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Abstract

In this paper, we propose a deep learning architecture

that produces accurate dense depth for the outdoor scene

from a single color image and a sparse depth. Inspired

by the indoor depth completion, our network estimates sur-

face normals as the intermediate representation to produce

dense depth, and can be trained end-to-end. With a modified

encoder-decoder structure, our network effectively fuses the

dense color image and the sparse LiDAR depth. To address

outdoor specific challenges, our network predicts a confi-

dence mask to handle mixed LiDAR signals near foreground

boundaries due to occlusion, and combines estimates from

the color image and surface normals with learned atten-

tion maps to improve the depth accuracy especially for dis-

tant areas. Extensive experiments demonstrate that our

model improves upon the state-of-the-art performance on

KITTI depth completion benchmark. Ablation study shows

the positive impact of each model components to the final

performance, and comprehensive analysis shows that our

model generalizes well to the input with higher sparsity or

from indoor scenes.

1. Introduction

Measuring dense and accurate depth for outdoor en-

vironment is critically important for various applications,

such as autonomous driving and unmanned aerial vehicles.

Most of the active depth sensing solutions for indoor envi-

ronment fail due to strong interference of the passive illumi-

nation [11, 41], and stereo methods usually become less ac-

curate for distant areas due to lower resolutions and smaller

triangulation angles compared to the close areas [45]. As

a result, LiDAR is the dominating reliable solution for the

outdoor environment. However, the high-end LiDAR is

prohibitively expensive, and the commodity level devices

suffer from the notorious low resolution [27] which causes

troubles for perception in middle or long range area. Spa-
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DeepLiDAR: Our Dense Prediction (colored with input color image)

DeepLiDAR: Our Dense Prediction (colored with surface normal)

Figure 1. Our system takes as input a color image and a sparse

depth image from the LiDAR (Row 1), and output a dense depth

map (Row 2). Rather than directly producing the complete depth,

our model estimates surface normals (Row 3) as the intermediate

representation which is helpful to produce accurate depth.

tial and temporal fusion provide denser depth but either re-

quires multiple devices or suffers from dynamic objects and

latency. An affordable solution for immediate access of the

dense and accurate depth still does not exist.

One promising attempt is to take a sparse but accu-

rate depth from a low-cost LiDAR and make it dense with

the help of an aligned color image. With the great success

of deep learning, an obvious approach is to directly feed

the sparse depth and color image into a neural network and

regress for the dense depth. Unfortunately, such a black-box

does not work equally well compared to interpretable mod-

els, where local depth affinity is learned from color image

to interpolate the sparse signal. For indoor scenes, Zhang

et al. [55] estimated the surface normals as the intermediate

representation and solved for depth via a separate optimiza-

tion, which achieved superior results. However, it is not

well studied if the surface normal is a reasonable represen-

tation for the outdoor scene and how such system performs.

In this work, we propose an end-to-end deep learning

system to produce dense depth from sparse LiDAR data and

a color image taken from outdoor on-road scenes leveraging
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Figure 2. Sensitivity to noise. Reconstructing depth from normal

becomes more sensitive to the noise/error in the estimated normal

when the distance goes up. We show two cases to estimate the

depth of the neighboring pixel via correct (green) and noisy (yel-

low) normal. The further case results in much larger error (red)

compared to the closer one even though the surface normal error

is the same (15◦) for two cases.

surface normal as the intermediate representation. We find

it non-trivial to make such a system work equally well as in

the indoor environment, generally because of the following

three challenges:

Data Fusion. How to combine the given sparse depth and

dense color image is still an open problem. One common

manner is to concatenate them (usually with a binary mask

indicating the pixel-wise availability of the LiDAR depth)

directly as the network input (i.e. early fusion), in which the

network has the best access to all sources of inputs starting

from the encoder. However, the result may produce artifacts

near the boundaries of the missing values, or merely copy

depth from where it is available but fail otherwise. Inspired

by the idea of leveraging intermediate affinity, we design

an encoder-decoder architecture, namely deep completion

unit (DCU), where separate encoders learn affinity from the

color image and features from the sparse depth respectively,

while the decoder learns to produce dense output. The DCU

falls in the style of late fusion architecture but different in

that the feature from the sparse depth is summed into the

decoder rather than ordinary concatenation. The summation

[5] favors the features on both sides in the same domain, and

therefore encourages our decoder to learn features more re-

lated with depth in order to keep consistent with the feature

from the sparse depth. This also saves network parameters

as well as inference memory. Empirically, we find DCU

benefits both the intermediate surface normal and the final

depth estimation.

Sensitivity to Noise. Zhang et al. [55] demonstrated that

surface normals of indoor scenes are easier to estimate than

absolute depth and sufficient to complete the depth given

incomplete signals. However, in outdoor scenes, solving

depth from normals does not work ubiquitously well espe-

cially for the distant area mainly due to the perspective ge-

ometry. As shown in Fig. 2, the same surface normal error

causes much larger distance error for the horizontal road

surface in the far area compared to the close range area.

Having these areas hard to be solved from surface normals

geometrically, we propose to learn them directly from the

raw inputs. Therefore, our model contains two pathways to

estimate dense depth maps from the estimated surface nor-

mals and the color image respectively, which are then in-

tegrated via automatically learned attention maps. In other

words, the attention maps learn to collect better solution for

each area from the pathway that is likely to perform better.

Occlusion. As there is almost inevitably a small displace-

ment between the RGB camera and the LiDAR sensor, dif-

ferent depth values are normally mixed with each other

along the boundaries due to occlusion when warping Li-

DAR data to the color camera coordinate, especially for

the regions close to the camera (Fig. 5 (b)). Such mixture

of depth confuses the model and causes blurry boundaries.

Ideally, the model should downgrade the confidence of the

sparse depth in these confusing area and learn to fill in us-

ing more reliable surroundings. We propose to learn such

a confidence mask automatically, which takes the place of

the binary availability mask feeding into the surface nor-

mal pathway. Even though without ground truth, our model

self-supervisely learns this occlusion area containing over-

lapping sparse depth.

Our full pipeline is shown in Fig. 3. The contribu-

tions of this work are as follows. Firstly, we propose an

end-to-end neural network architecture that produces dense

depth from a sparse LiDAR depth and a color image using

the surface normal as the intermediate representation, and

demonstrate that surface normal is also a good local depth

representation for the outdoor scene. Secondly, we propose

a modified encoder-decoder structure to effectively fuse the

sparse depth and the dense color image. Thirdly, we in-

vestigate the challenges for outdoor scenarios, and design

the network to automatically learn a confidence mask for

occlusion handling, and attention maps for the integration

of depth estimates from both the color image and normals.

Lastly, our experiment shows that out model significantly

outperforms the state-of-the-art on benchmarks and gener-

alizes well to input sparsity and indoor scenes.

2. Related Work

Depth prediction from sparse samples. Producing dense

depth from sparse inputs starts to draw attention when ac-

curate but low-res depth sensors, such as low-cost LiDAR

and one-line laser sensors, become widely available. Some

methods produced dense depth or disparity via wavelet

analysis [16, 30]. Recently, deep learning based approaches

were proposed and achieved promising results. Uhrig et

al. [48] proposed sparsity invariant CNNs to deal with the

variant input depth sparsity. Ma et al. [34] proposed to

feed the concatenation of the sparse depth and the color

image into an encoder-decoder deep network, and further

extended with self-supervised learning [33]. Jaritz et al.

[20] combined semantic segmentation to improve the depth

completion. Cheng et al. [6] learned an affinity matrix to

guide the depth interpolation through a recurrent neural net-
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Figure 3. The pipeline of our model. Our model consists of two pathways. Both starting from a RGB image, a sparse depth, and a binary

mask as the inputs, the surface normal pathway (lower half) produces a pixel-wise surface normal for the scene, which is further combined

with the sparse input depth and a confidence mask estimated from the color pathway to produce a dense depth. The color pathway produces

a dense depth too. The final dense depth output is the weighted sum of the depths from two pathways using the estimated attention maps.

work. Compared to these work, our model is more physi-

cally driven and explicitly exploits surface normals as the

intermediate representation.

Depth refinement for indoor environment. In the in-

door environment, the quality of the depth from commod-

ity RGB-D sensors is not ideal due to the limitation of

the sensing technologies [3, 37, 11]. A lot of works have

been proposed to improve the depth using an aligned high-

resolution color image. One family of approach is depth

super-resolution that targets improving the resolution of the

depth image [35, 43, 15, 53, 32, 23, 36, 47]. These meth-

ods assume a low-resolution but dense depth map with-

out missing signal. The other family of methods is color

image guided depth inpainting, which potentially handles

large missing area with arbitrary shape. Traditional meth-

ods use color as the guidance to compute local affinity or

discontinuity [18, 14, 44, 2, 12, 54, 58, 1]. Even though

deep learning has been widely used in image inpainting

[49, 38, 29, 52], extension of these networks to color guided

depth inpainting is not well studied. Zhang et al. [55] pro-

posed to estimate surface normals and solve for depth via a

global optimization. However, it is still unclear if normals,

as the intermediate representation for depth, still work for

the outdoor scenes.

Depth estimation from a single RGB image. There are a

lot of works estimating depth from only a single color im-

age. Early methods mainly relied on the hand-crafted fea-

tures and probabilistic graphical models [42, 21, 22, 24, 31].

With the development of deep learning, many methods

[9, 25, 40, 28] based on deep neural networks have been

proposed for the single-view depth estimation due to the

strong feature representation of deep networks. For exam-

ple, Eigen et al. [9] proposed a multi-scale convolutional

network to predict depth from coarse to fine. Laina et al.

[25] proposed a single-scale but deeper fully convolutional

architecture. Liu et al. [28] combined the strength of deep

CNN and continuous CRF in a unified CNN framework.

There are also some methods [8, 26, 4, 39] which exploit

surface normals during the depth estimation. Eigen et al.

[8] and Li et al. [26] proposed architectures to predict depth

or normals but independently. Chen et al. [4] used sparse

surface annotation as supervision for depth estimation but

not intermediate representation. Qi et al. [39] jointly pre-

dicted depth and surface normal based on two-stream CNNs

and focused on indoor scenes. Most recently, some unsu-

pervised methods [57, 13, 51] were also proposed. Even

though these methods produced plausible depth estimation

from a single color image, they do not handle sparse depth

as an additional input and are not suitable to recover high-

quality depth. Moreover, our method is the first to use sur-

face normals as the intermediate representation for the out-

door depth completion.

3. Method

Our model is an end-to-end deep learning framework

that takes an RGB image and a sparse depth image repro-

jected from LiDAR as inputs and produce a dense depth im-

age. As illustrated in Fig. 3, the whole network mainly con-

sists of two pathways: the color pathway and surface normal

pathway. The color pathway takes as input the color image

and the sparse depth to output a complete depth. The sur-

face normal pathway first predicts a surface normal image

from the input color image and sparse depth, which is then

combined together with the sparse depth and a confidence

mask learned from the color pathway to produce a complete

depth. Each of these two pathways are implemented with a

stack of deep completion units (DCU), and the depths from

two pathways are then integrated by a learned weighted sum

to produce the final complete depth.

3.1. Deep Completion Unit

Zhang et al. [55] proposes to remove the incomplete

depth from the input when predicting either depth or sur-

face normal in order to get rid of the local optima. However,

since the sparse depth is strongly correlated with the dense

depth and surface normals, it is certainly non-optimal if the

network has no chance to learn from it. Inspired by tradi-

tional color image guided inpainting [46, 17, 52], we pro-

pose a network architecture to have the encoder to learn the
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Figure 4. Detailed architecture of deep completion unit. Our

deep completion unit takes the late fusion strategy, where features

from the RGB/normal and sparse depth are combined only in the

decoder. Different from [20], we sum the features from both side

at each resolution throughout the decoder.

local affinity from color image or surface normals, which is

then leveraged by the decoder to conduct interpolation with

the features generated from the input sparse depth through

another encoder.

The details of our deep completion unit is shown in

Fig. 4. Both encoders for RGB/normal and sparse depth

consist of a series of ResNet blocks followed by convolu-

tion with stride to downsize the feature resolution eventu-

ally to 1/16 of the input. The decoder consists of four up-

projection units as introduced in [25] to gradually increase

the feature resolutions and to integrate features from both

encoders to produce dense output. Since the input sparse

depth is strongly related with the decoder output, e.g., sur-

face normal or depth, features from the sparse depth should

contribute more in the decoder. As such, we concatenate the

features from the RGB/normal but sum the features from

the sparse depth onto the features in decoder. As the sum-

mation favors the features on both sides in the same domain

[5], the decoder is encouraged to learn features more related

to depth in order to keep consistent with the feature from the

sparse depth. As shown in Fig. 3, we use the DCU to pre-

dict either surface normal or depth with the same input but

trained with the target ground truth.

3.2. Attention Based Integration

Recovering depth from surface normals does not work

ubiquitously well everywhere, and might be sensitive to

normal noise in some areas. We propose to generate depth

for these areas leveraging priors from the color image rather

than geometry from the estimated surface normal. There-

fore, our model consists of two pathways in parallel to pre-

dict dense depth from the input color image and estimated

surface normals respectively. Both pathways also take the

sparse depth as input. The final dense depth should be an

integration of these two estimated depths, where compara-

tively more accurate depth measurements are chosen from

the right one.

(a) RGB Image

(b) Zoom-in view (c) Warped depth (d) Confidence

Figure 5. Occlusion and learned confidence. (b) shows a zoom-

in view of the region marked by the blue box in (a). Due to the dis-

placement between the RGB camera and LiDAR, aligning sparse

depth to the color image causes foreground/background depth

mixed in the occluded area, like the tree trunk in (c). Our net-

work learns a confidence mask (d) that successfully down-weight

the confusing mixed area.

We use an attention mechanism to integrate the depths

recovered from two pathways, where the combination of

two depths is not fixed but depends on the current context.

In particular, we first predict a score map for each of path-

ways using the last feature map before the output through

three convolutions with ReLU. The two score maps from

two pathways are then fed into a softmax layer, and con-

verted into a combination weight. The final dense depth

output is then calculated as

D̂ = wc · D̂c + wn · D̂n, (1)

where D̂c and D̂n are depths from color and surface nor-

mal pathway, and wc and wn are the learned combination

weights respectively. As it can be seen in Fig. 7, the learned

wc and wn target on the strong part of their corresponding

depth output effectively.

3.3. Confidence Prediction

As mentioned before and shown in Fig. 5, there are

ambiguous areas with mixture of foreground and back-

ground depth signals due to the displacement between the

LiDAR sensor and the color camera. This is usually caused

by occlusion, which happens more frequently along the ob-

ject boundaries in close range. Ideally, we should find these

confusing areas and resolve the ambiguity, which however

is even more challenging as this requires an accurate 3D

geometry estimation near the depth discontinuities. On the

contrary, we ask the network to automatically learn a con-

fidence mask to indicate the reliability of the input sparse

depth. We replace the simple binary mask, which is an in-

put hard confidence, with the learned confidence mask (md)

from the color pathway. As shown in Fig. 5, even though

without ground truth of such masks, the model could suc-
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cessfully learn the occlusion area with overlapping sparse

depth values (e.g., low weights for tree trunk).

3.4. Loss Function

The loss function of the overall system is defined as:

L = λ1Ld(D̂n)+λ2Ld(D̂c)+λ3Ld(D̂)+λ4Ln(N) (2)

where Ld defines the loss on the estimated depth, and Ln

defines the loss on the estimated surface normal. We use

cosine loss following [56] for Ln. For Ld, we use L2 loss

on the estimated depth and a cosine loss on the normal con-

verted from the depth. λ1,2,3,4 adjusts the weights between

terms of the loss function. We adopt a multi-stage training

schema for stable convergence. We first set λ4 = 1 and all

the other weights to zero to only pre-train the surface nor-

mal estimation. We then set λ1 = 0.3, λ2 = 0.3, λ3 =
0.0, λ4 = 0.1 to further train the color and surface normal

pathways. In the end, we set λ1 = 0.3, λ2 = 0.3, λ3 =
0.5, λ4 = 0.1 to train the whole system end-to-end. For

all the training setting, we use Adam as the optimizer with

a starting learning rate of 0.001, β1 = 0.9 and β2 = 0.999.

The learning rate is descended to half every 5 epochs.

3.5. Training Data

Due to the lack of the ground-truth normal in the real

datasets, we generate a synthetic dataset using an open ur-

ban driving simulator Carla [7]. We render 50K training

samples including RGB image, sparse depth map, dense

depth map, and surface normal image, and the examples are

shown in our supplementary materials. For the real data, we

use the KITTI depth completion benchmark dataset for fine-

tuning and evaluation. The complete surface normal ground

truth for the KITTI dataset is computed from the ground-

truth dense depth map by local plane fitting [44].

4. Experiments

We perform extensive experiments to verify the effec-

tiveness of our model, including comparison to related work

and ablation study. Since one of the major applications of

our model is on car-held LiDAR devices, most of the ex-

periments are done on KITTI depth completion benchmark

[48]. Nevertheless, we also run our model in indoor envi-

ronment to verify the generalization capability.

4.1. Comparison to State­of­the­art

Evaluate on KITTI Test Set. We first evaluate our method

on the test set of the KITTI depth completion benchmark.

The test set contains 1000 data, including color image,

sparse LiDAR depth, and transformation between color

camera and LiDAR. Ground truth are held, and evaluation

can be only done on their server to prevent overfitting. The

evaluation server calculates four metrics: root mean squared

error (RMSE mm), mean absolute error (MAE mm), root

mean squared error of the inverse depth (iRMSE 1/km)

RMSE MAE iRMSE iMAE

CSPN [6] 1019.64 279.46 2.93 1.15

Spade-RGBsD [20] 917.64 234.81 2.17 0.95

HMS-Net [19] 841.78 253.47 2.73 1.13

MSFF-Net [50] 836.69 241.54 2.63 1.07

NConv-CNN [10] 829.98 233.26 2.60 1.03

Sparse-to-Dense [33] 814.73 249.95 2.80 1.21

Ours 758.38 226.50 2.56 1.15

Table 1. Performance of depth completion on KITTI test set

[48]. The evaluation is done via KITTI testing server, and sub-

missions are ranked by RMSE on the leaderboard. Our model

outperforms the 2nd [33] on RMSE with a large gap.

RMSE MAE iRMSE iMAE

Bilateral [44] 2989.02 1200.56 9.67 5.08

Fast [2] 3548.87 1767.80 26.48 9.13

TGV [12] 2761.29 1068.69 15.02 6.28

Zhang et al. [55] 1312.10 356.60 4.29 1.41

Ours 687.00 215.38 2.51 1.10

Table 2. Performance of depth completion on KITTI validation

set [48]. We compare to non-learning based approaches [44, 2, 12]

and Zhang et al. [55]. Our method performs the best on all the

evaluation metrics.

and mean absolute error of the inverse depth (iMAE 1/km),

among which RMSE is the most important indicator and

chosen to rank submissions on the leader-board since it

measures error directly on depth and penalizes on further

distance where depth measurement is more challenging.

The performances of our methods and all the other

high ranking methods are listed in Tab. 1. Our method ranks

the 1st on the leader-board at the time of submission, out-

performing the 2nd with significant improvement. Qual-

itative comparison with some competing methods [33, 6]

are shown in Fig. 6. For each example, we show both the

recovered complete depth, together with zoom-in view to

high-light some details. In general, our method produces

more accurate depth (e.g., the complete car) with better de-

tails (e.g., road-side railing). The running time of our model

on a single GPU (Nvidia GTX 1080Ti) is 0.07s per image.

Evaluation on KITTI Validation Set. We further compare

on the validation set of KITTI benchmark to other related

methods that are not on the benchmark, including bilateral

filter using color (Bilateral), fast bilateral (Fast), optimiza-

tion using total variance (TGV), and deep depth completion

for indoor scene [55]. Models are trained on the training

set only. The quantitative results are shown in Tab. 2. As

can be seen, our method significantly outperforms all the

other methods. Non-learning based approaches [44, 2, 12]

do not perform well possibly because of drastic illumina-

tion change and complicate scene structures. Zhang et al.

[55] performs much better than the above mentioned meth-

ods but still far from our model as it does not handle outdoor

specific issues.

Qualitative comparisons are shown in Fig. 7. From the

highlighted regions, the Bilateral [44] and Fast [2] over-

smooth the boundaries and details of objects. In con-
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(a) Sparse-to-Dense [33] (b) CSPN [6] (c) Our method

Figure 6. Qualitative comparison on KITTI test set. We show results of our method and top ranking methods: CSPN [6] and Sparse-

to-Dense [33]. For each example, we show color image, dense depth output, and zoom-in view of some local areas. Our model produces

more accurate results aligning better with the color image. Our model also preserves thin structures like tree, traffic light, and road lamp.

trast, TGV [12] generates the detailed structures, but noisy

smooth surfaces, like roads. Zhang et al. [55] performs well

on close regions, but worse than our method in far areas and

where surface normal estimation fails, e.g., traffic sign and

car windows. Our method successfully solves these prob-

lems for two reasons. Firstly, we integrate the offline linear

optimization into network, which allows end-to-end train-

ing for presumably more optimal solutions. From Tab. 3

(“-Attention Integration”), we can see that the depth predic-

tion from our normal pathway is already much better than

Zhang et al. [55]. Secondly, we further learn a confidence

mask to handle occlusion and use the attention based inte-

gration to improve the area where normal pathway fails.

4.2. Ablation Study

To understand the impact of each model components

on the final performance, we conduct a comprehensive ab-

lation study by disabling each component respectively and

show how result changes. Quantitative results are shown in

Tab. 3. Performance drops reasonably with each component

disabled, and the full model works the best.

Effect of Surface Normal Pathway. To verify if surface

normal is a reasonable intermediate depth representation

for outdoor scene similar as for the indoor case, we train

a model without estimating the normal but directly output

Models RMSE MAE iRMSE iMAE

- Normal Pathway 774.25 258.77 4.65 1.40

- Attention Integration 729.96 239.08 2.74 1.20

- DCU 767.82 246.36 2.69 1.17

- Confidence mask 756.32 272.91 2.70 1.19

Full 687.00 215.38 2.51 1.10

Table 3. Ablation study of depth completion on KITTI valida-

tion set. We re-train our model with each major component dis-

abled and evaluate on KITTI validation set. Our full model with

all the components on achieves the best performance.

the complete depth. Under this setting, there is also no at-

tention integration since only one pathway is available. The

performance is shown as “-Normal Pathway” in Tab. 3. The

performance drops significantly, i.e. RMSE increases about

87mm, compared to our full model. This demonstrates that

surface normal is also helpful for outdoor depth completion.

Effect of Attention Based Integration. We then disable

the attention based integration to verify the necessity of the

two-pathway combination, i.e. only considering the depth

from the normal pathway. Without this integration, all the

evaluation metrics drop (Tab. 3 “-Attention Integration”)

compared to the full model. Fig. 7 (row wc, wn) shows the

attention map learned automatically for color pathway and

surface normal pathway. It can be seen that surface normal

pathway works better (i.e. higher weight) in close range

but gets worse when the distance goes up, which is consis-
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Figure 7. Qualitative results on KITTI validation set. From top to bottom are RGB image input, sparse depth input, confidence mask,

estimated surface normals, attention map for color pathway, attention map for normal pathway, results of Bilateral [44], Fast [2], TGV [12]

Zhang et al. [55], and our method. We mark some regions in the results to highlight the difference across methods.

tent with our analysis. In contrast, the color pathway cannot

capture accurate details in close range compared to the sur-

face normal pathway but better in far distance. Although

the color pathway works better for fewer regions compared

to the surface normal pathway, it is critically important to

achieve good performance in far area, where large error are

more likely to happen.

Effect of Deep Completion Unit. We also replace our deep

completion unit to a traditional encoder-decoder architec-

ture with early fusion, where the input color image, sparse

depth, and a binary mask are concatenated at the beginning

and fed as input to the network. This modification causes

significant performance drop even with all the other compo-

nents of the model enabled (Tab. 3 “-DCU”). Notice that we
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Figure 8. Performance with different sparsity. We test our

model on input depth with different sparsity by sub-sampling the

raw LiDAR. Our method works well even with very sparser depth

input, and outperforms the other methods.

sum the features from the sparse depth encoder with the fea-

tures from decoder rather than the ordinary concatenation.

We also tried the concatenation option which however takes

more memory and produces slightly worse performance.

Effect of Confidence Mask. Last but not least, we dis-

able the confidence mask by replacing the learned one with

a typical binary mask indicating the availability of sparse

depth per-pixel. This causes dramatic increase of RMSE

by 69mm compared to the full model. In contrast, our

full model learns confidence masks according to the inputs,

which provide extremely useful information about the relia-

bility of the input sparse depth for the surface normal path-

way, as shown in Fig. 5(d) and Fig. 7(Confidence). As can

be seen, the area with overlapping depth from foreground

and background are generally marked with low confidence.

Notice that these areas usually happens on the boundary of

the foreground where occlusion happens.

4.3. Generalization Capability

Even though in this paper we especially focus on pro-

ducing dense depth for car-held LiDAR devices, our model

can be considered as a general depth completion approach.

Therefore, we investigate the generalization capability of

our model under different situations, specifically with dif-

ferent input depth sparsity and in indoor environment.

Robustness Against Depth Sparsity. It is interesting to

see if our model could still work on more challenging cases

where input depths are even sparser. The raw LiDAR depth

provided by the benchmark is roughly 18,400 samples per

depth image of 1216 by 352 resolution, i.e. 4.3% of the pix-

els having depth. We uniformly sub-sample the raw LiDAR

depth by ratios of 1/4, 1/16, 1/64, and 1/256, which corre-

spond to 1.075%, 0.269%, 0.0672%, and 0.0168% of pixels

having depth. It worth noting that 0.0168% corresponds to

72 pixels per depth image. This is an extreme hard case

where the scene structure is almost missing from the input

sparse depth.

The performances of our model and other methods

[44, 2, 55] on LiDAR with different sparsity are shown in

Fig. 8. We can see the performances are better (i.e. lower

RMSE) with more input sparse depth. Our method still per-

forms reasonably well even for the most challenging case

(i.e. 0.0168%). Actually our result under this case is still

RMSE↓ REL↓ δ1.25 ↑ δ
1.252

↑ δ
1.253

↑

Bilateral [44] 0.479 0.084 92.4 97.6 98.9

TGV [12] 0.635 0.123 81.9 93.0 96.8

Ma et al. [34] 0.230 0.044 97.1 99.4 99.8

Zhang et al. [55] 0.228 0.042 97.1 99.3 99.7

CSPN [6] 0.117 0.016 99.2 99.9 100

Ours 0.115 0.022 99.3 99.9 100

Table 4. Performance of depth completion on NYU v2 dataset

[44]. We compare to non-learning based approaches [44, 12] and

deep learning based methods [34, 6, 55]. Our method performs

the best on the main RMSE metric (in meter), and performs on-

par with the state-of-art method on other metrics.

better than results of the traditional methods [44, 2] with

full sparse data (i.e. 4.3%).

Depth Completion in Indoor Scenes. We also evaluate our

model for indoor scenes on NYUv2 dataset [44]. Adopt-

ing similar experiment setting as [6, 34], we synthetically

generate sparse depth via random sampling, train on 50K

images sampled from the training set, and evaluate on the

official labeled test set (containing 654 images). Images

are down-sampled to half resolution and center-cropped to

304 × 228. The same metrics are adopted, including root

mean square error (RMSE), mean absolute relative error

(REL), and the percentage δt of pixels with both the rela-

tive error and inverse of it under a certain threshold t (where

t = 1.25, 1.252, 1.253). The quantitative comparisons are

listed in Tab. 4. The numbers for Bilateral [44], Ma et al.

[34], and CSPN [6] are obtained from CSPN [6]. The num-

bers for the other methods are obtained using their released

implementations. Even not designed specifically for indoor

environment, our method still achieve comparable or better

performance compared to the state-of-the-art (rank top for

4 out of 5 metrics). Please refer to supplementary materials

for more qualitative results.

5. Conclusion

In this paper, we propose an end-to-end neural network

for depth prediction from Sparse LiDAR data and a single

color image. We use the surface normal as the intermedi-

ate representation directly in the network and demonstrate

it is still effective for outdoor scene similar as the indoor

scene. We propose a deep completion unit to better fuse the

color image with the sparse input depth. We also analyze

specific challenges for the outdoor scene, and provide so-

lutions within the network architecture, such as attention

based integration to improve performance in far distance

and estimating a confidence mask for occlusion handling.

Extensive experiments show that our method achieves the

state-of-art performance on the benchmark, and generalizes

well to sparser input and indoor scenes.
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