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Abstract

Designing the structure of neural networks is considered

one of the most challenging tasks in deep learning, espe-

cially when there is few prior knowledge about the task do-

main. In this paper, we propose an Ecologically-Inspired

GENetic (EIGEN) approach that uses the concept of suc-

cession, extinction, mimicry, and gene duplication to search

neural network structure from scratch with poorly initial-

ized simple network and few constraints forced during the

evolution, as we assume no prior knowledge about the task

domain. Specifically, we first use primary succession to

rapidly evolve a population of poorly initialized neural net-

work structures into a more diverse population, followed

by a secondary succession stage for fine-grained searching

based on the networks from the primary succession. Extinc-

tion is applied in both stages to reduce computational cost.

Mimicry is employed during the entire evolution process to

help the inferior networks imitate the behavior of a superior

network and gene duplication is utilized to duplicate the

learned blocks of novel structures, both of which help to find

better network structures. Experimental results show that

our proposed approach can achieve similar or better per-

formance compared to the existing genetic approaches with

dramatically reduced computation cost. For example, the

network discovered by our approach on CIFAR-100 dataset

achieves 78.1% test accuracy under 120 GPU hours, com-

pared to 77.0% test accuracy in more than 65, 536 GPU

hours in [36].

1. Introduction

Deep Convolutional Neural Networks (CNN) have

achieved tremendous success among many computer vision

tasks [14, 25, 39]. However, a hand-crafted network struc-

ture tailored to one task may perform poorly on another

task. Therefore, it usually requires extensive amount of hu-

man efforts to design an appropriate network structure for a

certain task.

Recently, there are emerging research works [2, 3, 6,

22, 32, 51] on automatically searching neural network struc-

tures for image recognition tasks. In this paper, we focus on

optimizing the evolution-based algorithms [30, 33, 42, 44]

for searching networks from scratch with poorly-initialized

networks, such as a network with one global pooling layer,

and with few constraints forced during the evolution [36]

as we assume no prior knowledge about the task domain.

Existing work along this line of research suffers from either

prohibitive computational cost or unsatisfied performance

compared with hand-crafted network structures. In [36],

it costs more than 256 hours on 250 GPU for searching

neural network structures, which is not affordable for gen-

eral users. In [44], the final learned network structure by

their genetic approach achieves about 77% test accuracy on

CIFAR-10, even though better performance as 92.9% could

be obtained after fine-tuning certain parameters and modify-

ing some structures on the discovered network. In [27], they

firstly aim to achieve better performance with the reduced

computational cost by the proposed aggressive selection

strategy in genetic approach and more mutations operation

to increase diversity which is decreased by the proposed

selection strategy. In their work, they reduce computa-

tional cost dramatically from more than 64, 000 GPU hours

(GPUH) to few hundreds GPUH. However, their approach

still suffers performance sacrifice, for example, 90.5% test

accuracy compared to 94.6% test accuracy from [36] on

CIFAR-10 dataset.

Inspired by a few key concepts in ecological system, in

this paper, we try to improve the genetic approach to achieve

better test performance compared to [36] or competitive

performance to hand-crafted network structures [18] under

limited computation cost [27], but without utilizing pre-

designed architectures [29, 30, 31, 51]. Inspired by pri-

mary, secondary succession from ecological system [38],

we enforce a poorly initialized population of neural network

structures to rapidly evolve to a population containing net-

work structures with dramatically improved performance.

After the first stage of primary succession, we perform fine-

grained search for better networks in a population during the

secondary succession stage. During the succession stages,

we also introduce an accelerated extinction algorithm to im-

prove the search efficiency. In our approach, we apply the
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mimicry [16] concept to help inferior networks learn the

behavior from superior networks to obtain the better perfor-

mance. In addition, we also introduce the gene duplication

to further utilize the novel block of layers that appear in the

discovered network structure.

The contribution of this paper is four-fold and can be

summarized as follows:

• We proposed an efficient genetic approach to search

neural network structure from scratch with poorly ini-

tialized network and without limiting the searching

space. Our approach can greatly reduce the computa-

tion cost compared to other genetic approaches, where

neural network structures are searched from scratch.

This is different from some recent works [13, 31, 34]

that significantly restricts the search space.

• We incorporate primary and secondary succession

concepts from ecological system into our genetic

framework to search for optimal network structures

under limited computation cost.

• We explore the mimicry concept from ecological sys-

tem to help search better networks during the evolution

and use the gene duplication concept to utilize the dis-

covered beneficial structures.

• Experimental results show that the obtained neural net-

work structures achieves better performance compared

with existing genetic-based approaches and competi-

tive performance with the hand-crafted network struc-

tures.

2. Related Work

There is growing interest on automatic searching of neu-

ral network architectures from scratch. Methods based on

reinforcement learning (RL) show promising results on ob-

taining the networks with the performance similar or bet-

ter than human designed architectures [3, 48, 50]. Zoph et

al. propose to searching in cells, including a normal cell

and a reduction cell, where the final architecture is based on

stacking the cells [51]. The idea of cell based searching is

widely adopted in many studies [9, 10, 29, 31, 34, 49]. In

order to reduce high computational cost, efforts have been

done to avoid training all networks during the searching pro-

cess from scratch [4, 5, 7, 9, 11, 13, 23, 47]. However,

these works require strict hand-designed constraints to re-

duce computation cost, and comparison with them are not

the focus of this paper.

On the other hand, there emerges a few studies [36, 43,

44] targeting on network searching using evolutionary ap-

proaches. In order to have a fair comparison with the RL

and evolutionary based approaches, Real et al. [35] conduct

the study where the RL and evolutionary approaches are

performed under the same searching space. Experiments

show the evolutionary approach converges faster than RL.

Therefore, in this paper we focus on the genetic-based

approaches for searching optimal neural network struc-

tures. Suganuma et al. propose the network searching

based on Cartesian genetic programming [17]. However,

a pre-defined grid with the fixed row and column is used

as the network has to fit in the grid [43] . The studies

that have the searching space similar to us are introduced

in [27, 36, 44], where the network searching starts from

poorly-initialized networks and uses few constraints during

the evolution. Since in this paper we focus on achieving

better performance with limited computational cost through

a genetic approach, we will highlight the differences be-

tween our work with the similar studies [27, 36, 44] in the

following from two aspects: reducing computation cost and

improving performance.

In [36], the authors encode each individual network

structure as a graph into DNA and define several differ-

ent mutation operations such as IDENTITY and RESET-

WEIGHTS to apply to each parent network to generate chil-

dren networks. The essential part of this genetic approach is

that they utilize a large amount of computation to search the

optimal neural network structures in a huge searching space.

Specifically, the entire searching procedure costs more than

256 hours with 250 GPUs to achieve 94.6% test accuracy

from the learned network structure on CIFAR-10 dataset,

which is not affordable for general users.

Due to prohibitive computation cost, in [44] the authors

impose restriction on the neural network searching space. In

their work, they only learn one block of network structure

and stack the learned block by certain times in a designed

routine to obtain the best network structure. Through this

mechanism, the computation cost is reduced to several hun-

dreds GPU hours, however, the test performance of the ob-

tained network structure is not satisfactory, for example, the

found network achieves 77% test accuracy on CIFAR-10,

even though fine-tuning parameters and modifying certain

structures on the learned network structure could lead to the

test accuracy as 92.9%.

In [27], they aim to achieve better performance from au-

tomatically learned network structure with limited compu-

tation cost in the course of evolution, which is not brought

up previously. Different from restricting the search space

to reduce computational cost [12, 44], they propose the ag-

gressive selection strategy to eliminate the weak neural net-

work structures in the early stage. However, this aggressive

selection strategy may decrease the diversity which is the

nature of genetic approach to improve performance. In or-

der to remedy this issue, they define more mutation opera-

tions such as add fully connected or add pooling. Finally,

they reduce computation cost dramatically to 72 GPUH on

CIFAR-10. However, there is still performance loss in their

9060



approach. For example, on CIFAR-10 dataset, the test ac-

curacy of the found network is about 4% lower than [36].

At the end of this section, we highlight that our work is in

the line of [27]. Inspired from ecological concepts, we pro-

pose the Ecologically-Inspired GENetic approach (EIGEN)

for neural network structure search by evolving the net-

works through rapid succession, and explore the mimicry

and gene duplication along the evolution.

3. Approach

Our genetic approach for searching the optimal neural

network structures follows the standard procedures: i) ini-

tialize population in the first generation with simple net-

work structures; ii) evaluate the fitness score of each neural

network structure (fitness score is the measurement defined

by users for their purpose such as validation accuracy, num-

ber of parameters in network structure, number of FLOP in

inference stage, and so on); iii) apply a selection strategy to

decide the surviving network structures based on the fitness

scores; iv) apply mutation operations on the survived par-

ent network structures to create the children networks for

next generation. The last three steps are repeated until the

convergence of the fitness scores. Note that in our genetic

approach, the individual is denoted by an acyclic graph with

each node representing a certain layer such as convolution,

pooling and concatenation layer. A children network can be

generated from a parent network through a mutation proce-

dure. A population includes a fixed number of networks in

each generation, which is set as 10 in our experiments. For

details of using genetic approach to search neural network

structures, we refer the readers to [27]. In the following,

we apply the ecological concepts of succession, extinction,

mimicry and gene duplication to the genetic approach for

an accelerated search of neural network structures.

3.1. Evolution under Rapid Succession

Our inspiration comes from the fact that in an ecologi-

cal system, the population is dominated by diversified fast-

growing individuals during the primary succession, while

in the secondary succession, the population is dominated by

more competitive individuals [38]. Therefore, we treat all

the networks during each generation of the evolution pro-

cess as a population and focus on evolving the population

instead of on a single network [36].

With this treatment, we propose a two-stage rapid suc-

cession for accelerated evolution, analogous to the ecolog-

ical succession. The proposed rapid succession includes a

primary succession, where it starts with a community con-

sisting of a group of poorly initialized individuals which

only contains one global pooling layer, and a secondary suc-

cession which starts after the primary succession. In the

primary succession, a large search space is explored to al-

low the community grow at a fast speed, and a relatively

small search space is used in the secondary succession for

fine-grained search.

In order to depict how the search space is explored, we

define mutation step-size m as the maximum mutation it-

erations between the parent and children. The actual mu-

tation step for each child is uniformly chosen from [1,m].
In the primary succession, in order to have diversified fast-

growing individuals, a large mutation step-size is used in

each generation so the mutated children could be signifi-

cantly different from each other and from their parent. Since

we only go through the training procedure after finishing the

entire mutation steps, the computation cost for each gener-

ation will not increase with the larger step-size. In the sec-

ondary succession, we adopt a relative small mutation step-

size to perform a fine-grained search for network structures.

Each mutation step is randomly selected from the nine

following operations including:

• INSERT-CONVOLUTION: A convolutional layer is

randomly inserted into the network. The inserted con-

volutional layer has a default setting with kernel size

as 3×3, number of channels as 32, and stride as 1.

The convolutional layer is followed by batch normal-

ization [21] and Rectified Linear Units [25].

• INSERT-CONCATENATION: A concatenation layer

is randomly inserted into the network where two bot-

tom layers share the same size of feature maps.

• INSERT-POOLING: A pooling layer is randomly in-

serted into the network with kernel size as 2×2 and

stride as 2.

• REMOVE-CONVOLUTION: The operation ran-

domly remove a convolutional layer.

• REMOVE-CONCATENATION: The operation ran-

domly remove a concatenation layer.

• REMOVE-POOLING: The operation randomly re-

move a pooling layer.

• ALTER-NUMBER-OF-CHANNELS, ALTER-

STRIDE, ALTER-FILTER-SIZE: The three opera-

tions modify the hyper-parameters in the convolutional

layer. The number of channels is randomly selected

from a list of {16, 32, 48, 64, 96}; the stride is ran-

domly selected from a list of {1, 2}; and the filter size

is randomly selected from {1× 1, 3× 3}.

During the succession, we employ the idea from previ-

ous work [27] that only the best individual in the previ-

ous generation will survive. However, instead of evaluat-

ing the population in each generation after all the training

iterations, it is more efficient to extinguish the individuals

that may possibly fail at early iterations, especially during
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the primary succession where the diversity in the popula-

tion leads to erratic performances. Based on the assumption

that a better network should have better fitness score at ear-

lier training stages, we design our extinction algorithm as

follows.

To facilitate the presentation, we denote n as the pop-

ulation size in each generation, T1 and T2 as the landmark

iterations, fg,i,T1
and fg,i,T2

as fitness scores (validation ac-

curacy used in our work) of the ith network in the gth gen-

eration after training T1 and T2 iterations, vg,T1
and vg,T2

as threshold to eliminate weaker networks at T1 and T2 it-

erations in the gth generation. In the gth generation, we

have fitness scores for all networks Fg,T1
= {fg,i,T1

, i =
1, · · · , n} and Fg,T2

= {fg,i,T2
, i = 1, · · · , n̂} after train-

ing T1 and T2 iterations, respectively. Note that n̂ can be

less than n since weaker networks are eliminated after T1

iterations. The thresholds vg,T1
and vg,T2

are updated at gth

iteration as

vg,T1
= max

(

S(Fg,T1
)p, vg−1,T1

)

(1)

and

vg,T2
= max

(

S(Fg,T2
)q, vg−1,T2

)

(2)

where S(.) is a sorting operator in decreasing order on a

list of values and the subscripts p and q represents pth and

qth value after the sorting operation, p and q are the hyper-

parameters.

For each generation, we perform the following steps un-

til the convergence of the fitness scores: (i) train the popula-

tion for T1 iterations, extinguish the individuals with fitness

scores less than vg,T1
; (ii) train the remaining population

for T2 iterations, and distinguish the population with fitness

scores less than vg,T2
; (iii) the survived individuals are fur-

ther trained till convergence and the best one is chosen as

the parent for next generation. The details for the extinction

algorithm are described in Algorithm 1.

3.2. Mimicry

In biology evolution, mimicry is a phenomenon that one

species learn behaviours from another species. For exam-

ple, moth caterpillars learn to imitate body movements of a

snake so that they could scare off predators that are usually

prey items for snakes [16]. The analogy with mimicry sig-

nifies that we could force inferior networks to adopt (learn)

the behaviors, such as statistics of feature maps [37, 45] or

logits [8, 19], from superior networks in designing neural

network structure during the evolution.

In our approach, we force the inferior networks to learn

the behavior of a superior network by generating similar

distribution of logits in the evolution procedure. Since

learning the distribution of logits from the superior network

gives more freedom for inferior network structure, com-

pared to learning statistics of feature maps. This is in fact

Algorithm 1 Algorithm for Extinction

1: Input: T1, T2, v0,T1
, v0,T2

, p, q

2: for g = 1 · · · , G do

3: Obtain Fg,T1
= {fg,i,T1

, i = 1, ..., n}, n = 10 by

training all individuals for T1 iterations

4: Update vg,T1
based on Eq. 1

5: Extinguish the individuals with fitness value less than

vg,T1

6: Obtain Fg,T2
= {fg,i,T1

, i = 1, ..., n̂} by training the

remain individuals for T2 iterations

7: Update vg,T2
based on Eq. 2

8: Extinguish the individuals with fitness value less than

vg,T2

9: Train the remain individuals for T3 iterations and se-

lect the best one as parent

10: end for

Figure 1: Example of duplication. The image on the left

shows the structure discovered after the rapid succession,

where each block includes a number of layers with the same

size of feature maps. The image in the middle and right are

two examples of the duplication that the Block 2 undergoes

different combination to create new architectures.

the knowledge distillation proposed in [19]. More specifi-

cally, for the given training image x with one-hot class label

y, we define t as the logits predicted from the pre-trained

superior network, and s as the logits predicted by the infe-

rior network. We use the following defined LK as the loss

function to encode the prediction discrepancy between infe-

rior and superior networks as well as the difference between

inferior networks prediction and ground truth annotations

during the evolution:

LK = (1− α)LC(y,H(s)) + αT 2LC

(

H
(

s

T

)

,H

(

t

T

))

(3)
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Model PARAMS. C10+ C100+ Comp Cost

MAXOUT [15] - 90.7% 61.4% -

Network In Network [28] - 91.2% 64.3% -

ALL-CNN [40] 1.3 M 92.8% 66.3% -

DEEPLY SUPERVISED [26] - 92.0% 65.4% -

HIGHWAY [41] 2.3 M 92.3% 67.6% -

RESNET [18] 1.7 M 93.4% 72.8% -

DENSENET

(k = 40, l = 100) [20]
25.6 M 96.5% 82.8% -

Teacher Network 17.2 M 96.0% 82.0% -

EDEN [12] 0.2 M 74.5% - -

Genetic CNN [44] - 92.9% 71.0% 408 GPUH

LS-Evolution [36] 5.4 M 94.6% - 64,000 GPUH

LS-Evolution [36] 40.4 M - 77.0% > 65,536 GPUH

AG-Evolution [27] - 90.5% - 72 GPUH

AG-Evolution [27] - - 66.9% 136 GPUH

EIGEN 2.6 M 94.6% - 48 GPUH

EIGEN 11.8 M - 78.1% 120 GPUH

Table 1: Comparison with hand-designed architectures and automatically discovered architectures using genetic algorithms.

The C10+ and C100+ columns indicate the test accuracy achieved on data-augmented CIFAR-10 and CIFAR-100 datasets,

respectively. The PARAMS. column indicates the number of parameters in the discovered network.

where H(.) is the softmax function, LC is the cross-entropy

of two input probability vectors such that

LC(y,H(s)) = −
∑

k

yklogH(sk), (4)

α is the ratio controlling two loss terms and T is a hyper-

parameter. We adopt the terms from knowledge distilla-

tion [19] where student network and teacher network repre-

sent the inferior network and superior network, respectively.

We fix T as a constant. While the target of neural network

search is to find the optimal architecture, mimicry is par-

ticularly useful when we want to find a small network for

applications where inference computation cost is limited.

3.3. Gene Duplication

During the primary succession, the rapid changing of

network architectures leads to the novel beneficial struc-

tures decoded in DNA [36] that are not shown in the pre-

vious hand-designed networks. To further leverage the au-

tomatically discovered structures, we propose an additional

mutation operation named duplication to simulate the pro-

cess of gene duplication since it has been proved as an im-

portant mechanism for obtaining new genes and could lead

to evolutionary innovation [46]. In our implementation, we

treat the encoded DNA as a combination of blocks. For each

layer with the activation map defined as N ×D ×W ×H ,

where N,D,W,H denote the batch size, depth, width and

height, respectively, the block includes the layers with ac-

tivation map that have the same W and H . As shown in

Figure 1, the optimal structure discovered from the rapid

succession could mutate into different networks by combin-

ing the blocks in several ways through the duplication. We

duplicate the entire block instead of single layer because the

block contains the beneficial structures discovered automat-

ically while simple layer copying is already an operation in

the succession.

4. Experimental Results and Analysis

In this section, we report the experimental results of us-

ing EIGEN for structure search of neural networks. We

first describe the experiment setup including datasets pre-

prossessing and training strategy in Subsection 4.1 and

show the comparison results in Subsection 4.2. Following

that, we analyze the experimental results in Subsection 4.3

with regard to each component of our approach.

4.1. Experiment Setup

Datasets. The experiments are conducted on two bench-

mark datasets including CIFAR-10 [24] and CIFAR-

100 [24]. The CIFAR-10 dataset contains 10 classes with

50, 000 training images and 10, 000 test images. The im-

ages have the size of 32×32. The data augmentation is

applied by a Global Contrast Normalization (GCN) and

ZCA whitening [15]. The CIFAR-100 dataset is similar to
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(a) The discovered network architecture using the proposed method on CIFAR-10 dataset that includes convolutional layers, concatenation

layers and global pooling layer.

(b) The detailed architecture of the BLOCK shown in (a).

Figure 2: Discovered neural network structure for CIFAR-10 dataset.

CIFAR-10 except it includes 100 classes.

Training Strategy and Details. During the training pro-

cess, we use mini-batch Stochastic Gradient Descent (SGD)

to train each individual network with the batch size as 128,

momentum as 0.9, and weight-decay as 0.0005. Each net-

work is trained for a maximum of 25, 000 iterations. The

initial learning rate is 0.1 and is set as 0.01 and 0.001 at

15, 000 iterations and 20, 000 iterations, respectively. The

parameters in Algorithm 1 are set to T1 = 5, 000, T2 =
15, 000, T3 = 5, 000, p = 5, and q = 2. For the mimicry,

we set T to 5 and α to 0.9 in Eq. 3. The teacher network is

an ensemble of four Wide-DenseNet (k = 60, l = 40) [20].

The fitness score is validation accuracy from validation set.

The primary succession ends when the fitness score satu-

rates and then the secondary succession starts. The entire

evolution procedure is terminated when the fitness score

converges. Training is conducted with TensorFlow [1].

We directly adopt the hyper-parameters developed on

CIFAR-10 dataset to CIFAR-100 dataset. The experiments

are run on a machine that has one Intel Xeon E5-2680 v4

2.40GHz CPU and one Nvidia Tesla P100 GPU.

4.2. Comparison Results

The experimental results shown in Table 1 justify the

proposed approach are competitive with hand designed net-

works. Compared with the evolution-based algorithms, we

can achieve the best results with the minimum computa-

tional cost. For example, we obtain similar results on the

two benchmark datasets compared to [36], but our ap-

proach is 1,000 times faster. Also, the number of parameters

of the networks found by our approach on the two datasets

are more than two times smaller than LS-Evolution [36].

We show the discovered network architecture using our

proposed method on CIFAR-10 dataset in Figure 2, where

Figure 2a shows the engire network and Figure 2b repre-

sents the detailed architecture in the BLOCK of Figure 2a.

4.3. Analysis

Effect of Primary Succession. We show the results on

different mutation step-size for the primary succession in

Figure 3. The solid lines show average test accuracy of

the best networks among five experiments and the shaded

area represents the standard deviation σ in each generation

among five experiments. Larger mutation step-size, such as

100, leads to the faster convergence of fitness score com-
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(a) Primary succession using the mutation step-size as 1, 2, 10 and

100.

(b) Primary succession using the muation step-size as 50, 100 and

200.

Figure 3: The effect of different mutation step-size for the

primary succession on CIFAR-10. The solid lines show

the average test accuracy over five experiments of the in-

dividuals with the highest accuracy in each generation. The

shaded area around each line has a width of standard devia-

tion ±σ. In general, the larger mutation step-size, the faster

the convergence of fitness score.

pared with the smaller mutation step-size, as shown in Fig-

ure 3a. However, no further improvement is observed by

using too large mutation step-size, such as 200, as shown in

Figure 3b.

Effect of Secondary Succession. We further analyze the

effect of the secondary succession during the evolution pro-

cess. After the primary succession, we utilize the secondary

succession to search the networks with a smaller searching

space. We adopt small mutation step-size for the purpose of

fine-grained searching based on the survived network from

previous generation. Figure 4 shows the example evolution
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(a) Experiment on CIFAR-10 dataset.
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(b) Experiment on CIFAR-100 dataset.

Figure 4: The progress of rapid succession on CIFAR-10 (a)

and CIFAR-100 (b). The blue line is the test performance of

the best individual in each generation. The gray dots show

the number of parameters of the individuals in each gener-

ation. The red line denotes the generation where primary

succession ends.

on CIFAR-10 and CIFAR-100 during the rapid succession.

We use mutation step-size 100 and 10 for primary succes-

sion and secondary succession, respectively. The blue line

in the plots shows performance of the best individual in each

generation. The gray dots show the number of parameters

for the population in each generation, and the red line indi-

cates where the primary succession ends. The accuracy on

the two datasets for the secondary succession shown in Ta-

ble 2 demonstrates that small mutation step-size is helpful

for searching better architectures in the rapid succession.

Analysis on Mimicry. In order to analyze the effect of

mimicry, we consider the situation where only primary and

secondary succession are applied during the evolution. Both

the duplication and mimicry are disabled. We denote the

method as EIGEN w/o mimicry and duplication. We

compare EIGEN w/o mimicry and duplication with the

approach where mimicry is enabled and denote it as EIGEN

w/o duplication. The comparison between EIGEN w/o
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Succession C10+ C100+

Primary Succession 93.3% 74.7%

Secondary Succession 93.7% 76.9%

Table 2: The results of secondary succession during the evo-

lution. After the primary succession, the smaller mutation

step-size is adopted to search the better network architec-

tures. The accuracy on both CIFAR-10 and CIFAR-100 are

improved.

Method C10+ C100+

EIGEN w/o mimicry

and duplication
92.4% 74.8%

EIGEN w/o

duplication
93.7% 76.9%

Table 3: Analysis of mimicry during the raipd succession.

mimicry and duplication and EIGEN w/o duplication in

Table 3 proves the effectiveness of the mimicry during the

rapid succession.

Effect of Gene Duplication. After the rapid succession,

the duplication operation is applied to leverage the automat-

ically discovered structures. To analyze the effect of gene

duplication, we denote the approach without duplication as

EIGEN w/o duplication and show the results on CIFAR-

10 and CIFAR-100 in Table 4. Although more parameters

are induced in the networks by duplication, the beneficial

structures contained in the block can actually contribute to

the network performance through duplication.

Method
C10+

(PARAMS.)

C100+

(PARAMS.)

EIGEN w/o duplication 93.7% (1.2 M) 76.9% (6.1 M)

EIGEN 94.6% (2.6 M) 78.1% (11.8 M)

Table 4: Analysis of the gene duplication operation on

CIFAR-10 and CIFAR-100. The performance on the two

datasets is improved with more parameters on the networks

discovered from gene duplication.

Furthermore, we analyze the effect of mimicry on the

network after the gene duplication. We denote the best net-

work found by our approach as EIGEN network. By uti-

lizing the mimicry to train the network from scratch, which

is EIGEN network w mimicry, the networks obtain the

improvement as 1.3% and 4.2% on CIFAR-10 and CIFAR-

100, respectively, compared with the network trained from

scratch without mimicry, which is EIGEN network w/o

mimicry.

Method C10+ C100+

EIGEN network w/o mimicry 93.3% 73.9%

EIGEN network w mimicry 94.6% 78.1%

Table 5: Analysis of mimicry after the gene duplication.

5. Discussion and Conclusions

In this paper, we propose an Ecologically-Inspired GE-

Netic Approach (EIGEN) for searching neural network ar-

chitectures automatically from scratch, with poor initializa-

tion networks, such as a network with one global pooling

layer, and few constraints forced during the searching pro-

cess. Our searching space follows the work in [27, 36] and

we introduce rapid succession, mimicry and gene duplica-

tion in our apporach to make the search more efficient and

effective. The rapid succession and mimicry could evolve

a population of networks into an optimal status under the

limited computational resources. With the help of gene du-

plication, the performance of the found network could be

boosted without sacrificing any computational cost. The ex-

perimental results show the proposed approach can achieve

competitive results on CIFAR-10 and CIFAR-100 under

dramatically reduced computational cost compared with

other genetic-based algorithms.

Admittedly, compared with other searching neural net-

work algorithms [31, 34] which aim to searching net-

work under limited computation resource, our work has the

slightly higher error rate. But our genetic algorithm requires

little prior domain knowledge from human experts, and

is more “complete-automatic” compared with other semi-

automatic searching neural network approaches [31, 34],

which require more advanced initialization, carefully de-

signed cell-based structures and much more training iter-

ations after the searching process. Such comparison, al-

though unfair, still indicates that more exploration is needed

to improve the efficiency for genetic-based approaches in

searching neural networks from scratch for the future study.
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