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Abstract

In this paper, we reduce the image dehazing problem to

an image-to-image translation problem, and propose En-

hanced Pix2pix Dehazing Network (EPDN), which gener-

ates a haze-free image without relying on the physical scat-

tering model. EPDN is embedded by a generative adversar-

ial network, which is followed by a well-designed enhancer.

Inspired by visual perception global-first [5] theory, the dis-

criminator guides the generator to create a pseudo realistic

image on a coarse scale, while the enhancer following the

generator is required to produce a realistic dehazing im-

age on the fine scale. The enhancer contains two enhancing

blocks based on the receptive field model, which reinforces

the dehazing effect in both color and details. The embedded

GAN is jointly trained with the enhancer. Extensive exper-

iment results on synthetic datasets and real-world datasets

show that the proposed EPDN is superior to the state-of-

the-art methods in terms of PSNR, SSIM, PI, and subjective

visual effect.

1. Introduction

Haze is a typical atmospheric phenomenon, and it causes

color distortion, blurring and low contrast for the pho-

tographed image, which results in the difficulties of sub-

sequent tasks, such as object recognition and image under-

standing. Thus, more and more attentions are attracted to

image dehazing.

Most of the successful approaches depend on the physi-

cal scattering model [12] [14], which is formulated as

I(z) = J(z)t(z) +A(z)(1− t(z)), (1)

∗Equal contribution
†Corresponding author

(a) Haze (b) GFN

(c) DCPDN (d) Ours
Figure 1. A single image haze removal example. Our method pro-

duces a haze-free image with faithful color and rich details com-

pared with GFN [16] and DCPDN [21].

where I is the observed hazy image, J is the scene radi-

ance, t is the transmission map, A is the atmospheric light

and z is the pixel location. The solution of the haze-free im-

age depends on the estimation of the atmospheric light and

the transmission map. Early dehazing methods are mostly

prior-based methods, e.g. DCP [7], which estimates the

transmission map by investigating the dark channel prior.

These prior-based methods can achieve good dehazing ef-

fect to a certain extent. However, the prior may be easily

violated in practice, which leads to an inaccurate estima-

tion of transmission map so that the quality of the dehazing

image is not desirable. With the rising up of deep learn-

ing, the estimations of the transmission map or the atmo-

spheric light are estimated by the convolutional neural net-

work rather than relying on priors. Some methods utilize

the deep convolutional neural network to estimate the trans-

mission map [3] [15], some employ the deep convolutional

neural network to jointly estimate the atmospheric light and
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the transmission map [20] [23]. Either early dehazing meth-

ods or exsiting deep learning based ones almost depend on

the physical scattering model, and the estimation accuracies

of the atmospheric light and the transmission map greatly

influence the quality of the dehazing image.

In order to disentangle image dehazing from the physi-

cal scattering model, we try to transform a hazy image to

a haze-free image pixel by pixel directly. Motivated by

the success of generative adversarial networks (GANs) in

image-to-image translation [9] [19] [24], we marry GAN to

image dehazing. However, GANs for image-to-image trans-

lation can not be directly applied to image dehazing because

image haze is the depth-dependent noise and nonuniform.

Directly application will produce undesirable results which

are overcolored and lack of details. It is known as the vi-

sual perception global-first theory [5], an object or scene is

discriminated only in a global way, not necessarily depend-

ing on the details of realistic images, while the creation of

a realistic image must be dependent on details as more as

possible.

In this paper, we propose Enhanced Pix2pix Dehazing

Network (EPDN). EPDN includes three parts: the discrim-

inator, the generator, and the enhancer. The GAN module

with generator and discriminator is embedded in EPDN, in

which the discriminator just supervises the intermediate re-

sult of EPDN. The enhancer following the generator will

reinforce the output of the GAN, which is designed accord-

ing to the receptive field model. To the best of our knowl-

edge, EPDN is the first work to embed GAN for image de-

hazing according to the visual perception theory. More-

over, regarding the proposed architecture, we develop a

joint training scheme which alternatively optimizes the em-

bedding GAN (generator and discriminators) and the gen-

erator along with the enhancer.

The proposed method can generate a more realistic im-

age in terms of color and details. Fig. 1 shows the visual ef-

fect of our method. Compared with GFN [16] and DCPDN

[21], our method achieves more realistic dehazing effect

with faithful color and structures. Moreover, we introduce

the Perceptual Index (PI) to evaluate the performance of im-

age dehazing including Peak Signal to Noise Ratio (PSNR)

and Structural Similarity (SSIM). As we know, visual effect

is a subject estimation, which is not convenient for compu-

tation. PI is computable by simulating the visual perception.

The contributions of our work are as follow:

1. EPDN is proposed for image dehazing, which does not

rely on the physical scattering model, while adopts the

way of image-to-image translation alternatively.

2. Inspired by the global-first property of visual percep-

tion, the embedded GAN and enhancer are designed

to produce a perceptually pleasing images with more

details.

3. A joint training scheme is developed for updating

the embedded GAN and enhancer through reasonably

combining four kinds of loss functions.

4. The Perceptual Index (PI) is introduced for quantita-

tive evalution from the perceptual perspective. In addi-

tion, extensive experiments on both synthetic datasets

and real-world dataset indicate that EPDN performs

favourably against the state-of-the-art methods. Espe-

cially, our results are outstanding in visual perception.

2. Related Work

Our work is related to two topics: single image dehaz-

ing and generative adversarial networks which are briefly

discussed in this section.

Single image dehazing. Most of the existing dehaz-

ing methods depend on the physical scattering model [12]

[14] Eq. (1), which are divided into two classes: the prior

based methods and the learning-based methods. The physi-

cal model contains two important factors: the transmission

map and the atmospheric light. Efforts are made to estimate

the two factors for a solution of haze removal.

Prior-based dehazing. Tan et al. [17] made a model to

maximize the contrast of an image for image dehazing be-

cause it is observed that haze-free images have higher con-

trast than hazy images. He et al. [7] [8] proposed a dark

channel prior for the estimation of the transmission map.

Zhu et al. [25] recovered depth information via color at-

tenuation prior. Tang et al. [18] systematically investigated

a variety of haze-relevant priors in a regression framework

to learn the best prior combination for image dehazing. A

haze line prior is proposed by Dana Berman et al. [1], which

assumes that colors of a haze-free image are well approxi-

mated by a few hundred distinct colors. Though the prior-

based dehazing methods have achieved promising results,

the prior is not robust to the unconstraint environment in

the wild, thus, the dehazing performance is not always de-

sirable.

Learning-based dehazing. Different from the prior-

based methods, the learning-based methods directly esti-

mate the transmission map or atmospheric light rather than

relying on the priors. Cai et al. [3] proposed an end-to-

end dehazing model based on convolutional neural network

(CNN) named DehazeNet, which estimates the transmis-

sion map. Ren et al. [15] proposed a multi-scale deep

model to estimate the transmission map. Li et al. [10] re-

formulated the physical scattering model, and design AOD-

Net to learn a mapping function based on CNN. Ren et al.

[16] used an encoder-decoder network and adopted a novel

fusion-based strategy to directly restore a clear image from

a hazy image.

Generative Adversarial Networks (GANs). Recently,

great progress is made in GAN [6]. GAN includes two
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parts: the discriminator and the generator. They are trained

simultaneously in an adversarial way so that the generator

could produce a realistic image which confuses the discrim-

inator. GAN is widely used in many computer vision appli-

cations. Especially, GAN has achieved promising results

in image synthesis [9] [19] [24]. Inspired by the success of

GAN, we utilize it for image dehazing. DCPDN [21] imple-

ments GAN on image dehazing which learns transmission

map and atmospheric light simultaneously in the generators

by optimizing the final dehazing performance for haze-free

images. Yang et al. [20] proposed the disentangled dehaz-

ing network, which uses unpaired supervision. The GAN

proposed by Yang et al. [20] contains three generators: the

generator for the haze-free image, the generator for the at-

mospheric light, and the generator for transmission map.

DehazeGAN [23] draws lessons from the differential pro-

gramming to use GAN for simultaneous estimations of the

atmospheric light and the transmission map. The marriage

of GAN and image dehazing is still in the beginning. The

current dehazing methods via GAN all depend on the phys-

ical scattering model. Until now, little is discussed how to

deal with image dehazing independent of the physical scat-

tering model. As discussed in Introduction, it is meaningful

to investigate a model-free dehazing method via GAN.

3. Proposed Method

3.1. The Architecture of EPDN

In this paper, we cast the single image dehazing problem

as a task of image-to-image translation. Hazy images and

haze-free images are regarded as two different image styles.

The framework of EPDN is shown in Fig. 2, which consists

of a multi-resolution generator module, the enhancer mod-

ule, and the multi-scale discriminator module. The GAN ar-

chitecture similar to pix2pixHD [19] is embedded in EPDN,

followed by the enhancer. The enhancer contains two well-

designed enhancing blocks, each of which is built depend-

ing on the receptive field model. And a shot-cut is employed

to maintain the color information of original images. In the

following, we detail the architecture of EPDN.

Multi-resolution generator. The multi-resolution gen-

erator of GAN module consists of global sub-generator G1

and a local sub-generator G2, as shown in Fig. 2. Both

G1 and G2 include a convolutional front-end, three residual

blocks, and a transposed convolutional back-end. The input

of G1 is 2× downsampled from the original hazy images.

G1 is embedded in G2, and the element-wise sum of the

output of G1 and the feature maps obtained by the convolu-

tional front-end of G2 is fed into the residual block of G2.

The multi-resolution structure has been proven successful

in image-to-image translation. The global sub-generator

creates an image on a coarse scale, while the local sub-

generator creates an image on a fine scale. And the com-

bination of the two sub-generators produce an image from

coarse-to-fine.

Multi-scale discriminator. The embedded GAN mod-

ule contains a multi-scale discriminator module which con-

tains two-scale discriminators named D1 and D2. D1 and

D2 have the same architecture, and the input of D2 is 2×
downsampled from the input of D1. The output of the gen-

erator is fed into D1. The multi-scale discriminators could

guide the generator from coarse-to-fine. On the one hand,

D2 guides the generator to produce a global pseudo realistic

image on a coarse scale. On the other hand, D1 guides the

generator on a fine scale.

Enhancing block Even though pix2pixHD utilizes

the coarse-to-fine feature, the results obtained from only

pix2pixHD still lack details and are overcolored. One pos-

sible reason is that the existing discriminator is limited in

guiding the generator to create realistic details. In other

words, the discriminator should merely direct the genera-

tor to restore structure imfromation rather than details.

To efficiently solve this problem, a pyramid pooling

block [21] [22] is implemented to make sure the details of

features from different scales are embedded in the final re-

sult. We name it enhancing block. Drawing lesson from

global context information in object recognition, details of

features in various scales are needed. Thus, the enhanc-

ing block is designed according to the recepive field model

which can extract information on different scales. The en-

hancing block is shown in Fig. 3. In detail, there are two

3 × 3 front-end convolution layers in the enhancing block.

The output of the front-end convolution layer is downsam-

pled by factors of 4×, 8×, 16×, 32× to build a four-scale

pyramid. Feature maps on different scales provide differ-

ent receptive fields, which helps to reconstruct an image on

various scales. And then, 1× 1 convolution is implemented

for dimension reduction. Actually, 1 × 1 convolution im-

plies the attention mechanism which weights the channel

adaptively. After that, we upsample the feature maps to the

original size and concatenate them together with the output

of the front-end convolution layer. Finally, the 3 × 3 con-

volution is implemented on the concatenation of the feature

maps.

In EPDN, the enhancer includes two enhancing blocks.

Moreover, the first enhancing block is fed by the concate-

nation of the original image and the feature maps of the

generator which are also fed to the second enhancing block.

3.2. Overall Loss Function

In order to optimize EPDN, we utilize four loss functions

as Eq. (2), the adversarial loss LA, the feature matching loss

LFM , the perceptual loss LV GG, and the fidelity loss LF .

The adversarial loss together with the feature matching loss

is used to make the GAN module learn the global informa-

tion and recover the original image structure by using multi-
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Figure 2. The architecture of EPDN. EPDN includes three parts: the multi-resolution generator, i.e. G1 and G2, the muti-scale discrimina-

tor, i.e. D1 and D2, and the enhancer.

Figure 3. The structure of enhancing block

scale features. Perceptual loss and fidelity loss are used to

reinforce the fine features and preserve original color in-

formation. To simplify the model, thes coefficients of the

feature matching loss and perceptual loss are set to be the

same.

LEP = LA + λLFM + λLV GG + LF . (2)

Adversarial loss. We adopt the adversarial loss of GAN.

The generator is initialized to translate a hazy image to the

haze-free image, while the discriminator aims to distinguish

whether an image is real or fake. Considering there are the

two-scale discriminators D1, D2, the adversarial loss is for-

mulated as a multi-task learning loss

LA = min
∼

G

[ max
D1,D2

∑

k=1,2

ℓA(
∼

G,Dk)], (3)

where ℓA(
∼

G,Dk) is the single adversarial loss of the k-th

discriminator Dk, it is formulated as,

ℓA(
∼

G,Dk)=E(X)[logDk(X)]+E(X)[log(1−Dk(
∼

G(X̂)))],
(4)

and X and X̂ denote real haze-free images and hazy im-

ages.
∼

G(X̂) represents the output produced by the generator

of the GAN module, but not the finally result of EPDN.

Feature matching loss. In order to make a realistic

image, the adversarial loss is improved by incorporating a

feature matching loss based on the discriminator. We use

this loss to make the generator produce natural multi-scale

statistical information. The intermediate feature maps are

learned to match between the real and the synthesized im-

age. The feature matching loss function is formulated as

LFM = min
∼

G

[
∑

k=1,2

ℓFM (
∼

G,Dk)]. (5)

ℓFM (
∼

G,Dk) is the feature matching loss with the k-th dis-

criminator Dk.

ℓFM (
∼

G,Dk)=E(X)

T∑

i=1

1

Ni

[‖D
(i)
k

(X)−D
(i)
k

(
∼

G(X̂))‖1], (6)

where T is a total number of layers used for feature extrac-

tion, Ni is a number of elements in each layer, D
(i)
k is the

operator of the feature extraction of the i-th layer in Dk.

Perceptual loss. In order to keep the perceptual and se-

mantic fidelity, we use perceptual loss function to measure

high-level difference between the hazy image and its coun-

terpart dehazing image. Based on a pre-trained VGGNet

for image classification, we extract the activations of the i-

th layers of VGGNet, denoted by φi(), which are treated
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as the perceptual feature. We use the pixel-wise distance to

measure the difference between the perceptual features of

the hazy and dehazing image. The perceptual loss function

is as follow

L
φ,i
V GG(Ŷ , X) =

1

CiHiWi

‖φi(Ŷ )− φi(X)‖1, (7)

where Ŷ is the final result of EPDN. Hi and Wi are the

height and width of the i-th feature map, and Ci indicates

the channel.

Fidelity loss. The Euclidean distance between the haze-

free image X and final output Ŷ is regarded as the fidelity

loss, which is defined as

LF = ‖X − Ŷ ‖2. (8)

3.3. Training

Algorithm 1: EPDN training algorithm

Input:

nb ← the batch size;

λ← the hyper-parameter;

1 for num = 1;num ≤ trainingiterations do

2 Sample hazy examples X̂ = {x̂(1), ..., x̂(nb)};

3 Sample clean examples X = {x(1), ..., x(nb)};

4 M ←
∼

G(X̂), the output of the muti-resolution

generator;

5 Y ← EP (X̂), the output of EPDN;

6 Mk ← 2k−1 time downsample(M);

7 Xk ← 2k−1 time downsample(X);
8 for k = 1, 2 do

9 Update the discriminators Dk by ascending

the gradient of Eq. (3);

10 Update the multi-resolution generator(
∼

G) by

descending the gradient of the sum of Eq. (3)

and Eq. (5);

11 Update
∼

G and enhancer by descending the

gradient of the sum of Eq. (7) and Eq. (8);

Because GAN is only a part of the whole architecture of

EPDN, we cannot implement the training scheme of GAN

directly on EPDN. We develop a new training scheme. We

adopt the alternative iteration algorithm. Firstly, the GAN

architecture is optimized with the adversarial loss function

Eq. (3) and the feature matching loss function Eq. (5). In de-

tail, we first update the multi-scale discriminator by ascend-

ing its gradient and then update the multi-resolution gener-

ator by descending its gradient. Secondly, the enhancer and

the multi-resolution generator is optimized by descending

the gradient of the sum of perceptual loss Eq. (7) and the

Table 1. Ablation study settings.

Method Enhancing block short-cut Embedded

GAN+E 1 - X

GAN+E+S 1 X X

GAN+EE 2 - X

GAN+ 2 X -

GAN 0 - -

Ours 2 X X

Table 2. Comparison of variants with different components on the

outdoor dataset of SOTS.

Method PSNR SSIM PI

GAN+E 20.56 0.7553 3.2394

GAN+E+S 18.66 0.7636 2.2374

GAN+EE 21.47 0.7992 3.1153

GAN+ 21.73 0.8716 2.556

GAN 20.78 0.7455 2.7397

Ours 22.57 0.8630 2.3858

fidelity loss Eq. (8). We summarize the algorithm as Algo-

rithm 1. Different from the original GAN training scheme,

our generator is updated twice respectively with the dis-

criminator and the enchancer, which satisfies the global-first

theory.

4. Experiments

In this section, we implement the proposed method

on both the synthesis dataset and the real-world dataset

to demonstrate the effectiveness of the proposed method.

We compare our proposed method with five state-of-the-

art methods: DCP [7] (He CVPR’09), DehazeNet [3]

(Cai TIP’16), AOD-Net [10](Li ICCV’17), GFN [16] (Ren

CVPR’18), and DCPDN [21] ( Zhang CVPR’18). For the

fairness of comparison, the source codes of the compared

methods are presented publicly by the authors. In addition,

we do an ablation study to demonstrate the effectiveness of

our embedding GAN and the enhancing block.

4.1. Experiment Settings

Dataset. RESIDE [11] is a new large-scale hazy im-

age dataset and it consists of five subsets: Indoor Training

Set (ITS), Outdoor Training Set (OTS), Synthetic Objec-

tive Testing Set (SOTS), Real World task-driven Testing Tet

(RTTS), and Hybrid Subjective Testing Set (HSTS). Among

the five subsets, ITS, OTS, SOTS are synthetic datasets,

RTTS is the real-world dataset, both synthetic data and real-

word hazy data are involved in HSTS. On the one hand, ITS

and SOTS which contain both indoor and outdoor hazy im-

ages are respectively employed for our training and testing.

On the other hand, we collect the real-world images used by
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Table 3. Comparison results of the state-of-the-art dehazing methods on SOTS.

Method DCP [7] DehazeNet [3] AOD-NET [10] DCPDN [21] GFN [16] Ours

indoor

PSNR 16.62 21.14 19.06 15.85 22.30 25.06

SSIM 0.8179 0.8472 0.8504 0.8175 0.8800 0.9232

PI 3.9535 4.0458 3.6961 4.7485 4.1146 4.0620

outdoor

PSNR 19.13 22.46 20.29 19.93 21.55 22.57

SSIM 0.8148 0.8514 0.8765 0.8449 0.8444 0.8630

PI 2.5061 2.4346 2.4280 2.7269 2.1608 2.3858

Input GAN+E GAN+E+S GAN+EE GAN+ GAN Ours GT
Figure 4. Comparison results of variants with different components in visual effect on outdoor images.

previous methods, and compare our method with the state-

of-the-art methods on this dataset.

Training Details. During training, ITS is used as the

training dataset which is also used as the training dataset

for the compared methods. We adopt Adam optimizer with

a batch size of 1, and set a learning rate as 0.0002, the expo-

nential decay rates as (β1, β2) = (0.6, 0.999). The hyper-

parameter of loss function is set as λ = 10. We implement

our model with the PyTorch framework and a TITAN GPU.

Quality Measures. To evaluate the performance of our

method, we adopt three metrics: the Peak Signal to Noise

Ratio (PSNR), the Structural Similarity index (SSIM) and

Perceptual Index (PI). As we know, image qualification

evaluation is very important for image restoration. It in-

cludes the objective measurement and subjective measure-

ment. For the former, PSNR and SSIM are usually used in

image dehazing. For the latter, visual effect is used to eval-

uate the image dehazing performance. However, it is not

convenient to use for image qualification evaluation. PI is

a new criterion which bridges the visual effect with com-

putable index. And it has been recognized to be effective in

image super-resolution [2]. In the experiment, we use PI to

evaluate the performance of image dehazing. The lower the

image quality is, the higher PI is. PI is formulated as

PI =
1

2
((10−Ma) +NIQE),

where Ma and NIQE are two image qualification indexes

which are detailed in [4] and [13].

4.2. Ablation Study

To better demonstrate the effectiveness of the architec-

ture of our method, we conduct an ablation study by consid-

ering the combination of four factors: GAN, one enhancing

block, two enhancing blocks, and the short-cut skip. We

construct the following variants with different component

combinations: 1) GAN: only pix2pixHD [19] is used; 2)

GAN+E: only one enhancing block follows the embedding

pix2pixHD; 3) GAN+E+S: the variant GAN+E combines

a short-cut skip which connects the original image to the

enhancer; 4) GAN+EE: two enhancing blocks follow the

embedding pix2pixHD; 5) GAN+: the whole architecture

is a GAN, in which the the whole generator is the combi-

nation of the generator of pix2pixHD and two enhancing

blocks and the short-cup skip connects the original image

to the first enhancing block. The ablation configurations are

given in Table. 1.

We compare EPDN with five variants with different com-

ponents on the outdoor dataset of SOTS. The results are

shown in Table. 2 and Fig. 4. It demonstrates that the

proposed EPDN achieves the best performance of image

dehazing in PSNR and SSIM and the best visual effects.

Compared with pix2pixHD [19], the improvement gains in
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Input DCP [7] DehazeNet [3] AOD-Net [10] DCPDN [21] GFN [16] Ours GT

Figure 5. Comparison of the state-of-the-art dehazing methods on SOTS. The upper three rows show the dehazing results on outdoor

images and the bottom three rows show the dehazing results on indoor images.

PI: 2.2518 PI: 1.9735 PI: 2.002 PI: 2.4211 PI: 1.7300 PI: 1.8513

PI: 2.4675 PI: 2.2955 PI: 2.7286 PI: 2.9415 PI: 1.8820 PI: 2.2123

PI: 3.9853 PI: 3.0106 PI: 3.1469 PI: 2.9118 PI: 3.0304 PI: 2.9904

Input DCP [7] DehazeNet [3] AOD-Net [10] DCPDN [21] GFN [16] Ours

Figure 6. Comparison of the state-of-the-art dehazing methods on the real dataset. The images in the first row and the third row are the

close-up of the red boxes in the second row. PIs are shown at the top of each image.

PSNR and SSIM are 2.02 dB and 0.11 respectively, which

shows that EPDN is better than pix2pixHD. GAN+E+S is

the worst of the ablation study variant, because the hazy

image through the short-cut skip add more noises on the

output of generator. GAN+ is superior to GAN+E+S, be-

cause two enhancing blocks dehaze more effectively than

one. We also compare the variant with and without the

short-cut skip and observe that the variant with the short-

cut skip is better than those without the short-cut skip in PI,

because the re-enter of the original image keep the faith-
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ful color and details. EPDN and GAN+ are in about the

same performance, but EPDN is better than GAN+ in two

of three criteria, especially it is better in PI, thus, we adapt

the architecture in this paper. From Fig. 4, we observe that

the proposed EPDN achieve the closest result to the ground

truth. Though GAN+ achieves the similar performance to

ours in PSNR and SSIM, but it’s visual effect is inferior to

ours. GAN+ is overcolored obviously. Moreover, without

the short-cut-skip the dehazing results looks a little darker

in the first row of results, which demonstrate the effective-

ness of the short-cut skip.

These ablation study demonstrates that the enhancing

blocks, the short-cut skip, and the embedded structure are

effective for image dehazing.

4.3. Comparisons with State­of­the­art Methods

Results on synthesis dataset. The comparison results

are shown in Table. 3 in which the digital valuse are the

averages of the results on SOTS in terms of PSNR, SSIM,

and PI. It demonstrates that EPDN achieves the best perfor-

mance of image dehazing in terms of both PSNR and SSIM

on the indoor dataset of SOTS, and it achieves the break-

through gain with 2.76 dB in PSNR and 0.0432 in SSIM

compared with the second place method GFN [16].

On the outdoor dataset of SOTS, EPDN achieves the best

performance in PSNR, ranks the second among the com-

pared methods in SSIM and PI. GFN [16] rank the second

in PSNR and the first in PI. The distance between the best

and the second best is 0.11 dB and 0.01 in PSNR and SSIM,

which is smaller than the counterpart distance on indoor

data.

Fig. 5 gives the comparison of visual effect in which the

comparison results on outdoor data are shown in the upper

three row and those on indoor data are shown in the bottom

three row. It is observed that there remains some haze in

the dehazing images. DCP [7] suffers from color distortion

where the results are usually darker than the ground truth

images. DCPDN [21] also suffers from color distortion and

it fails in details restoration. Most of the color information

has been lost in the GFN [16], at the same time, it generates

some artifacts. EPDN makes the dehazing image look more

like the ground truth image. Furthermore, it is obvious that

our model exactly outperforms the above-mentioned meth-

ods in details recovery, and it improves the dehazing results

qualitatively and quantitatively.

Results on a real-world dataset. Fig. 6 shows the com-

parison results of visual effects on real hazy images. It is

observed that: 1) Though the proposed EPDN is trained on

synthesis data, it still achieves desirable dehazing results on

the real-world dataset, which show the robustness of EPDN.

2) DCP [7] results in color distortion in the sky area and

suffers from blur. DehazeNet [3] and AOD-Net [10] cannot

remove haze effectively. DCPDN [21] and GFN [16] can

(a) Input (b) Ours (c) GT
Figure 7. A dehazing example for heavily hazy scene. Our method

is not robust enough when the haze is extremely thick in the origi-

nal input.

not remove haze effectively in heavily hazy scene. 3) Our

method is comparable in terms of PI among those state-of-

the-art methods, and achieves best visual effect. Comparing

to the results of five state-of-the-art methods, it can be seen

that our results (EPDN) are superior in both visual effect

and quantitative criteria.

4.4. Limitation

Our method is not very robust for heavily hazy scene. As

shown in Fig. 7, the edges of objects in heavily haze can not

be recovered naturally. The limitation might be solved by

applying more enhancing blocks in our network.

5. Conclusion

In this paper, we propose Enhanced Pix2pix Dehazing

Network (EPDN) which does not rely on the estimations of

the transmission map and atmospheric light. We transform

the problem of image dehazing to the problem of image-

to-image translation. Draw lessons from the global-first [5]

theory of visual perception, we embed a GAN in our ar-

chitecture, which is followed by two well-designed enhanc-

ing blocks, and the discriminator only guides the output of

the multi-resolution generator. Experimental results on both

the synthesis dataset and the real-world dataset demonstrate

that the proposed method achieves the best performance of

image dehazing in both the quantitative and qualitative eval-

uations. Especially, it keeps the faithful color and struc-

tures.
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