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Abstract

We present an online approach to efficiently and simul-

taneously detect and track 2D poses of multiple people in

a video sequence. We build upon Part Affinity Fields (PAF)

representation designed for static images, and propose an

architecture that can encode and predict Spatio-Temporal

Affinity Fields (STAF) across a video sequence. In par-

ticular, we propose a novel temporal topology cross-linked

across limbs which can consistently handle body motions

of a wide range of magnitudes. Additionally, we make the

overall approach recurrent in nature, where the network in-

gests STAF heatmaps from previous frames and estimates

those for the current frame. Our approach uses only online

inference and tracking, and is currently the fastest and the

most accurate bottom-up approach that is runtime-invariant

to the number of people in the scene and accuracy-invariant

to input frame rate of camera. Running at ∼30 fps on a

single GPU at single scale, it achieves highly competitive

results on the PoseTrack benchmarks. 1

1. Introduction

Multi-person human pose estimation has received con-

siderable attention in the past few years assisted by deep

convolutional learning as well as COCO [21] and MPII [3]

datasets. The recently introduced PoseTrack dataset [17]

has provided the community with a large scale corpus of

video data with multiple people in the scenes. In this paper,

our aim is to utilize these towards building a truly online

and real-time multi-person 2D pose estimator and tracker

that is deployable and scalable while achieving high perfor-

mance and requiring minimal post-processing. The poten-

tial uses include real-time and closed-loop applications with

low latency where the execution is in sync with frame rate

of camera such as self-driving cars and augmented reality.

The real-time and online nature of such an approach in-

troduces several challenges: i) scenes with multiple peo-
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Figure 1: We solve multi-person human pose tracking by

encoding change in position and orientation of keypoints

or limbs across time as Temporal Affinity Fields (TAFs) in

a recurrent fashion. Top: Modeling TAFs (blue arrows)

through keypoints works when motion occurs but fails dur-

ing limited motion making temporal association difficult.

Bottom: Cross-linked TAFs across limbs perform consis-

tently for all kinds of motions providing redundancy and

smoother encoding for further refinement and prediction.

ple demand handling of occlusion, proximity and contact

as well as limb articulation, and ii) it should be runtime-

invariant to the number of people in the scene. Further-

more, iii) it must be capable of handling challenges in-

duced from video data, such as large camera motion and

motion blur across frames. We build upon the Part Affin-

ity Fields (PAFs) [6] to overcome these challenges, which

represent connections across body keypoints in static im-

ages as normalized 2D vector fields with position and ori-

entation. In this work, we propose Temporal Affinity

Fields (TAFs) which encode connections between keypoints

across frames, including a unique cross-linked limb topol-

ogy as seen in bottom row of Figure 1. In the absence of mo-

tion or when there is not enough data from previous frames,

TAFs constructed between same keypoints, e.g., wrist-wrist

or elbow-elbow across frames lose all associative properties

(see top row of Fig. 1). In this case, the nullification of mag-

nitude and orientation provides no useful information to dis-

14620



cern between the case where a new person appears or where

an existing person stops moving. This effect is compounded

if these two cases occur in proximity together. However,

the longer limb TAF connections allow information preser-

vation even in the absence of motion or appearance of new

people by preventing corruption of valid information with

noise as the magnitude of motion becomes small. In the

limiting case of zero motion, the TAF effectively collapses

to a PAF. From the perspective of a network, TAF between

keypoints destroys spatial information about keypoints as

motion ceases, whereas TAF across keypoints simply learns

to propagate the PAF, which is a much simpler task.

Furthermore, we work on videos in a recurrent manner

to make the approach real-time, where computation of each

frame leverages information from previous frames thereby

reducing overall computation. Where the single-image pose

estimation methods use multiple stages to refine heatmaps

[6, 24], we exploit the redundant information in the video

frames and divert the resources towards efficient computa-

tion of both poses and tracks across multiple frames. Thus,

the multi-stage computation over images is divided over

multiple frames in a video. Overall, we call this Recur-

rent Spatio-Temporal Affinity Fields (STAF) and it achieves

highly competitive results on the PoseTrack benchmarks:

[64.6% mAP, 58.4% MOTA] on single scale at ∼30 FPS,

and [71.5% mAP, 61.3% MOTA] on multiple scales at ∼7

FPS on the PoseTrack 2017 validation set using one GTX

1080 Ti. As of writing, our approach currently ranks second

for accuracy and at third place for tracking on the 2017 chal-

lenge [1]. Note that, our tracking approach is truly online

on a per-frame basis with no post processing.

The rest of the paper is organized as follows. In Sec. 2,

we discuss related work and situate the paper in the litera-

ture. In Sec. 3, we present details of our approach, training

procedure as well as tracking and inference algorithm. Fi-

nally, we present results and ablation experiments in Sec. 4

and conclude the paper in Sec. 5.

2. Related Work

Early methods for human pose estimation localized key-

points or body parts of individuals but did not consider mul-

tiple people simultaneously [4, 28, 36, 20, 33]. Hence, these

methods were not adept at localizing keypoints of highly

articulated or interacting people. Person detection was typ-

ically used which followed single-person keypoint detec-

tion [29, 11, 32, 16]. With deep learning, human detec-

tion methods such as Mask-RCNN [10, 14] were employed

to directly predict multiple human bounding boxes through

ROI-pooling followed by pose estimation per person [12].

However, these methods suffered when people were in close

proximity as bounding boxes got grouped together. Further-

more, these top-down methods required more computation

as the number of people increased in the image, making

them inadequate for real-time pose estimation and tracking.

The bottom-up Part Affinity Fields (PAF) method [6]

produced a spatial encoding of pair-wise body part connec-

tions in the image space, followed by greedy bipartite graph

matching for inference permitting consistent computation

speed irrespective of the number of people. Person Lab [25]

built upon these ideas to incorporate redundant connections

on people with a less greedy inference approach getting

highly competitive results on the COCO [22] and MPII [3]

datasets. These methods work on single images and do not

incorporate any keypoint tracking or past information.

Many offline methods have been proposed to enforce

temporal consistency of poses in videos [15, 17, 34]. These

require solving spatio-temporal graphs or incorporating

data from future frames making them inadequate for on-

line operation. Alternatively, Song et al. and Pfister et al.

[27, 31] demonstrate how optical flow fields could be pre-

dicted per keypoint by formulating the input to be multi-

framed. LSTM Pose Machines [23] built upon previous

work demonstrating use of single stage per frame for video

sequences. However, these networks did not model spatial

relationship between keypoints and were evaluated on the

single person Penn Action [37] and JHMDB [18] datasets.

A different line of works explored maintaining tempo-

ral graphs in neural networks for handling multiple peo-

ple [9, 8]. Rohit et al. demonstrated that a 3D extension

of Mask-RCNN, called person tubes, can connect people

across time. However, this required applying grouped con-

volutions over a stack of frames reducing speed, and did not

achieve better results for tracking than the Hungarian Algo-

rithm baseline. Joint Flow [8] used the concept of Temporal

Flow Field which connected keypoints across two frames.

However, it did not use a recurrent structure and explicitly

required a pair of images as input increasing run-time sig-

nificantly. The flow representation also suffered from am-

biguity when subjects moved slowly or were stationary and

required special handling of such cases during tracking.

Top-down pose and tracking methods [34, 33, 7, 26, 14]

have dominated the detection and tracking tasks [34] [35]

in PoseTrack but their speed suffered due to explicit human

detection and follow-up keypoint detection for each per-

son. Moreover, modeling long-term spatio-temporal graphs

for tracking in an offline manner hurts real-time applica-

tions. None of these methods are able to report any signif-

icant runtime-to-performance measures as they cannot run

in real time. In this work, we demonstrate this problem can

be solved in a simple elegant single-stage network that in-

corporates recurrence by using the previous pose heatmaps

to predict both keypoints and their spatio-temporal asso-

ciations. We call this Recurrent Spatio-Temporal Affinity

Fields (STAF) which not only represents the prediction of

Spatial (PAF) and Temporal (TAF) Affinity Fields but also

how they are refined through past information.
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Figure 2: Left: Training architecture for one of our models which ingests video sequences in a recurrent manner across time

while generating keypoints and connections across keypoints in each frame as Part Affinity Fields (PAFs), and connections

between keypoints across frames as Temporal Affinity Fields (TAFs). Together, we call this Recurrent Spatio-Temporal

Affinity Fields (STAF). Each module ingests outputs from other modules in both previous and current frames (shown with

arrows) and refines it. Center: During inference, our network operates on a single video frame at each time step using

past information. Right: During inference, we use the predicted heatmaps to detect and track people. Keypoints (red) are

extracted first, then associated into poses and tracklets using PAFs (green), TAFs (blue), and tracklets from previous frames.

3. Proposed Approach

Our approach aims to solve the problems of keypoint es-

timation and tracking simultaneously in videos. We em-

ploy Recurrent Convolutional Neural Networks which we

construct from four essential building blocks. Let Pt rep-

resent the pose of a person in a particular frame or time

t, consisting of keypoints K = {K1,K2, . . .KK}. The

Part Affinity Fields (PAFs) L = {L1,L2, . . .LL} are syn-

thesized from keypoints in each frame. For tracking key-

points across frames a video, we propose Temporal Affinity

Fields (TAFs) given by R = {R1,R2, . . .RR} which cap-

ture the recurrence and connect the keypoints across frames.

Together, they are referred to as Spatio-Temporal Affinity

Fields (STAF). These blocks are visualized in Fig. 2 where

each block is shown with a different color: the raw con-

volutional feature from VGG backbone [30] are shown in

amber, PAFs in green, keypoints in red and TAFs in blue.

Thus, the output of VGG backbone, PAFs, keypoints and

TAFs are given by V, L, K and R, respectively, and com-

puted through CNNs by ψV, ψL, ψK and ψR, respectively.

The keypoint heatmaps are constructed from ground truth

by placing a Gaussian kernel at the location of the annotated

keypoint, whereas the PAFs and TAFs are constructed from

ground truth between pairs of keypoints for each person:

L̃
t
k→k′ := Ω

(
K̃

t
k, K̃

t
k′

)
, R̃

t
k→k′ := Ω

(
K̃

t−1
k , K̃t

k′

)
, (1)

where ∼ denotes the ground truth and the function Ω(·)
places a directional unit vector at every pixel within a pre-

defined radius of the line connecting the two keypoints.

3.1. Video Models for Pose Estimation and Tracking

Next, we present the three models comprising the four

blocks capable of estimating keypoints and STAF. The in-

put to each network consists of a set of consecutive frames

of a video. Each block in each network consists of five 7 × 7

and two 1 × 1 convolution layers. Each 7 × 7 layer is re-

placeable with the concatenation of three 3 × 3 convolution

layers providing the same receptive field. The first stage has

a unique set of weights from subsequent frames as it cannot

incorporate any previous data and also has a lower depth

which was found to improve results (see Sec. 4). The VGG

features are computed for each frame. For frame I
t at time

t of the video, they are computed as Vt = ψV(It).

Model I: Given V
t−1 and V

t, the the following equations
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describe the first model:

L
t = ψL

(
V

t, ψ
q−1
L

(·)
)
,

K
t = ψK

(
V

t, ψ
q
L
(·), ψq−1

K
(·)

)
, (2)

R
t = ψR

(
V

t−1, Vt, Lt−1, Lt, Rt−1
)
,

where ψq means q recursive applications of ψ. In our ex-

periments, we found that performance plateaus at q = 5. In

Model I, PAFs are obtained by recursive application of ψL

on concatenated input from VGG features and PAFs from

previous stage. Similarly, keypoints depend on VGG fea-

tures, keypoints from the previous stage and PAFs from the

current stage. Finally, TAFs are dependent on VGG fea-

tures and PAFs from both the previous and current frames,

as well as TAFs from previous frame. This model produces

good results but is the slowest due to recursive stages.

Model II: Unlike Model I with multiple applications of

CNNs for PAFs and keypoints, Model II computes the PAFs

and keypoints in a single pass as visualized in Fig. 2:

L
t = ψL

(
V

t,Lt−1
)
,

K
t = ψK

(
V

t, Lt, Kt−1
)
, (3)

R
t = ψR

(
V

t−1, Vt, Lt−1, Lt, Rt−1
)
.

Replacing five stages with a single stage is expected to

drop performance. Therefore, the multi-stage computation

of PAFs and keypoints in Model II is supplanted with out-

put of PAFs and keypoints from the previous frames. This

boosts up the speed significantly without major loss in per-

formance as it takes advantage of the redundant information

in videos, i.e., the PAFs and keypoints from previous frame

are a reliable guide to the location of PAFs and keypoints in

the current frame.

Model III: Finally, the third model attempts to estimate Part

and Temporal Affinity Fields through a single CNN:

[L,R]
t
= ψ[L,R]

(
V

t−1,Vt, [L,R]
t−1)

,

K
t = ψK

(
V

t, Lt, Kt−1
)
, (4)

where [L,R] implies simultaneous computation of Part

and Temporal Affinity Fields through a single CNN. For

Model III, the channels corresponding to PAFs are then

passed for keypoint estimation along with VGG features

from current frame and keypoints from previous frame. As

Model III consists of only three blocks, it has the fastest in-

ference, however it proved to be the most difficult to train.

3.2. Topology of Spatio­Temporal Affinity Fields

For our body model, we define K = 21 body parts or

keypoints which is the union of body parts in COCO and

MPII pose datasets. They include ears, nose and eyes from

COCO; and head and neck from MPII. Next, there are sev-

eral possible ways to associate and track the keypoints and

(a)                      (b)                     (c)

Figure 3: This figure illustrates the three possible topology

variations for Spatio-Temporal Affinity Fields including the

new cross-linked limb topology (b). Keypoints, PAFs and

TAFs are represented by solid circles, straight lines and ar-

rows, respectively.

STAF across frames as illustrated in Figure 3. In this figure,

solid circles represent keypoints while straight lines and ar-

rows stand for PAFs and TAFs, respectively. Figure 3(a)

consists of TAFs between same keypoints as well as PAFs.

For this topology, the number of TAFs and PAFs is 21 and

48, respectively. The TAFs capture temporal connections

directly across keypoints similar to [8].

On the other hand, Figure 3(b) consists of TAFs between

different limbs in a cross-linked manner across frames. The

number of PAFs and TAFs is 48 and 96, respectively. We

also tested the topology in Figure 3(c) which consists of 69

keypoints and limb TAFs only. This does not model any

spatial links within frames across keypoints.

3.3. Model Training

During training, we unroll each model to handle multi-

ple frames at once. Each model is first pre-trained in Im-

age Mode where we present a single image or frame at

each time instant to the model. This implies multiple appli-

cations of PAF and keypoint stages to the same frame. We

train with COCO, MPII and PoseTrack datasets with a batch

distribution of 0.7, 0.2 and 0.1, respectively, which corre-

sponds to dataset sizes where each batch consists of images

or frames from one dataset exclusively. For masking out

un-annotated keypoints, we use the head bounding boxes

available in MPII and PoseTrack datasets, and location of

annotated keypoints for batches from COCO dataset. The

net takes in 368 × 368 images and has scaling, rotation and

translation augmentations. Heatmaps are computed with an

ℓ2 loss with a stride of 8 resulting in 46 × 46 dimensional

heatmaps. We initialize the limb TAFs with PAFs in topol-

ogy 3(b,c), and keypoint TAFs with zeros in topology 3(a,c).

We train the net for a maximum of 400k iterations.

44623



Next, we proceed training in the Video Mode where

we expose the network to video sequences. For static im-

age datasets including COCO and MPII, we augment data

with video sequences that have length equal to number of

times the network is unrolled by synthesizing motion with

scaling, rotation and translation. We train COCO, MPII

and PoseTrack in Video Mode with a batch distribution of

of 0.4, 0.1 and 0.5, respectively. Moreover, we also use

skip-frame augmentation for video-based PoseTrack dataset

where some of the randomly selected sequences skip up to

3 frames. We lock the weights of VGG module in Video

Mode. For Model I, we only train the TAF module when

training on videos. For Model II, we train keypoint, PAF

and TAF modules for 5000 epochs, then lock all modules

except TAF. In Model III, both STAF and keypoints remain

unlocked throughout the 300k iterations.

3.4. Inference and Tracking

The method described till now predicts heatmaps of key-

points and STAF at every frame. Next, we present the

framework to perform pose inference and tracking across

frames given the predicted heatmaps. Let the inferred poses

at time t be given by {Pt,1,Pt,2, . . . ,Pt,N} where the

second superscript indexes over people at frame t. Each

pose at a particular time consists of up to K keypoints

that become part of a pose post inference, i.e., P
t,n =

{K
t,n

1 ,K
t,n

2 , . . . ,K
t,n

K }.

The detection and tracking procedure begins with local-

ization of keypoints at time t. The inferred keypoints K
t

are

obtained by rescaling the heatmaps to original image resolu-

tion followed by non-maximal suppression. Then, we infer

PAF weights, L
t
, and those for TAF, R

t
, between all pairs

of keypoints in each frame defined by the given topology,

i.e.,

L
t

k→k′ = ω
(
K

t

k,K
t

k′

)
, R

t

k→k′ = ω
(
K

t−1

k ,K
t

k′

)
, (5)

where the function ω(·) samples points between the two

keypoints, computes the dot product between the the mean

vector of the sampled points and the directional vector from

the first to the second keypoint.

Both the inferred PAFs and TAFs are sorted by their

scores before inferring the complete poses and associating

them across frames with unique ids. We perform this in a

bottom-up style where we utilize poses and inferred PAFs

from the previous frame to determine the update, addition or

deletion of tracklets. Going through each PAF in the sorted

list, (i) we initialize a new pose if both keypoints in the PAF

are unassigned, (ii) add to existing pose if one of the key-

points is assigned, (iii) update score of PAF in pose if both

are assigned to the same pose, and (iv) merge two poses if

keypoints belong to different poses with opposing keypoints

unassigned. Finally, we assign id to each pose in the current

C

D

A

BE

G

F

H

Assume we are constructing a person, starting at Node A. We are confused about 
moving either to B or E, since their scores were sorted closely in PAF. 

We first select E, and select the best TAF linking it, going to F. We know F 
belongs to person A, so we go to G. Then we sample the TAF between G and A, 
since transitivity only exists between those limbs. We see the score is lower

We then select B, and select the best TAF linking it, going to C. We know C 
belongs to person B, so we go to D. Then we sample TAF between D and A. We 
see the score is higher.

Hence, we select B to be our next point in the graph.

(a) (b) (c) (d)

Figure 4: (a) Ambiguity when selecting between two wrist

locations B and E is resolved by reweighing PAFs through

TAFs. (b)-(d): With transitivity, incorrect PAFs containing

ankles (c) are resolved with past pose (b) resulting in (d).

frame with the most frequent id of keypoints from the pre-

vious frame. For cases where we have ambiguous PAFs,

i.e., multiple equally likely possibilities as seen in Figure 4,

we use transitivity that reweighs PAFs with TAFs to disam-

biguate between them, using α as a biasing weight. In this

figure, keypoint {A} - an elbow - is under consideration

with wrists {B} and {E} as two possibilities. We select the

strongest TAF where {A,B,C,D,A} has a higher weight

than {A,E, F,G,A}, computed as:

L
t,n

k→k′ = (1− α) ∗ ω(K
t−1,n

k ,K
t,n

k′ ) + α ∗ ω(K
t,n

k ,K
t,n

k′ ).

4. Experiments

In this section, we present results of our experiments. In-

put images to networks are resized at W×368 maintaining

aspect ratio for single scale (SS); and W×736, W×368 and

W×184 for multiple scales (MS). The heatmaps for multi-

ple scales are re-sized back to W×736 and merged through

averaging. This is followed by inference and tracking.

4.1. Ablation Study

We conducted a series of ablation studies to determine

the construction of our network architecture:

Filter Sizes: As discussed in Sec. 3, each block either con-

sists of five 7 × 7 layers followed by two 1 × 1 layers [6],

or each 7 × 7 layer is replaced with three 3 × 3 layers simi-

lar to [5] in the alternate experiment. The results are shown

in Table 1. We run single frame inference on Model I and

find the 3 × 3 filter size to be 2% more accurate than 7 × 7,

with significant boosts in average precision of knee and an-

kle keypoints. It is also 40% faster while requiring 40%
more memory.

Video Mode / Depth of First Stage: Next, we report results

when training in Image Mode (Im) using single images, and

when we continue training beyond images while exposing

the network to videos and augmenting with synthetic mo-

tion in the Video Mode (Vid). During testing, the network

is run recurrently on video sequences with one frame per
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Method Hea Sho Elb Wri Hip Kne Ank mAP fps

Model I - 3x3 75.7 73.9 67.8 56.3 66.8 62.3 56.9 66.3 14

Model I - 7x7 76.0 73.3 66.4 54.0 63.4 59.2 52.2 64.3 10

Table 1: This table shows results for experiments with the

two filter sizes on PoseTrack 2017 validation set.

(a) (b) (c) (d)

Figure 5: Improvement in quality of heatmaps before (a,c)

and after (b,d) the network is exposed to videos and syn-

thetic motion augmentation. We observe better peaks and

less noise across both PAF and keypoint heatmaps.

stage. Model II is deployed for these experiments. We find

that by exposing the network to video sequences for 5000
iterations, we were able to boost the mAP as seen in Table 2

and Fig. 5. We also find that if we use the same depth,

i.e., number of channels for the first frame as the other

frames (128-128), the network was not able to generalize

well to recurrent execution (56.6 mAP) when trained with

Image Mode. When reducing the depth for the first frame

to one-half, i.e. (64-128), we found that the generalization

to videos was better (62.6 mAP). When trained with Video

Mode, mAP increased further to 64.1. We reason that the

64-depth modules produced relatively vague outputs which

gave sufficient room for the subsequent modules in the fol-

lowing frames to process and refine the heatmaps yielding

a boost in performance. Furthermore, this also highlights

the importance of incorporating shot change detection and

running the first stage at each shot change.

Method Hea Sho Elb Wri Hip Kne Ank mAP fps

Im - 7x7 - 128-128 74.6 69.6 55.5 40.2 56.4 47.2 44.0 56.6 27

Vid - 7x7 - 128-128 76.2 71.6 64.5 51.9 62.6 59.3 52.5 63.6 27

Im - 7x7 - 64-128 73.5 72.2 63.8 52.1 62.7 57.3 51.1 62.6 27

Vid - 7x7 - 64-128 75.8 73.4 65.5 53.8 64.2 58.4 51.4 64.1 27

Im - 3x3 - 64-128 73.5 72.5 65.0 52.7 63.7 57.7 53.2 63.4 35

Vid - 3x3 - 64-128 75.4 73.2 67.4 55.0 63.9 58.4 53.5 64.6 35

Table 2: This table shows single-scale performance using

Model II before and after training with videos, filter sizes,

as well as different depths for first stage.

Effect of Camera Frame Rate on mAP: For these exper-

iments, we studied how the frame rate of the camera and

number of stages affect the accuracy of pose estimation.

With a high frame rate, the apparent motion between frames

is smooth, which becomes relatively abrupt at low frame-

rates. Therefore, the heatmaps from previous frames would

6Hz 24Hz12Hz 
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Model II: 1 s   / 35 fps 
Model II: 2 s  / 26 fps 
Model  I: 5 s  /  14 fps

*Model II: 1 s  / 35 fps
*Model II: 2 s / 26 fps
*Model II: 3 s / 20 fps
*Model II: 4 s / 17  fps

(a) Validation Subset (b) Validation Set

Figure 6: These graphs show mAP curves as a function

of frame rates of camera, i.e., the rate at which an origi-

nal 24Hz video is input to the method. The flat black line

shows the performance of five-stage Model I, while ‘*’ in

the legend indicates training using Image Mode only.

not be as useful at low frame-rates. We tested this hypoth-

esis with Model I (five stages of the same modules without

ingesting previous frame heatmaps), and Model II (different

number of stages with each ingesting heatmaps from previ-

ous frame). We also evaluate the influence of training with

Image and Video modes in Figure 6.

Fig. 6(a) shows results on a subset of ten sequences

where the human subjects comprised at least 30% of the

frame height in the PoseTrack 2017 validation set. Fig. 6(b)

presents results on the entire validation set. The original

videos were assumed to run at the film-standard 24 Hz,

hence we ran experiments by varying frame rates at 24, 12

and 6 Hz through sub-sampling. The ground truth has been

annotated at 6 Hz. As expected, accuracy is proportional to

video frame rate and number of stages. When the Model II

was trained in Image Mode, we observed small increments

in accuracy until at four stages, it peaks at the same level as

Model I. Upon training with Video Mode, it surpasses this

accuracy peaking earlier at two stages.

When considering the entire validation set, the approach

is still able to reap the benefits of more stages and train-

ing in Video Mode as can be seen in Fig. 6(b). However,

it was barely able to reach the accuracy of the much slower

Model I. For the validation set, the accuracy reduced when

including sequences with smaller apparent size of humans.

These sequences usually were more crowded as well, and

passing in the previous heatmaps seemed to hurt the perfor-

mance. The body parts of small-sized humans only occu-

pied a few pixels in the heatmaps and the normalized direc-

tion vectors were inconsistent and random across frames.

Influence of Topology / Model Type in Tracking: Next,

we report experiments on different combinations of topol-

ogy defined in Fig. 3 with the three models presented in

Sec. 3.1, both for pose estimation and tracking evaluated
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using mean Average Precision (mAP) and Multiple Object

Tracking Accuracy (MOTA) metrics in Table 3. We found

an improvement in tracking using limb TAFs in Topology

B versus keypoint TAFs in Topology A. As highlighted

in Fig. 1, Topology A lacks associative properties when a

keypoint has minimal motion or when a new person ap-

pears. Although we enforced spatial constraint that joint lo-

cations should be close in consecutive frames, and adjusted

it according to scale (similar to [8]), this still resulted in

false positives since it is difficult to disambiguate between

a newly detected person and some nearby stationary per-

son. Furthermore, where motion of a person tended to be

small, Topology A resulted in jittery and noisy vectors caus-

ing more reliance on pixel distances. This was further exac-

erbated by recurrence where accumulation of noisy vectors

from previous frame heatmaps deteriorated associative abil-

ity of Temporal Affinity Fields. Table 3 also shows results

for Topology C which significantly under-performed com-

pared to Topology B. Since it exclusively consists of limb

and joint TAFs without any spatial components, this makes

keypoint localization and association rather difficult.

Topology B solves all of these problems elegantly. The

longer cross-linked limb TAF connections preserve infor-

mation even in the absence of motion or appearance of

new people since the TAF effectively collapses to a PAF

in such cases. This allows us to avoid association heuristics

and makes the problem of new person identification trivial.

With this representation, recurrence was observably bene-

ficial due to true and consistent representation irrespective

of magnitude of motion. As a side-advantage, this also al-

lowed us to warm-start the TAF input with PAF providing

more reliable initialization for tracking in the first frame.

For Model III, training beyond 5000 iterations gradually

begins to harm the accuracy of the pose estimation resulting

in reduced tracking performance as well. This is primarily

due to the disparity in the amount of diverse data between

COCO / MPII and PoseTrack datasets. For Model II, if we

train on keypoints and PAFs modules and lock their weights

afterwards, then follow with training only the TAF, this re-

sults in better performance with a significant boost in speed

as well. Although Model I outperformed the other models

with five stages for keypoints and PAFs; and a single recur-

rent stage for TAFs, however this comes at the expense of

speed. Furthermore, we observe that an increase in mAP

ends up sub-linearly increasing the MOTA as well.

Effect of Video Rate and Number of People on Tracking:

Finally, we performed a study on how the frame rate of the

camera affects tracking accuracy, since a lower frame rate

would require longer associations in pixel space.

We ran Lukas Kanade (LK) as a baseline tracker by re-

placing the TAF Module in Model I with LK (21 × 21

window size; 3 pyramid levels). Initially, we observe that

there is roughly 2.0% improvement in MOTA as seen in

Method Wrist-AP Ankles-AP mAP MOTA fps

Model I-A 56.2 56.4 66.0 58.5 14

Model I-B 56.3 56.9 66.3 59.4 13

Model II-A 54.9 53.0 64.4 57.4 28

Model II-B 55.0 53.5 64.6 58.4 27

Model III-B 51.9 49.5 61.6 57.8 30

Model III-C 42.5 40.5 55.2 49.9 36

Table 3: This table shows pose estimation and tracking per-

formance for combinations of model types and topologies.
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Figure 7: (a) This graph shows MOTA as a function of video

frame rate for Temporal Affinity Fields (TAFs) and Lukas-

Kanade (LK) tracker. The performance of TAFs is virtu-

ally invariant to frame rate or alternatively to the amount

of motion between frames. (b) Our approach is effectively

runtime-invariant to the number of people in the scene.

Fig. 7(a). However, we note that around 20% of the se-

quences have significant articulation and camera movement,

where TAFs outperformed LK as the latter was not able to

match keypoints across large displacements whereas TAFs

found matches due to stronger descriptive power. TAFs

were able to maintain tracking accuracy even with low

frame-rate cameras, but with LK the MOTA drops off sig-

nificantly (see Fig. 7(a)). Furthermore, Fig. 7(b) suggests

that our approach is nearly runtime-invariant to number of

people in the frame making it suitable for crowded scenes.

4.2. Comparison

We present results on PoseTrack dataset in Table 4 for

2017 validation set (top), 2017 test set (middle) and 2018

validation set (bottom). FlowTrack, JointFlow and Pose-

Flow are included as comparison in this table. FlowTrack

is a top-down approach which means human detection is

performed first followed by pose estimation. Due to this

reason, it is significantly slower than bottom-up approaches

such as ours. Model II-B with single scale is competitive

with other bottom-up approaches while being 270% faster.

However, multi-scale (MS) processing boosts performance

by ∼6% and ∼1.5% for mAP and MOTA, respectively. We

are also able to achieve competitive results on the Pose-

Track 2018 Validation set while maintaining the best speeds

amongst all reported results. Note that PoseTrack 2018 Test

set was not released to public at the time of submission of

this paper. Figure 8 shows some qualitative results.
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Figure 8: Three example cases of tracking at ∼30 FPS on multiple targets. Top / Middle: Observe that tracking continues

to function despite large motion displacements and occlusions. Bottom: A failure case where abrupt scene change causes

ghosting, where previously tracked person appears in the new frame. This issue can be rectified through a warm-start.

5. Conclusion

In this paper, we first motivated recurrent Spatio-

Temporal Affinity Fields (STAF) as the right approach for

detection and tracking of articulated human pose in videos,

especially for real-time reactive systems. We showed that

leveraging the previous frame data within a recurrent struc-

ture and training on video sequences yields as good results

as a multi-stage network albeit at much lower computation

cost. We also demonstrated the stability of tracking accu-

racy at reduced frame rates for the TAF formulation, due to

its ability to correlate keypoints over large pixel distances.

This implies that our method can be deployed on low-power

embedded systems which may not be able to run large net-

works at high frame rates, yet are able to maintain reason-

able accuracy. Our new cross-linked limb temporal topol-

ogy is able to generalize better than previous approaches

due to strong associative power with PAF being a special

case of TAF. We are also able to operate at the same con-

sistent speed irrespective of the number of people due to

bottom-up formulation. For future work, we plan to embed

a re-identification module to handle cases of people leaving

and reappearing in a camera view. Furthermore, detecting

and triggering warm-start at every shot change has the po-

tential to boost pose estimation and tracking performance.
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Method Wrist-AP Ankles-AP mAP MOTA fps

T
o
p
-D

o
w

n PoseTrack 2017 Validation

Detect-and-track [9] 51.7 49.8 60.6 55.2 1.2

FlowTrack - 152 [34] 72.4 67.1 76.7 65.4 -

FlowTrack - 50 [34] 66.0 61.7 72.4 62.9 -

MDPN - 152 [13] 77.5 71.4 80.7 66.0 -

B
o
tt

o
m

-U
p

PoseFlow [35] 61.1 61.3 66.5 58.3 10*

JointFlow [8] - - 69.3 59.8 0.2

Model II-B (SS) 55.0 53.5 64.6 58.4 27

Model I-B (SS) 56.8 56.8 66.3 59.4 13

Model II-B (MS) 62.9 60.9 71.5 61.3 7

Model I-B (MS) 65.0 62.7 72.6 62.7 2

T
o
p
-D

o
w

n PoseTrack 2017 Testing

Detect-and-track [9] - - 59.6 51.8 1.2

Flowtrack - 152 [34] 70.7 64.9 73.9 57.6 -

Flowtrack - 50 [34] 65.1 60.3 70.0 56.4 -

B
o
tt

o
m

-U
p

PoseTrack [2] 54.3 49.2 59.4 48.4 -

BUTD [19] 52.9 42.6 59.1 50.6 -

PoseFlow [35] 59.0 57.9 63.0 51.0 10*

JointFlow [8] 53.1 50.4 63.3 53.1 0.2

Model II-B (MS) 62.8 59.5 69.6 52.4 7

Model I-B (MS) 65.0 60.7 70.3 53.8 2

B
o
tt

o
m

-U
p PoseTrack 2018 Validation

Model II-B (SS) 56.2 54.2 63.7 58.4 27

Model I-B (SS) 58.3 56.7 64.9 59.6 13

Model II-B (MS) 62.7 60.6 69.9 59.8 7

Model I-B (MS) 64.7 62.0 70.4 60.9 3

Table 4: This table shows comparison on the PoseTrack

datasets. For our approach, we report results with Models I

/ II and Top. B. The last column shows the speed in frames

per second (* excludes pose inference time). FlowTrack is

a top-down approach using ResNet-152 (or 50); whereas

JointFlow, PoseFlow and our approach are bottom-up.

are those of the authors and should not be interpreted as nec-

essarily representing the official policies or endorsements,

either expressed or implied, of IARPA, DOI/IBC, or the

U.S. Government.
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