge embedded in the

KE-GAN is derived from the MIT ConceptNet dataset [25].

A novel knowledge relation loss is utilized to re-optimize

the parsing results between neighbor pixels, by taking the

spatial positions and semantic relationships between pix-

els into consideration. It is noteworthy that during the test

we only use the discriminator network as the scene parser.

We adopt the softmax layer of the discriminator to classify

each pixel into semantic classes by outputting a set of class-

specific probability maps. Finally, we assign the label that

has the highest possibility to the corresponding pixel.

3.2. A Brief Review of GANs

Generally, GANs [15] contain a generator G and a dis-

criminator D, which are iteratively optimized in an adver-

sarial way. We follow the adversarial training process, i.e.

the generator G tries to model the underlying data distribu-

tion and confuse the discriminator D, and D aims at distin-

guishing the fake samples generated by G from the ground

truth (i.e. true distribution pdata(x)). In other words, G and

D are competitors in a min-max game. The loss function of

optimizing GAN is formulated as follows:

min
G

max
D

V(D,G) =Ex∼pdata(x)[log(D(x))]+

Ez∼pz(z)[log(1−D(G(z)))],
(1)

where E is the empirical estimate of the probability. A noise

variable z from distribution pz is fed into G, and the out-

put is denoted as G(z). Distribution pz is expected to con-
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verge to distribution pdata. Minimizing log(1 −D(G(z)))
is equivalent to maximizing log(D(G(z))).

3.3. Generator

Synthesizing scene images only needs a forward pass

through the generator G. The generator network of KE-

GAN contains four deconvolution layers that transform

noise into images, as manifested in Figure 2. In particular,

all the deconvolution layers are followed by batch normal-

ization (BN) and rectified linear units (ReLU) based non-

linear activation. The noise term z is a 100-dimensional

vector sampled from a uniform distribution pz(z). Then,

we expect the synthetic image to resemble samples from the

real data distribution, and the generator loss is formulated as

the following:

LGANG
= Ez∼pz(z)[log(1−D(G(z)))]. (2)

3.4. Discriminator

The discriminative network D is proposed as a fully con-

volutional network [26, 38] with a pyramid pooling module

to classify each pixel. Because of limited training data with

pixel-level labels, we aim to leverage unlabeled data for

improving the performance of the pixel classifier. To this

end, the input of D includes three types of data: unlabeled

scene images, images generated by G and scene images

with pixel-level annotations. The discriminator is utilized

to predict whether a pixel sample x fits the true distribu-

tion of data or not, and assign a label y to each pixel, where

y ∈ [1, ...,K], and K is the number of semantic classes.

The x refers to the pixel in a scene image rather than an

image. The discriminator is utilized to predict whether a

pixel sample x fits the true distribution of data or not, and

assigns a semantic label y to each pixel x or not. By adding

fake samples as another category, the discriminator D will

output K + 1 confidence maps for each pixel. D attempts

to suppress the probability of real classes for generated data

and encourage high confidence of semantic labels for unla-

beled data. The discriminator loss is:

LGAND
=− Ex∼pdata(x)[log(D(x))]

− Ez∼pz(z)[log(1−D(G(z)))]

+ γEx,y∼p(y,x)[C(y, P (y|x,D))],

(3)

where

D(x) = [1− P (y = fake|x)], (4)

C denotes the cross-entropy loss between labels and pre-

dicted probabilities by D(x), and P (y|x) denotes the prob-

ability of assigning label y to pixel x. The first term in

LGAND
is to reduce the possibility of assigning pixels to

the fake class for unlabeled data, the second term is devised

to distinguish fake samples generated by G from real data

for D, and the third term forces all pixel to be classified

accurately as one of the K categories for labeled data.

3.5. MultiLevel Pyramid Pooling

Inspired by multi-scale representation in deep learn-

ing [16, 46], it is rewarding to incorporate the information

from different sub-regions to construct the global context.

Thus, we introduce a pyramid pooling module as part of the

discriminator, which is capable of extracting global contex-

tual information effectively. As illustrated in Figure 2, we

employ four pyramid scales in our model in a coarse-to-fine

way, of which bin sizes are 1 × 1, 2 × 2, 3 × 3, and 6 × 6,

respectively. The coarser level indicates the output of the

global pooling of a single bin. In the next level, the whole

feature map is divided into multiple sub-regions, and the

pooled features for different locations are constructed. We

adopt the 1 × 1 convolution layer to reduce the dimension

of our contextual representation. As such, the pyramid size

in the N -th level is reduced to 1/N . Then, we upsample the

low-dimensional feature maps to maintain the same size via

bilinear interpolation. Finally, we concatenate representa-

tions from different levels into the final global representa-

tion.

In practice, the discriminator of KE-GAN extracts fea-

ture maps via utilizing a pre-trained ResNet model [17].

Subsequently, we adopt the Fully Convolutional Networks

with the 4-level pyramid pooling module to fuse multi-level

representations as the global prior information. Finally, we

concatenate the prior with the original feature map, which

is followed by a convolution layer to generate the final pre-

diction map.

3.6. Knowledge Graph Embedding

As we mentioned previously, one core issue of scene

parsing is how to preserve the semantic consistency. How-

ever, the complex relationships between different semantic

labels are arduous to capture from limited training data. The

Knowledge Graph [33] can capture millions of concepts or

entities and their complex relationships. Thus, it is ben-

eficial to adopting the extra knowledge from a large-scale

knowledge graph to measure the similarity and extract the

relationship between a pair of semantic labels. In the knowl-

edge graph, each label can be denoted as a node and the re-

lationship between different labels can be an edge. Hence,

we can create a chain of relationships between labels. As

an example, “computer” and “chair” are not directly con-

nected, but we can find a chain of edges “computer above

desk” and “desk beside chair” to indicate that they still have

some semantic consistency.

To preserve the semantic consistency in a scene, we em-

ploy a crowd-sourced knowledge graph, i.e. MIT Concept-

Net [25], which includes more than 4 million concepts and

9 million relationships. We also incorporate a constraint

for measuring the similarity between labels, as depicted in

Figure 2. Given a set of pre-defined labels (or concepts)

L = l1, l2, ..., ln, we formulate S as an L × L similarity
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symmetric matrix to record the degree of semantic consis-

tency between labels l and l′, ∀(l, l′) ∈ L. Thus, the matrix

S can model the prior knowledge and relationships between

different labels. To construct S, we follow [12] and employ

random walk with restart [41] to quantify the semantic con-

sistency on a knowledge graph. The random walk is a se-

quence of nodes (v0, v1, ..., vt), and p(vt = l′|v0 = l;α)
means that the probability of reaching concept l′ in t steps

if it starts from l, where α means the random probability

of restart random walk. Through computing the probability,

we formulate Ri,j as the final higher probability to imply

that we can find shorter paths from node i to j, also sug-

gesting that the semantic consistency Si,j is higher. More

details can be found in [41]. Consequently, the matrix S can

be computed as follows:

Rl,l′ = lim
t→∞

p(rt = l′|r0 = l;α),

Sl,l′ = Sl′,l =
√

Rl,l′Rl′,l.
(5)

We define ŷi as the semantic label predicted by the dis-

criminator network and yi as the ground truth at pixel i, re-

spectively. Then, we formulate the knowledge relation loss

between two pixels based on the similarity with Kullback-

Leiber divergence:

Li,j
r =

{

DKL(ŷj ||ŷi) if yi = yj ,

max{0,M −DKL(ŷj ||ŷi) · Sŷj ,ŷi
} otherwise,

(6)

where the Kullback-Leiber divergence DKL is formulated

for two Bernoulli distribution P and Q with parameters p
and q respectively: DKL(P ||Q) = p log p/q + p log p/q
for p, q ∈ [0, 1]. Specifically, the KL divergence will be

minimized when the ground truth label of the pixel i equals

to the one of its neighbor j; otherwise, the KL divergence

will be maximized until margin M . The overall knowledge

relation loss is the average one over all pixels, as the follow-

ing:

Lr =
1

nm

n
∑

i=1

m
∑

j=1

Li,j
r , (7)

where n and m are the number of all the pixels and their

neighbors, respectively. Hence, the knowledge relation loss

is employed to make the labels assigned to the neighbor pix-

els which are more similar based on the knowledge graph

and generate more reasonable parsing results.

3.7. Joint Objective

Finally, the joint loss of our KE-GAN can be formulated

as:
{

LG = LGANG
,

LD = λgLGAND
+ λrLr,

(8)

where λg and λr are the hyper-parameters used for training.

We train the generator G and the discriminator D alternately

until optimality. Finally, G generates scene images as extra

training examples, and D becomes a reliable estimator and

outputs the desired scene parsing results through adversarial

training.

4. Experimental Results

In this section, we evaluate our framework in terms

of scene parsing on four public datasets, i.e. ADE20K,

Cityscapes, SiftFlow and CamVid. We mainly conduct

two tasks in our experiments, i.e. fully-supervised scene

parsing by adopting all of the labeled data for training, and

semi-supervised scene parsing by utilizing a part of labeled

data for training.

4.1. Experimental Settings

ADE20K [49] is the most challenging scene parsing

dataset, which was also used in ImageNet scene parsing

challenge 2016. There are up to 150 semantic classes and

totally 1,038 image-level labels on this dataset. Follow-

ing [49], we divide the dataset into 20K, 2K, and 3K im-

ages for training, validation, and test for fully supervised

learning. As for semi-supervised learning, we employ 30%
of the pixel-level annotated data and regard the rest as the

unlabeled data.

Cityscapes [8] consists of 19 semantic categories. There

are 50 videos with a high resolution of 2048×1024 in driv-

ing scenes collected from different European cities. Each

annotated frame utilized in the training process is the 20th

frame of a 30-frame snippet. Following [8], we split the

whole dataset into three parts: i.e. 2,975 training samples,

500 validation samples, and 1,525 test samples w.r.t. fully

supervised learning. In contrast, for semi-supervised train-

ing, we only employ 30% of the pixel-level annotated data,

and the rest are considered as the unannotated images.

SiftFlow [24] contains 2,688 images in eight outdoor

scenes with a resolution of 256 × 256, belonging to 33 se-

mantic classes. We follow [24] and adopt 2,488 images for

training and 200 images for test with respect to fully super-

vised training. While for semi-supervised training, we only

adopt 50% of the labeled data and treat the rest as unlabeled

data.

CamVid [4] is composed of over ten minutes’ videos,

including about 11K frames, of which 701 images with a

resolution of 960 × 720 are pixel-level annotated. There

are 32 semantic labels. Following [2], we choose 70% and

30% of the labeled images as the training set and the test set,

respectively. In our experiments, we adopt the training set

for fully supervised learning and all the unlabeled frames as

the unlabeled data for semi-supervised learning.

Evaluation Metrics: Similar to most previous works,

we adopt three standard evaluation metrics: i.e. per-

class accuracy (CA), per-pixel accuracy (PA), and mean

Intersection-over-Union (mIoU). Specifically, PA is defined
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Table 1. Comparison results of our KE-GAN and several state-of-the-art scene parsing methods on two large-scale datasets. We use fully

labeled training data for fully-supervised training and 30% labeled data for semi-supervised training. The best results are in bold.

Methods
ADE20K Cityscapes

CA PA mIoU CA PA mIoU

FCN [26] 40.3 71.3 29.4 34.4 85.7 66.0

SegNet [2] 31.1 71.0 21.6 41.4 87.2 57.0

DilatedNet [44] 44.6 73.5 32.3 42.0 86.5 67.1

DeepLab v2 [5] 46.6 75.8 33.9 42.6 86.4 70.4

CascadeNet [49] 48.3 74.5 34.9 N/A N/A N/A

PSPNet(Res-101) [46] N/A 80.6 41.9 N/A N/A N/A

WiderNet [42] N/A 81.1 43.7 N/A N/A 80.1

RefineNet(Res-101) [23] N/A N/A 40.7 N/A N/A 73.6

PSANet(Res-101) [47] N/A 81.5 43.7 N/A N/A 78.4

DSSPNNet(Res-101)Universal [22] N/A 81.3 43.6 N/A N/A 75.5

KE-GAN Fully-Supervised 50.2 80.5 37.1 43.7 89.3 75.3

KE-GAN Semi-Supervised 46.2 78.9 35.2 41.5 87.2 71.6

as the percentage of all correctly classified pixels, while CA

is the average of all category-wise accuracies.

Compared Methods: We compare our method with

several state-of-the-art approaches, including FCN [26],

SegNet [2], DilatedNet [44], DeepLab v2 [5], the cascade

model [49], PSPNet [46], WiderNet [42], RefineNet [23],

PSANet [47], DSSPNNet [22] and Souly fully-supervised

and semi-supervised methods [38]. In all the experiments,

the parameter settings of the above-mentioned methods are

adopted from the corresponding papers.

4.2. Implementation Details

All the implementations are based on the open source

PyTorch1 framework. All the framework is trained on a sin-

gle NVIDIA 1080 Ti GPU. In the experiments, the mini-

batch size is set to eight and the Adam optimizer is used for

training the generator. The learning rate is set to 1× 10−4,

and the weight decay factor is 0.5 for every 2,000 iterations.

The discriminator is trained with the standard Adam opti-

mizer with the learning rate of 1 × 10−6, and the momen-

tum and weight decay are set to 0.9 and 0.0001, respec-

tively. Based on the cross-validation on the training data,

the hyper-parameters in the loss function, i.e. λg and λr,

are set to 0.1 and 0.001, respectively, and γ is set to 2 em-

pirically. For the stability of knowledge graph embedding,

we set the random walk restarting probability α = 0.15,

and the margin M in the knowledge relation loss is set to

3.0 for all the experiments. In practice, we randomly shuf-

fle or interleave the labeled data, unlabeled data and gen-

erated data during the training process for semi-supervised

learning, and continue the learning process after 3,000 itera-

tions with only labeled data due to the stability of the model.

Meanwhile, we average the experimental results with differ-

ent seeds to ensure robust evaluations. We update the gener-

ator network and the discriminator network iteratively, and

1https://pytorch.org/.

only employ the discriminator for outputting the scene pars-

ing results in the test phase.

4.3. Results and Analysis

Results on ADE20K: Quantitative comparison results

are shown in Table 1. In the fully supervised setting, our

framework outperforms other state-of-the-art methods in

terms of CA. KE-GAN with the semi-supervised setting

achieves competitive performance with other fully super-

vised approaches, which implies that the proposed adver-

sarial training scheme can compensate for the lack of an-

notated data and capture the global contextual information

for better performance. By using knowledge graph em-

bedding, our method using fully-supervised training signif-

icantly surpasses the strong baseline models (FCN, SegNet,

and Deeplab v2) by 3% to 10% in terms of CA and mIoU,

once again demonstrating the capability of our model in

improving the classification of semantic labels. Note that

the PA of our semi-supervised KE-GAN is less than 1.5%
compared to the fully-supervised setting, which indicates

that KE-GAN under semi-supervised training can learn dis-

tinctive representations of each semantic category for pixel-

level classification given limited annotated data. Some qual-

itative results of our method on the ADE20K dataset are il-

lustrated in Figure 3. As can be seen, the parsing results

with adversarial training are much smoother, and the class

probabilities regarding large areas are enhanced using our

model.

Results on Cityscapes: The detailed results are reported

in Table 1 and Figure 4. As we can see from the table, our

method with fully-supervised and semi-supervised training

achieve the best and comparable results to the state-of-the-

art methods, respectively w.r.t CA and PA. It is demon-

strated that the pyramid-structure GANs and knowledge

graph embedding increase per-class and per-category accu-

racy. Meanwhile, our model with adversarial training and
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Table 2. Performance comparisons of our method and the state-

of-the-art approaches on the Cityscapes dataset w.r.t. mIoU with

different amount of data. The best results are in bold.

Methods 1/8 1/4 1/2 Full

FCN [26] N/A N/A N/A 66.0

Dilation [44] N/A N/A N/A 67.1

Deeplab v2 [5] N/A N/A N/A 70.4

Baseline+pyramid 62.6 65.5 69.9 72.6

Baseline+pyramid+LGANG/GAND
66.1 69.2 71.5 73.6

Baseline+pyramid+Lr 63.7 66.3 70.3 72.9

Baseline+pyramid+LGANG/GAND
+Lr 66.9 70.6 72.2 75.3

knowledge embedding is especially beneficial for capturing

the interactions among labels by generating realistic images

shown in Figure 4, in addition to leveraging the contextual

information.

Components Analysis on Cityscapes: As can be seen

from Table 2, we conduct further experiments on Cityscapes

to analyze and identify the effect of each component of our

KE-GAN. We randomly sample 1/8, 1/4, and 1/2 of the

training data as the labeled data, and use the rest as the un-

labeled data. Firstly, we adopt the FCN net as our baseline

model, and we analyze how much the pyramid module con-

tributes to scene parsing. We can see that the pyramid mod-

ule boosts about 7% w.r.t. mIoU compared to the baseline,

which demonstrates the effectiveness of multi-level repre-

sentation extracted by pyramid pooling. Secondly, we intro-

duce the adversarial loss LGANG/GAND
into the model, and

it leads to consistent performance improvement on differ-

ent amount of training data, e.g. from 2% to 4%, suggesting

that our adversarial training scheme can encourage the pars-

ing model to learn the structural information and distinguish

representation from the distribution of ground truth data. Fi-

nally, we examine the effect of integrating the knowledge

relation loss Lr into our model. Obviously, the whole KE-

GAN framework achieves the best performance. Therefore,

if the extra semantic knowledge from Knowledge Graph

is not embedded into our KE-GAN, the generated confi-

dence map and the pair-wise label relationship captured by

the discriminator would be meaningless and inconsistent,

deteriorating the final parsing performance. Moreover, we

can observe that our Baseline+pyramid only with the adver-

sarial loss achieves better performance than that only with

knowledge embedding, demonstrating that LGANG/GAND

is more important in our KE-GAN. In addition, by using

different numbers of labeled data for semi-supervised learn-

ing, our whole model still achieves 5% to 10% performance

gain over fully-supervised FCN/Dilation/DeepLab v2. All

the above observations indicate that semi-supervised learn-

ing is crucial for our model and each component of KE-

GAN works effectively and complementarily.

Results on SiftFlow: The results on SiftFlow are de-

picted in Table 3. Generally, KE-GAN outperforms the

state-of-the-art. In particular, by combining the adversarial

Figure 3. Qualitative parsing results on the ADE20K dataset. The

improved labeled results by our KE-GAN are denoted in yellow

box.

Figure 4. Qualitative parsing results and generated examples on

the Cityscapes dataset.

training and the knowledge relation constraint, our model

with semi-supervised learning obtains the best perfor-

mance, improving 4% and 6% across all metrics compared

to Souly Semi-Supervised and Fully-Supervised methods,

respectively. Figure 5 exhibits a few qualitative results ob-

tained using our approach. These results suggest that even

the small objects (e.g. person, trail and different building)

can be labeled correctly.
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Figure 5. Qualitative parsing results on the SiftFlow and CamVid

datasets. The improved labeled results by our KE-GAN are de-

noted in yellow box.

Results on CamVid: Finally, we evaluate our KE-GAN

on the CamVid dataset. Table 4 denotes the quantitative

results, where our KE-GAN with fully supervised learning

obtains the best performance in terms of PA, improving the

per-class accuracy from 2% to 7%. This indicates that our

model is capable of recognizing more per pixel accurately.

Moreover, KE-GAN with semi-supervised training achieves

the best results w.r.t. CA and mIoU. The reason why our

KE-GAN with semi-supervised learning can outperform

that with fully-supervised learning is that our KE-GAN

can generate more images as additional training examples

for adversarial learning to recognize semantic classes ac-

curately on such a small-scale dataset. From the qualita-

tive results in Figure 5, we can see that our KE-GAN learns

better hidden structure and knowledge relation, which con-

tribute to the enhanced parsing results. Through knowledge

embedding, our KE-GAN can also learn reasonable logistic

relationships between objects, such as sky and mountains

at the top, and buildings at the bottom. Moreover, a few

small objects (e.g. pole, pedestrian or bicyclist) can be la-

beled correctly by employing extra data, which shows that

introducing extra data generated by our KE-GAN is benefi-

cial to refining the segmentation performance.

In summary, it is clear that the auxiliary data gener-

ated by adversarial training boosts the performance of scene

parsing, where there is only limited labeled data. This is

also the reason why semi-supervised KE-GAN can achieve

better performance than that with full-supervised learning

on small-scale datasets, e.g. CamVid and SiftFlow. Further-

Table 3. Performance comparisons on the SiftFlow dataset with all

labeled data for fully supervised learning and 50% of annotated

data for semi-supervised learning. The best results are in bold.

Methods PA CA mIoU

Souly Fully-Supervised [38] 79.0 28.3 21.0

Souly Semi-Supervised [38] 81.0 33.0 23.2

KE-GAN Fully-Supervised 83.2 36.1 25.9

KE-GAN Semi-Supervised 85.3 37.6 27.2

Table 4. Performance comparisons on the CamVid dataset using

fully labeled training data and 1K unlabeled frames from the cor-

responding videos. The best results are in bold.

Methods PA CA mIoU

SegNet-Basic [2] 82.2 62.3 46.3

SegNet-Pretrained [2] 88.6 65.9 50.2

DeepLab v2 [5] 84.6 62.6 61.6

Souly Fully-Supervised [38] 88.4 66.7 57.0

Souly Semi-Supervised [38] 87.0 72.4 58.2

KE-GAN Fully-Supervised 89.2 75.3 60.2

KE-GAN Semi-Supervised 87.9 76.5 61.9

more, the adversarial loss we proposed is able to learn more

meaningful features for pixel-level classification. In addi-

tion, introducing the semantic consistency with our knowl-

edge relation loss derived from the knowledge graph helps

the discriminator to discover the relationships among labels,

and improves category-level classification. Note that our

model focuses on the task of semi-supervised scene parsing,

and thus adopts a basic structure similar to FCN for segmen-

tation. Our KE-GAN can be combined with the state-of-the-

art segmentation models for further improved performance.

5. Conclusion

In this paper, we propose a novel GANs based frame-

work for semi-supervised scene parsing with knowledge

embedding. The proposed KE-GAN generates scene im-

ages for data augmentation, deriving and quantifying se-

mantic consistency with the help of a large-scale knowl-

edge graph. For extracting rich contextual information

from scene images, a pyramid pooling module is designed

and integrated into the discriminator to segment scene im-

ages in pixel levels. Extensive experiments conducted on

four widely-adopted datasets have indicated that our ap-

proach outperforms the state-of-the-art semi-supervised ap-

proaches and achieves competitive performance with fully-

supervised methods.
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