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Abstract

We address the unsupervised learning of several intercon-

nected problems in low-level vision: single view depth predic-

tion, camera motion estimation, optical flow, and segmenta-

tion of a video into the static scene and moving regions. Our

key insight is that these four fundamental vision problems are

coupled through geometric constraints. Consequently, learn-

ing to solve them together simplifies the problem because the

solutions can reinforce each other. We go beyond previous

work by exploiting geometry more explicitly and segment-

ing the scene into static and moving regions. To that end,

we introduce Competitive Collaboration, a framework that

facilitates the coordinated training of multiple specialized

neural networks to solve complex problems. Competitive

Collaboration works much like expectation-maximization,

but with neural networks that act as both competitors to ex-

plain pixels that correspond to static or moving regions, and

as collaborators through a moderator that assigns pixels to

be either static or independently moving. Our novel method

integrates all these problems in a common framework and

simultaneously reasons about the segmentation of the scene

into moving objects and the static background, the camera

motion, depth of the static scene structure, and the optical

flow of moving objects. Our model is trained without any su-

pervision and achieves state-of-the-art performance among

joint unsupervised methods on all sub-problems. .

1. Introduction

Deep learning methods have achieved state-of-the-art re-

sults on computer vision problems with supervision using

large amounts of data [9, 18, 21]. However, for many vision

problems requiring dense, continuous-valued outputs, it is ei-

This project was formerly referred by Adversarial Collaboration: Joint

Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion

Segmentation

Figure 1: Unsupervised Learning of Depth, Camera Mo-

tion, Optical Flow and Motion Segmentation. Left, top to

bottom: sample image, soft masks representing motion seg-

mentation, estimated depth map. Right, top to bottom: static

scene optical flow, segmented flow in the moving regions

and combined optical flow.

ther impractical or expensive to gather ground truth data [6].

We consider four such problems in this paper: single view

depth prediction, camera motion estimation, optical flow,

and motion segmentation. Previous work has approached

these problems with supervision using real [5] and synthetic

data [4]. However there is always a realism gap between

synthetic and real data, and real data is limited or inaccurate.

For example, depth ground truth obtained using LIDAR [6]

is sparse. Furthermore, there are no sensors that provide

ground truth optical flow, so all existing datasets with real

imagery are limited or approximate [1, 6, 13]. Motion seg-

mentation ground truth currently requires manual labeling

of all pixels in an image [26].

Problem. Recent work has tried to address the problem

of limited training data using unsupervised learning [14, 24].

To learn a mapping from pixels to flow, depth, and camera

motion without ground truth is challenging because each

of these problems is highly ambiguous. To address this,

additional constraints are needed and the geometric relations

between static scenes, camera motion, and optical flow can

be exploited. For example, unsupervised learning of depth
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and camera motion has been coupled in [38, 22]. They use

an explainability mask to exclude evidence that cannot be

explained by the static scene assumption. Yin et al. [37]

extend this to estimate optical flow as well and use forward-

backward consistency to reason about unexplained pixels.

These methods perform poorly on depth [38] and optical

flow [37] benchmarks. A key reason is that the constraints

applied here do not distinguish or segment objects that move

independently, such as people and cars. More generally,

not all the data in the unlabeled training set will conform

to the model assumptions, and some of it might corrupt

the network training. For instance, the training data for

depth and camera motion should not contain independently

moving objects. Similarly, for optical flow, the data should

not contain occlusions, which disrupt the commonly used

photometric loss.

Idea. A typical real-world scene consists of static regions,

which do not move in the physical world, and moving ob-

jects [36]. Given depth and camera-motion, we can reason

about the static scene in a video sequence. Optical flow, in

contrast, reasons about all parts of the scene. Motion segmen-

tation classifies a scene into static and moving regions. Our

key insight is that these problems are coupled by the geome-

try and motion of the scene; therefore solving them jointly is

synergistic. We show that by learning jointly from unlabeled

data, our coupled networks can partition the dataset and use

only the relevant data, resulting in more accurate results than

learning without this synergy.

Approach. To address the problem of joint unsupervised

learning, we introduce Competitive Collaboration (CC), a

generic framework in which networks learn to collaborate

and compete, thereby achieving specific goals. In our spe-

cific scenario, Competitive Collaboration is a three player

game consisting of two players competing for a resource that

is regulated by a third player, the moderator. As shown in

Figure 2, we introduce two players in our framework, the

static scene reconstructor, R = (D,C), that reasons about

the static scene pixels using depth, D, and camera motion,

C; and a moving region reconstructor, F , that reasons about

pixels in the independently moving regions. These two play-

ers compete for training data by reasoning about static-scene

and moving-region pixels in an image sequence. The compe-

tition is moderated by a motion segmentation network, M ,

that segments the static scene and moving regions, and dis-

tributes training data to the players. However, the moderator

also needs training to ensure a fair competition. Therefore,

the players, R and F , collaborate to train the moderator, M ,

such that it classifies static and moving regions correctly in

alternating phases of the training cycle. This general frame-

work is similar in spirit to expectation-maximization (EM)

but is formulated for neural network training.

Contributions. In summary our contributions are: 1)

We introduce Competitive Collaboration, an unsupervised

learning framework where networks act as competitors and

collaborators to reach specific goals. 2) We show that jointly

training networks with this framework has a synergistic ef-

fect on their performance. 3) To our knowledge, our method

is the first to use low level information like depth, camera

motion and optical flow to solve a segmentation task without

any supervision. 4) We achieve state-of-the-art performance

on single view depth prediction and camera motion estima-

tion among unsupervised methods. We achieve state of art

performance on optical flow among unsupervised methods

that reason about the geometry of the scene, and introduce

the first baseline for fully unsupervised motion segmenta-

tion. We even outperform competing methods that use much

larger networks [37] and multiple refinement steps such as

network cascading [24]. 5) We analyze the convergence

properties of our method and give an intuition of its gener-

alization using mixed domain learning on MNIST [19] and

SVHN [25] digits. All our models and code are available at

https://github.com/anuragranj/cc.

2. Related Work

Our method is a three-player game, consisting of two

competitors and a moderator, where the moderator takes the

role of a critic and two competitors collaborate to train the

moderator. The idea of collaboration can also be seen as

neural expectation maximization [8] where one model is

trained to distribute data to other models. For unsupervised

learning, these ideas have been mainly used to model the data

distribution [8] and have not been applied to unsupervised

training of regression or classification problems.

There is significant recent work on supervised training of

single image depth prediction [5], camera motion estimation

[16] and optical flow estimation [4]. However, as labeling

large datasets for continuous-valued regression tasks is not

trivial, and the methods often rely on synthetic data [4, 23,

28]. Unsupervised methods have tried to independently solve

for optical flow [14, 24, 35] by minimizing a photometric

loss. This is highly underconstrained and thus the methods

perform poorly.

More recent works [22, 32, 33, 37, 38] have approached

estimation of these problems by coupling two or more prob-

lems together in an unsupervised learning framework. Zhou

et al. [38] introduce joint unsupervised learning of ego-

motion and depth from multiple unlabeled frames. To ac-

count for moving objects, they learn an explainability mask.

However, these masks also capture model failures such as

occlusions at depth discontinuities, and are hence not useful

for motion segmentation. Mahjourian et al. [22] use a more

explicit geometric loss to jointly learn depth and camera mo-

tion for rigid scenes. Yin et al. [37] add a refinement network

to [38] to also estimate residual optical flow. The estimation

of residual flow is designed to account for moving regions,

but there is no coupling of the optical flow network with
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Figure 2: The network R = (D,C) reasons about the scene by estimating optical flow over static regions using depth, D, and

camera motion, C. The optical flow network F estimates flow over the whole image. The motion segmentation network, M ,

masks out static scene pixels from F to produce composite optical flow over the full image. A loss, E, using the composite

flow is applied over neighboring frames to train all these models jointly.

the depth and camera motion networks. Residual optical

flow is obtained using a cascaded refinement network, thus

preventing other networks from using flow information to

improve themselves. Therefore, recent works show good

performance either on depth and camera motion [22, 37, 38]

or on optical flow [24], but not on both. Zou et al. [39]

exploit consistency between depth and optical flow to im-

prove performance. The key missing piece that we add is

to jointly learn the segmentation of the scene into static and

independently-moving regions. This allows the networks

to use geometric constraints where they apply and generic

flow where they do not. Our work introduces a framework

where motion segmentation, flow, depth and camera motion

models can be coupled and solved jointly to reason about

the complete geometric structure and motion of the scene.

Competitive Collaboration can be generalized to prob-

lems in which the models have intersecting goals where

they can compete and collaborate. For example, modeling

multi-modal distributions can be accomplished using our

framework, whereby each competitor learns the distribution

over a mode. In fact, the use of expectation-maximization

(EM) in computer vision began with the optical flow problem

and was used to segment the scene into “layers” [15] and

was then widely applied to other vision problems.

3. Competitive Collaboration

In our context, Competitive Collaboration is formulated

as a three-player game consisting of two players compet-

ing for a resource that is regulated by a moderator as illus-

trated in Figure 3. Consider an unlabeled training dataset

D = {Di : i ∈ N}, which can be partitioned into two dis-

joint sets. Two players {R,F} compete to obtain this data

as a resource, and each player tries to partition D to mini-

mize its loss. The partition is regulated by the moderator’s

output m = M(Di),m ∈ [0, 1]Ω, and Ω is the output do-

main of the competitors. The competing players minimize

their loss function LR, LF respectively such that each player

optimizes for itself but not for the group. To resolve this

problem, our training cycle consists of two phases. In the

first phase, we train the competitors by fixing the moderator

network M and minimizing

E1 =
∑

i

∑

Ω

m ·LR(R(Di))+(1−m) ·LF (F (Di)), (1)

where · is used to represent elementwise product throughout

the paper. However, the moderator M also needs to be

trained. This happens in the second phase of the training

cycle. The competitors {R,F} form a consensus and train

the moderator M such that it correctly distributes the data

in the next phase of the training cycle. In the collaboration

phase, we fix the competitors and train the moderator by

minimizing,

E2 = E1 +
∑

i

∑

Ω

LM (Di, R, F ) (2)

where LM is a loss that denotes a consensus between the

competitors {R,F}. Competitive Collaboration can be ap-

plied to more general problems of training multiple task

specific networks. In the Appendix A.1, we show the gener-

alization of our method using an example of mixed domain

learning on MNIST and SVHN digits, and analyze its con-

vergence properties.

In the context of jointly learning depth, camera mo-

tion, optical flow and motion segmentation, the first player

R = (D,C) consists of the depth and camera motion net-

works that reason about the static regions in the scene. The

second player F is the optical flow network that reasons

about the moving regions. For training the competitors, the
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Figure 3: Training cycle of Competitive Collaboration: The

moderator M drives two competitors {R,F} (first phase,

left). Later, the competitors collaborate to train the moder-

ator to ensure fair competition in the next iteration (second

phase, right).

motion segmentation network M selects networks (D,C)
on pixels that are static and selects F on pixels that belong

to moving regions. The competition ensures that (D,C) rea-

sons only about the static parts and prevents moving pixels

from corrupting its training. Similarly, it prevents any static

pixels from appearing in the training loss of F , thereby im-

proving its performance in the moving regions. In the second

phase of the training cycle, the competitors (D,C) and F

now collaborate to reason about static scene and moving

regions by forming a consensus that is used as a loss for

training the moderator, M . In the rest of this section, we

formulate the joint unsupervised estimation of depth, camera

motion, optical flow and motion segmentation within this

framework.

Notation. We use {Dθ, Cφ, Fψ,Mχ}, to denote the net-

works that estimate depth, camera motion, optical flow

and motion segmentation respectively. The subscripts

{θ, φ, ψ, χ} are the network parameters. We will omit the

subscripts in several places for brevity. Consider an im-

age sequence I−, I, I+ with target frame I and temporally

neighboring reference frames I−, I+. In general, we can

have many neighboring frames. In our implementation, we

use 5-frame sequences for Cφ and Mχ but for simplicity use

3 frames to describe our approach. We estimate the depth of

the target frame as

d = Dθ(I). (3)

We estimate the camera motion, e, of each of the reference

frames I−, I+ w.r.t. the target frame I as

e−, e+ = Cφ(I−, I, I+). (4)

Similarly, we estimate the segmentation of the target image

into the static scene and moving regions. The optical flow

of the static scene is defined only by the camera motion and

depth. This generally refers to the structure of the scene. The

moving regions have independent motion w.r.t. the scene.

The segmentation masks corresponding to each pair of target

and reference image are given by

m−,m+ =Mχ(I−, I, I+), (5)

where m−,m+ ∈ [0, 1]Ω represent the probabilities of re-

gions being static in spatial pixel domain, Ω. Finally, the net-

work Fψ estimates the optical flow. Fψ works with 2 images

at a time, and its weights are shared while estimating u−, u+,

the backward and forward optical flow1 respectively.

u− = Fψ(I, I−), u+ = Fψ(I, I+). (6)

Loss. We learn the parameters of the networks

{Dθ, Cφ, Fψ,Mχ} by jointly minimizing the energy

E = λRER + λFEF + λMEM + λCEC + λSES , (7)

where {λR, λF , λM , λC , λS} are the weights on the respec-

tive energy terms. The terms ER and EF are the objectives

that are minimized by the two competitors reconstructing

static and moving regions respectively. The competition for

data is driven by EM . A larger weight λM will drive more

pixels towards the static scene reconstructor. The term EC
drives the collaboration, and ES is a smoothness regularizer.

The static scene term, ER minimizes the photometric loss

on the static scene pixels given by

ER =
∑

s∈{+,−}

∑

Ω

ρ
(

I, wc(Is, es, d)
)

·ms (8)

where Ω is the spatial pixel domain, ρ is a robust error func-

tion, and wc warps the reference frames towards the target

frame according to depth d and camera motion e. Similarly,

EF minimizes photometric loss on moving regions

EF =
∑

s∈{+,−}

∑

Ω

ρ
(

I, wf (Is, us)
)

· (1−ms) (9)

where wf warps the reference image using flow u. We show

the formulations for wc, wf in the Appendix A.2 and A.3

respectively. We compute the robust error ρ(x, y) as

ρ(x,y)=λρ

√
(x−y)2+ǫ2+(1−λρ)

[

1−
(2µxµy+c1)(2µxy+c2)

(µ2
x+µ2

y+c1)(σx+σy+c2)

]

(10)

where λρ is a fixed constant and ǫ = 0.01. The second term

is also known as the structure similarity loss (SSIM) [34]

that has been used in previous work [22, 37], and µx, σx are

the local mean and variance over the pixel neighborhood

with c1 = 0.012 and c2 = 0.032.

The loss EM minimizes the cross entropy, H , between

the masks and a unit tensor regulated by λM

EM =
∑

s∈{+,−}

∑

Ω

H(1,ms). (11)

A larger λM gives preference to the static scene reconstructor

R, biasing the scene towards being static.

1Note that this is different from the forward and backward optical flow

in the context of two-frame estimation.
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Let ν(e, d) represent the optical flow induced by camera

motion e and depth d, as described in the Appendix A.2. The

consensus loss EC drives the collaboration and constrains

the masks to segment moving objects by taking a consensus

between flow of the static scene given by ν(e, d) and optical

flow estimates from Fψ . It is given by

EC=
∑

s∈{+,−}

∑

Ω

H
(

IρR<ρF ∨ I||ν(es,d)−us||<λc
,ms

)

(12)

where I ∈ {0, 1} is an indicator function and equals 1 if

the condition in the subscript is true. The first indicator

function favors mask assignments to the competitor that

achieves lower photometric error on a pixel by comparing

ρR = ρ(I, wc(Is, es, d)) and ρF = ρ(I, wf (Is, us)). In the

second indicator function, the threshold λc forces I = 1,

if the static scene flow ν(e, d) is close to the optical flow

u, indicating a static scene. The symbol ∨ denotes logical

OR between indicator functions. The consensus loss EC
encourages a pixel to be labeled as static if R has a lower

photometric error than F or if the induced flow of R is

similar to that of F . Finally, the smoothness term ES acts as

a regularizer on depth, segmentations and flow,

ES =
∑

Ω

||λe∇d||2 + ||λe∇u−||2 + ||λe∇u+||2

+||λe∇m−||2 + ||λe∇m+||2, (13)

where λe = e−∇I (elementwise) and ∇ is the first deriva-

tive along spatial directions [29]. The term λe ensures that

smoothness is guided by edges of the images.

Inference. The depth d and camera motion e are directly

inferred from network outputs. The motion segmentation

m∗ is obtained by the output of mask network Mχ and the

consensus between the static flow and optical flow estimates

from Fχ. It is given by

m∗ = Im+·m−>0.5 ∨ I||ν(e+,d)−u+||<λc
. (14)

The first term takes the intersection of mask probabilities in-

ferred by Mχ using forward and backward reference frames.

The second term takes a consensus between flow estimated

from R = (Dθ, Cφ) and Fψ to reason about the masks.

The final masks are obtained by taking the union of both

terms. Finally, the full optical flow, u∗, between (I, I+) is

a composite of optical flows from the static scene and the

independently moving regions given by

u∗ = Im∗>0.5 · ν(e+, d) + Im∗≤0.5 · u+. (15)

The loss in Eq. (7) is formulated to minimize the reconstruc-

tion error of the neighboring frames. Two competitors, the

static scene reconstructor R = (Dθ, Cφ) and moving region

reconstructor Fψ minimize this loss. The reconstructor R

reasons about the static scene using Eq. (8) and the recon-

structor Fψ reasons about the moving regions using Eq. (9).

The moderation is achieved by the mask network, Mχ using

Eq. (11). Furthermore, the collaboration between R,F is

driven using Eq. (12) to train the network Mχ.

If the scenes are completely static, and only the camera

moves, the mask forces (Dθ, Cφ) to reconstruct the whole

scene. However, (Dθ, Cφ) are wrong in the independently

moving regions of the scene, and these regions are recon-

structed using Fψ . The moderator Mχ is trained to segment

static and moving regions correctly by taking a consensus

from (Dθ, Cφ) and Fψ to reason about static and moving

parts on the scene, as seen in Eq. (12). Therefore, our train-

ing cycle has two phases. In the first phase, the moderator

Mχ drives competition between two models (Dθ, Cφ) and

Fψ using Eqs. (8, 9). In the second phase, the competitors

(Dθ, Cφ) and Fψ collaborate together to train the moderator

Mχ using Eqs. (11,12).

4. Experiments

Network Architecture. For the depth network, we experi-

ment with DispNetS [38] and DispResNet where we replace

convolutional blocks with residual blocks [10]. The net-

work Dθ takes a single RGB image as input and outputs

depth. For the flow network, Fψ, we experiment with both

FlowNetC [4] and PWC-Net [31]. The PWC-Net uses the

multi-frame unsupervised learning framework from Janai et

al. [12]. The network Fψ computes optical flow between

a pair of frames. The networks Cφ,Mχ take a 5 frame

sequence (I−−, I−, I, I+, I++) as input. The mask net-

work Mχ has an encoder-decoder architecture. The encoder

consists of stacked residual convolutional layers. The de-

Result: Trained Network Parameters, (θ, φ, ψ, χ)
Define λ = (λR, λF , λM , λC);
Randomly initialize (θ, φ, ψ, χ);
Update (θ, φ) by jointly training (Dθ, Cφ) with

λ = (1.0, 0.0, 0.0, 0.0);
Update ψ by training Fψ with λ = (0.0, 1.0, 0.0, 0.0);
Update χ by jointly training (Dθ, Cφ, Fψ,Mχ) with

λ = (1.0, 0.5, 0.0, 0.0);
Loop

Competition Step
Update θ, φ by jointly training (Dθ, Cφ,

Fψ,Mχ) with λ = (1.0, 0.5, 0.05, 0) ;

Update ψ by jointly training (Dθ, Cφ, Fψ,Mχ)
with λ = (0.0, 1.0, 0.005, 0) ;

Collaboration Step
Update χ by jointly training (Dθ, Cφ, Fψ,Mχ)
with λ = (1.0, 0.5, 0.005, 0.3) ;

EndLoop

Algorithm 1: Network Training Algorithm
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Figure 4: Visual results. Top to bottom: Sample image, estimated depth, soft consensus masks, motion segmented optical

flow and combined optical flow.

coder has stacked upconvolutional layers to produce masks

(m−−,m−,m+,m++) of the reference frames. The cam-

era motion network Cφ consists of stacked convolutions

followed by adaptive average pooling of feature maps to

get the camera motions (e−−, e−, e+, e++). The networks

Dθ, Fψ,Mχ output their results at 6 different spatial scales.

The predictions at the finest scale are used. The highest scale

is of the same resolution as the image, and each lower scale

reduces the resolution by a factor of 2. We show the network

architecture details in the Appendix A.4.

Network Training. We use raw KITTI sequences [6] for

training using Eigen et al.’s split [5] that is consistent across

related works [5, 20, 22, 37, 38, 39]. We train the net-

works with a batch size of 4 and learning rate of 10−4 us-

ing ADAM [17] optimization. The images are scaled to

256× 832 for training. The data is augmented with random

scaling, cropping and horizontal flips. We use Algorithm

1 for training. Initially, we train (Dθ, Cφ) with only pho-

tometric loss over static pixels ER and smoothness loss

ES while other loss terms are set to zero. Similarly, we

train Fψ independently with photometric loss over all pix-

els and smoothness losses. The models (Dθ, Cφ), Fψ at

this stage are referred to as ‘basic’ models in our exper-

iments. We then learn Mχ using the joint loss. We use

λR = 1.0, λF = 0.5 for joint training because the static

scene reconstructor R uses 4 reference frames in its loss,

whereas the optical flow network F uses 2 frames. Hence,

these weights normalize the loss per neighboring frame. We

iteratively train (Dθ, Cφ), Fψ,Mχ using the joint loss while

keeping the other network weights fixed. The consensus

weight λC = 0.3 is used only while training the mask net-

work. Other constants are fixed with λS = 0.005, and

threshold in Eq. (14), λc = 0.001. The constant λρ = 0.003
regulates the SSIM loss and is chosen empirically. We it-

eratively train the competitors (Dθ, Cφ), Fψ and moderator

Mχ for about 100,000 iterations at each step until validation

error saturates.

Monocular Depth and Camera Motion Estimation. We

obtain state of the art results on single view depth prediction

and camera motion estimation as shown in Tables 1 and 3.

The depth is evaluated on the Eigen et al. [5] split of the raw

KITTI dataset [6] and camera motion is evaluated on the

KITTI Odometry dataset [6]. These evaluation frameworks

are consistent with previous work [5, 20, 22, 37]. All depth

maps are capped at 80 meters. As shown in Table 1, by train-

ing our method only on KITTI [6], we get similar or better

performance than competing methods like [37, 39] that use

a much bigger Resnet-50 architecture [10] and are trained

on the larger Cityscapes dataset [3]. Using Cityscapes in our

training further improves our performance on depth estima-

tion benchmarks (cs+k in Table 1).

Ablation studies on depth estimation are shown in Table

2. In the basic mode, our network architecture, DispNet for

depth and camera motion estimation is most similar to [38]

and this is reflected in the performance of our basic model.

We get some performance improvements by adding the SSIM

loss [34]. However, we observe that using the Competitive

Collaboration (CC) framework with a joint loss results in

larger performance gains in both tasks. Further improve-

ments are obtained by using a better network architecture,

DispResNet. Greater improvements in depth estimation are

obtained when we use a better network for flow, which shows

that improving on one task improves the performance of the

other in the CC framework (row 4 vs 5 in Table 2).

The camera motion estimation also shows similar perfor-

mance trends as shown in Table 3. Using a basic model,

we achieve similar performance as the baseline [38], which

improves with the addition of the SSIM loss. Using the CC

framework leads to further improvements in performance.

In summary, we show that joint training using CC boosts

performance of single view depth prediction and camera mo-

tion estimation. We show qualitative results in Figure 4.

In the Appendix, we show additional evaluations using

Make3D dataset [30] (A.6) and more qualitative results (A.5).
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Error Accuracy, δ

Method Data AbsRel SqRel RMS RMSlog <1.25 <1.252 <1.253

Eigen et al. [5] coarse k 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen et al. [5] fine k 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [20] k 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Zhou et al. [38] cs+k 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Mahjourian et al. [22] cs+k 0.159 1.231 5.912 0.243 0.784 0.923 0.970

Geonet-Resnet [37] cs+k 0.153 1.328 5.737 0.232 0.802 0.934 0.972

DF-Net [39] cs+k 0.146 1.182 5.215 0.213 0.818 0.943 0.978

CC (ours) cs+k 0.139 1.032 5.199 0.213 0.827 0.943 0.977

Zhou et al.* [38] k 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Mahjourian et al. [22] k 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Geonet-VGG [37] k 0.164 1.303 6.090 0.247 0.765 0.919 0.968

Geonet-Resnet [37] k 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Godard et el. [7] k 0.154 1.218 5.699 0.231 0.798 0.932 0.973

DF-Net [39] k 0.150 1.124 5.507 0.223 0.806 0.933 0.973

CC (ours) k 0.140 1.070 5.326 0.217 0.826 0.941 0.975

Table 1: Results on Depth Estimation. Supervised methods are shown in the first rows. Data refers to the training set:

Cityscapes (cs) and KITTI (k). Zhou el al.* shows improved results from their github page.

Error Accuracy, δ

Method Data Net D Net F AbsRel SqRel RMS RMSlog <1.25 <1.252 <1.253

Basic k DispNet - 0.184 1.476 6.325 0.259 0.732 0.910 0.967

Basic + ssim k DispNet - 0.168 1.396 6.176 0.244 0.767 0.922 0.971

CC + ssim k DispNet FlowNetC 0.148 1.149 5.464 0.226 0.815 0.935 0.973

CC + ssim k DispResNet FlowNetC 0.144 1.284 5.716 0.226 0.822 0.938 0.973

CC + ssim k DispResNet PWC Net 0.140 1.070 5.326 0.217 0.826 0.941 0.975

CC + ssim cs+k DispResNet PWC Net 0.139 1.032 5.199 0.213 0.827 0.943 0.977

Table 2: Ablation studies on Depth Estimation. Joint training using Competitive Collaboration and better architectures improve

the results. The benefits of CC can be seen when depth improves by using a better network for flow (row 4 vs 5).

Method Sequence 09 Sequence 10

ORB-SLAM (full) 0.014 ± 0.008 0.012 ± 0.011

ORB-SLAM (short) 0.064 ± 0.141 0.064 ± 0.130

Mean Odometry 0.032 ± 0.026 0.028 ± 0.023

Zhou et al. [38] 0.016 ± 0.009 0.013 ± 0.009

Mahjourian et al. [22] 0.013 ± 0.010 0.012 ± 0.011

Geonet [37] 0.012 ± 0.007 0.012 ± 0.009

DF-Net [39] 0.017 ± 0.007 0.015 ± 0.009

Basic (ours) 0.022 ± 0.010 0.018 ± 0.011

Basic + ssim (ours) 0.017 ± 0.009 0.015 ± 0.009

CC + ssim (ours) 0.012 ± 0.007 0.012 ± 0.008

Table 3: Results on Camera Pose Estimation.

Optical Flow Estimation. We compare the performance

of our approach with competing methods using the KITTI

2015 training set [6] to be consistent with previous work

[24, 37]. We obtain state of the art performance among joint

methods as shown in Table 4. Unsupervised fine tuning

(CC-uft) by setting λM = 0.02 gives more improvements

than CC as masks now choose the best flow between R and

F without being overconstrained to choose R. In contrast,

UnFlow-CSS [24] uses 3 cascaded networks to refine optical

flow at each stage. Geonet [37] and DF-Net [39] are more

similar to our architecture but use a larger ResNet-50 archi-

tecture. Back2Future [12] performs better than our method

in terms of outlier error, but not in terms of average end point

error due to use of additional data.

In Table 5, we observe that training the static scene recon-

structor R or moving region reconstructor F independently

leads to worse performance. This happens becauseR can not

reason about dynamic moving objects in the scene. Similarly

F is not as good as R for reasoning about static parts of the

scene, especially in occluded regions. Using them together,

and compositing the optical flow from both as shown in

Eq. (15) leads to a large improvement in performance. More-

over, using better network architectures further improves the

performance under the CC framework. We show qualitative

results in Figure 4 and in the Appendix A.5.
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Train Test

Method EPE Fl Fl

FlowNet2 [11] 10.06 30.37 % -

SPyNet [27] 20.56 44.78% -

UnFlow-C [24] 8.80 28.94% 29.46%

UnFlow-CSS [24] 8.10 23.27% -

Back2Future [12] 6.59 - 22.94%

Back2Future* [12] 7.04 24.21% -

Geonet [37] 10.81 - -

DF-Net [39] 8.98 26.01% 25.70%

CC (ours) 6.21 26.41% -

CC-uft (ours) 5.66 20.93% 25.27%

Table 4: Results on Optical Flow. We also compare with

supervised methods (top 2 rows) that are trained on synthetic

data only; unsupervised methods specialized for optical flow

(middle 3 rows) and joint methods that solve more than one

task (bottom 4 rows). * refers to our Pytorch implementation

used in our framework which gives slightly lower accuracy.

Average EPE

Method Net D Net F SP MP Total

R DispNet - 7.51 32.75 13.54

F - FlowNetC 15.32 6.20 14.68

CC DispNet FlowNetC 6.35 6.16 7.76

CC DispResNet PWC Net 5.67 5.04 6.21

Table 5: Ablation studies on Flow estimation. SP, MP refer

to static scene and moving region pixels. EPE is computed

over KITTI 2015 training set. R,F are trained independently

without CC.

Motion Segmentation. We evaluate the estimated motion

segmentations using the KITTI 2015 training set [6] that pro-

vides ground truth segmentation for moving cars. Since our

approach does not distinguish between different semantic

classes while estimating segmentation, we evaluate segmen-

tations only on car pixels. Specifically, we only consider car

pixels and compute Intersection over Union (IoU) scores for

moving and static car pixels. In Table 6, we show the IoU

scores of the segmentation masks obtained using our tech-

nique under different conditions. We refer to the masks ob-

tained with the motion segmentation network
(

Im−m+>0.5

)

as ‘MaskNet’ and refer to the masks obtained with flow

consensus
(

I||ν(e+,d)−u+||<λc

)

as ‘Consensus’. The final

motion segmentation masks m∗ obtained with the intersec-

tion of the above two estimates are referred to as ‘Joint’

(Eq. 14). IoU results indicate substantial IoU improvements

with ‘Joint’ masks compared to both ‘MaskNet’ and ‘Con-

sensus’ masks, illustrating the complementary nature of dif-

ferent masks. Qualitative results are shown in Figure 4 and

in the Appendix A.5.

We thank Frederik Kunstner for verifying the proofs, Clément Pinard

for his code, Georgios Pavlakos for paper revisions, Joel Janai for optical

flow visualizations, and Clément Gorard for Make3d evaluation code. MJB

is a part-time employee of Amazon; has financial interests in Amazon and

Overall Static Car Moving Car

MaskNet 41.64 30.56 52.71

Consensus 51.52 47.30 55.74

Joint 56.94 55.77 58.11

Table 6: Motion Segmentation Results. Intersection Over

Union (IoU) scores on KITTI2015 training dataset images

computed over car pixels.

5. Conclusions and Discussion

Typically, learning to infer depth from a single image

requires training images with ground truth depth scans, and

learning to compute optical flow relies on synthetic data,

which may not generalize to real image sequences. For static

scenes, observed by a moving camera, these two problems

are related by camera motion; depth and camera motion

completely determine the 2D optical flow. This holds true

over several frames if the scene is static and only the camera

moves. Thus by combining depth, camera, and flow estima-

tion, we can learn single-image depth by using information

from several frames during training. This is particularly

critical for unsupervised training since both depth and op-

tical flow are highly ill-posed. Combining evidence from

multiple tasks and multiple frames helps to synergistically

constrain the problem. This alone is not enough, however,

as real scenes contain multiple moving objects that do not

conform to static scene geometry. Consequently, we also

learn to segment the scene into static and moving regions

without supervision. In the independently moving regions, a

generic flow network learns to estimate the optical flow.

To facilitate this process we introduce Competitive Col-

laboration in which networks both compete and cooperate.

We demonstrate that this results in top performance among

unsupervised methods for all subproblems. Additionally, the

moderator learns to segment the scene into static and moving

regions without any direct supervision.

Future Work. We can add small amounts of supervised

training, with which we expect to significantly boost perfor-

mance on benchmarks, cf. [24]. We could use, for example,

sparse depth and flow from KITTI and segmentation from

Cityscapes to selectively provide ground truth to different

networks. A richer segmentation network together with

semantic segmentation should improve non-rigid segmenta-

tion. For automotive applications, the depth map formula-

tion should be extended to a world coordinate system, which

would support the integration of depth information over long

image sequences. Finally, as shown in [36], the key ideas

of using layers and geometry apply to general scenes be-

yond the automotive case and we should be able to train this

method to work with generic scenes and camera motions.

Meshcapde GmbH; and received research gift funds from Intel, Nvidia,

Adobe, Facebook, and Amazon. MJB’s research was performed solely at,

and funded solely by MPI. This project was supported by NVIDIA grants.
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