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Abstract

Along with the deraining performance improvement of

deep networks, their structures and learning become more

and more complicated and diverse, making it difficult to

analyze the contribution of various network modules when

developing new deraining networks. To handle this issue,

this paper provides a better and simpler baseline derain-

ing network by considering network architecture, input and

output, and loss functions. Specifically, by repeatedly un-

folding a shallow ResNet, progressive ResNet (PRN) is pro-

posed to take advantage of recursive computation. A re-

current layer is further introduced to exploit the dependen-

cies of deep features across stages, forming our progressive

recurrent network (PReNet). Furthermore, intra-stage re-

cursive computation of ResNet can be adopted in PRN and

PReNet to notably reduce network parameters with unsub-

stantial degradation in deraining performance. For network

input and output, we take both stage-wise result and origi-

nal rainy image as input to each ResNet and finally output

the prediction of residual image. As for loss functions, s-

ingle MSE or negative SSIM losses are sufficient to train

PRN and PReNet. Experiments show that PRN and PReNet

perform favorably on both synthetic and real rainy images.

Considering its simplicity, efficiency and effectiveness, our

models are expected to serve as a suitable baseline in fu-

ture deraining research. The source codes are available at

https://github.com/csdwren/PReNet.

1. Introduction

Rain is a common weather condition, and has severe ad-

verse effect on not only human visual perception but al-

so the performance of various high level vision tasks such

as image classification, object detection, and video surveil-

lance [7,14]. Single image deraining aims at restoring clean
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Figure 1. Deraining results by RESCAN [20] and PReNet (T = 6)

at stage t = 1, 2, 4, 6, respectively.

background image from a rainy image, and has drawn con-

siderable recent research attention. For example, several

traditional optimization based methods [1, 9, 21, 22] have

been suggested for modeling and separating rain streaks

from background clean image. However, due to the com-

plex composition of rain and background layers, image de-

raining remains a challenging ill-posed problem.

Driven by the unprecedented success of deep learning in

low level vision [3, 15, 18, 28, 34], recent years have also

witnessed the rapid progress of deep convolutional neural

network (CNN) in image deraining. In [5], Fu et al. show
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(a) PRN and the illustration of PRN with T stages recursion

(b) PReNet and the illustration of PReNet with T stages recursion

Figure 2. The architectures of progressive networks, where fin is a convolution layer with ReLU, fres is ResBlocks, fout is a convolution

layer, frecurrent is a convolutional LSTM and c© is a concat layer. fres can be implemented as conventional ResBlocks or recursive ResBlocks

shown as in Fig. 3.

that it is difficult to train a CNN to directly predict back-

ground image from rainy image, and utilize a 3-layer CNN

to remove rain streaks from high-pass detail layer instead

of the input image. Subsequently, other formulations are al-

so introduced, such as residual learning for predicting rain

steak layer [20], joint detection and removal of rain streak-

s [30], and joint rain density estimation and deraining [32].

On the other hand, many modules are suggested to

constitute different deraining networks, including residual

blocks [6, 10], dilated convolution [30, 31], dense block-

s [32], squeeze-and-excitation [20], and recurrent layer-

s [20, 25]. Multi-stream [32] and multi-stage [20] network-

s are also deployed to capture multi-scale characteristic-

s and to remove heavy rain. Moreover, several models

are designed to improve computational efficiency by uti-

lizing lightweight networks in a cascaded scheme [4] or a

Laplacian pyramid framework [7], but at the cost of obvi-

ous degradation in deraining performance. To sum up, al-

beit the progress of deraining performance, the structures of

deep networks become more and more complicated and di-

verse. As a result, it is difficult to analyze the contribution

of various modules and their combinations, and to develop

new models by introducing modules to existing deeper and

complex deraining networks.

In this paper, we aim to present a new baseline network

for single image deraining to demonstrate that: (i) by com-

bining only a few modules, a better and simpler baseline

network can be constructed and achieve noteworthy perfor-

mance gains over state-of-the-art deeper and complex de-

raining networks, (ii) unlike [5], the improvement of de-

raining networks may ease the difficulty of training CNNs

to directly recover clean image from rainy image. More-

over, the simplicity of baseline network makes it easier to

develop new deraining models by introducing other network

modules or modifying the existing ones.

To this end, we consider the network architecture, in-

put and output, and loss functions to form a better and sim-

pler baseline network. In terms of network architecture, we

begin with a basic shallow residual network (ResNet) with

five residual blocks (ResBlocks). Then, progressive ResNet

(PRN) is introduced by recursively unfolding the ResNet in-

to multiple stages without the increase of model parameters

(see Fig. 2(a)). Moreover, a recurrent layer [11,27] is intro-

duced to exploit the dependencies of deep features across

recursive stages to form the PReNet in Fig. 2(b). From

Fig. 1, a 6-stage PReNet can remove most rain streaks at

the first stage, and then remaining rain streaks can be pro-

gressively removed, leading to promising deraining quality

at the final stage. Furthermore, PRNr and PReNetr are pre-

sented by adopting intra-stage recursive unfolding of only

one ResBlock, which reduces network parameters only at

the cost of unsubstantial performance degradation.

Using PRN and PReNet, we further investigate the ef-

fect of network input/output and loss function. In terms of

network input, we take both stage-wise result and original

rainy image as input to each ResNet, and empirically find

that the introduction of original image does benefit derain-

ing performance. In terms of network output, we adopt the

residual learning formulation by predicting rain streak lay-

er, and find that it is also feasible to directly learn a PRN or

PReNet model for predicting clean background from rainy

image. Finally, instead of hybrid losses with careful hyper-
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parameters tuning [4, 6], a single negative SSIM [29] or

MSE loss can readily train PRN and PReNet with favorable

deraining performance.

Comprehensive experiments have been conducted to e-

valuate our baseline networks PRN and PReNet. On four

synthetic datasets, our PReNet and PRN are computation-

ally very efficient, and achieve much better quantitative and

qualitative deraining results in comparison with the state-

of-the-art methods. In particular, on heavy rainy dataset

Rain100H [30], the performance gains by our PRN and

PReNet are still significant. The visually pleasing deraining

results on real rainy images have also validated the general-

ization ability of the trained PReNet and PRN models.

The contribution of this work is four-fold:

• Baseline deraining networks, i.e., PRN and PReNet,

are proposed, by which better and simpler networks

can work well in removing rain streaks, and provide a

suitable basis to future studies on image deraining.

• By taking advantage of intra-stage recursive computa-

tion, PRNr and PReNetr are also suggested to reduce

network parameters while maintaining state-of-the-art

deraining performance.

• Using PRN and PReNet, the deraining performance

can be further improved by taking both stage-wise re-

sult and original rainy image as input to each ResNet,

and our progressive networks can be readily trained

with single negative SSIM or MSE loss.

• Extensive experiments show that our baseline network-

s are computationally very efficient, and perform fa-

vorably against state-of-the-arts on both synthetic and

real rainy images.

2. Related Work

In this section, we present a brief review on two rep-

resentative types of deraining methods, i.e., traditional

optimization-based and deep network-based ones.

2.1. Optimization­based Deraining Methods

In general, a rainy image can be formed as the compo-

sition of a clean background image layer and a rain layer.

On the one hand, linear summation is usually adopted as

the composition model [1, 21, 35]. Then, image deraining

can be formulated by incorporating with proper regulariz-

ers on both background image and rain layer, and solved

by specific optimization algorithms. Among these method-

s, Gaussian mixture model (GMM) [21], sparse representa-

tion [35], and low rank representation [1] have been adopt-

ed for modeling background image or rain layers. Based on

linear summation model, optimization-based methods have

been also extended for video deraining [8,12,13,16,19]. On

the other hand, screen blend model [22, 26] is assumed to

be more realistic for the composition of rainy image, based

on which Luo et al. [22] use the discriminative dictionary

learning to separate rain streaks by enforcing the two layers

share fewest dictionary atoms. However, the real composi-

tion generally is more complicated and the regularizers are

still insufficient in characterizing background and rain lay-

ers, making optimization-based methods remain limited in

deraining performance.

2.2. Deep Network­based Deraining Methods

When applied deep network to single image deraining,

one natural solution is to learn a direct mapping to predict

clean background image x from rainy image y. However,

it is suggested in [5, 6] that plain fully convolutional net-

works (FCN) are ineffective in learning the direct mapping.

Instead, Fu et al. [5,6] apply a low-pass filter to decompose

y into a base layer ybase and a detail layer ydetail. By as-

suming ybase ≈ xbase, FCNs are then deployed to predict

xdetail from ydetail. In contrast, Li et al. [20] adopt the resid-

ual learning formulation to predict rain layer y − x from

y. More complicated learning formulations, such as join-

t detection and removal of rain streaks [30], and joint rain

density estimation and deraining [32], are also suggested.

And adversarial loss is also introduced to enhance the tex-

ture details of deraining result [25, 33]. In this work, we

show that the improvement of deraining networks actually

eases the difficulty of learning, and it is also feasible to train

PRN and PReNet to learn either direct or residual mapping.

For the architecture of deraining network, Fu et al. first

adopt a shallow CNN [5] and then a deeper ResNet [6].

In [30], a multi-task CNN architecture is designed for joint

detection and removal of rain streaks, in which contextual-

ized dilated convolution and recurrent structure are adopted

to handle multi-scale and heavy rain steaks. Subsequent-

ly, Zhang et al. [32] propose a density aware multi-stream

densely connected CNN for joint estimating rain density

and removing rain streaks. In [25], attentive-recurrent net-

work is developed for single image raindrop removal. Most

recently, Li et al. [20] recurrently utilize dilated CNN and

squeeze-and-excitation blocks to remove heavy rain streaks.

In comparison to these deeper and complex networks, our

work incorporates ResNet, recurrent layer and multi-stage

recursion to constitute a better, simpler and more efficient

deraining network.

Besides, several lightweight networks, e.g., cascaded

scheme [4] and Laplacian pyrimid framework [7] are al-

so developed to improve computational efficiency but at

the cost of obvious performance degradation. As for PRN

and PReNet, we further introduce intra-stage recursive com-

putation to reduce network parameters while maintain-

ing state-of-the-art deraining performance, resulting in our

PRNr and PReNetr models.
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3. Progressive Image Deraining Networks

In this section, progressive image deraining networks are

presented by considering network architecture, input and

output, and loss functions. To this end, we first describe the

general framework of progressive networks as well as in-

put/output, then implement the network modules, and final-

ly discuss the learning objectives of progressive networks.

3.1. Progressive Networks

A simple deep network generally cannot succeed in re-

moving rain streaks from rainy images [5,6]. Instead of de-

signing deeper and complex networks, we suggest to tackle

the deraining problem in multiple stages, where a shallow

ResNet is deployed at each stage. One natural multi-stage

solution is to stack several sub-networks, which inevitably

leads to the increase of network parameters and suscepti-

bility to over-fitting. In comparison, we take advantage of

inter-stage recursive computation [15, 20, 28] by requiring

multiple stages share the same network parameters. Be-

sides, we can incorporate intra-stage recursive unfolding of

only 1 ResBlock to significantly reduce network parameters

with graceful degradation in deraining performance.

3.1.1 Progressive Residual Network

We first present a progressive residual network (PRN) as

shown in Fig. 2(a). In particular, we adopt a basic ResNet

with three parts: (i) a convolution layer fin receives network

inputs, (ii) several residual blocks (ResBlocks) fres extract

deep representation, and (iii) a convolution layer fout out-

puts deraining results. The inference of PRN at stage t can

be formulated as

x
t−0.5 = fin(x

t−1,y),

x
t = fout(fres(x

t−0.5)),
(1)

where fin, fres and fout are stage-invariant, i.e., network pa-

rameters are reused across different stages.

We note that fin takes the concatenation of the current es-

timation x
t−1 and rainy image y as input. In comparison to

only x
t−1 in [20], the inclusion of y can further improve the

deraining performance. The network output can be the pre-

diction of either rain layer or clean background image. Our

empirical study show that, although predicting rain layer

performs moderately better, it is also possible to learn pro-

gressive networks for predicting background image.

3.1.2 Progressive Recurrent Network

We further introduce a recurrent layer into PRN, by which

feature dependencies across stages can be propagated to

facilitate rain streak removal, resulting in our progressive

recurrent network (PReNet). The only difference between

PReNet and PRN is the inclusion of recurrent state s
t,

x
t−0.5 = fin(x

t−1,y),

s
t = frecurrent(s

t−1,xt−0.5),

x
t = fout(fres(s

t)),

(2)

where the recurrent layer frecurrent takes both x
t−0.5 and the

recurrent state s
t−1 as input at stage t − 1. frecurrent can be

implemented using either convolutional Long Short-Term

Memory (LSTM) [11,27] or convolutional Gated Recurrent

Unit (GRU) [2]. In PReNet, we choose LSTM due to its

empirical superiority in image deraining.

The architecture of PReNet is shown in Fig. 2(b). By un-

folding PReNet with T recursive stages, the deep represen-

tation that facilitates rain streak removal are propagated by

recurrent states. The deraining results at intermediate stages

in Fig. 1 show that the heavy rain streak accumulation can

be gradually removed stage-by-stage.

3.2. Network Architectures

We hereby present the network architectures of PRN and

PReNet. All the filters are with size 3 × 3 and padding

1 × 1. Generally, fin is a 1-layer convolution with ReLU

nonlinearity [23], fres includes 5 ResBlocks and fout is al-

so a 1-layer convolution. Due to the concatenation of 3-

channel RGB y and 3-channel RGB x
t−1, the convolution

in fin has 6 and 32 channels for input and output, respec-

tively. fout takes the output of fres (or frecurrent) with 32

channels as input and outputs 3-channel RGB image for

PRN (or PReNet). In frecurrent, all the convolutions in L-

STM have 32 input channels and 32 output channels. fres

is the key component to extract deep representation for rain

streak removal, and we provide two implementations, i.e.,

conventional ResBlocks shown in Fig. 3(a) and recursive

ResBlocks shown in Fig. 3(b).

(a) Conventional ResBlocks (b) Recursive ResBlocks

Figure 3. Implementations of fres: (a) conventinal ResBlocks and

(b) recursive ResBlocks where one ResBlock is recursively un-

folded five times.

Conventional ResBlocks: As shown in Fig. 3(a), we first

implement fres with 5 ResBlocks as its conventional for-

m, i.e., each ResBlock includes 2 convolution layers fol-

lowed by ReLU [23]. All the convolution layers receive

32-channel features without downsampling or upsamping

operations. Conventional ResBlocks are adopted in PRN

and PReNet.

Recursive ResBlocks: Motivated by [15, 28], we also im-

plement fres by recursively unfolding one ResBlock 5 times,
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as shown in Fig. 3(b). Since network parameters mainly

come from ResBlocks, the intra-stage recursive computa-

tion leads to a much smaller model size, resulting in PRNr

and PReNetr. We have evaluated the performance of recur-

sive ResBlocks in Sec. 4.2, indicating its elegant tradeoff

between model size and deraining performance.

3.3. Learning Objective

Recently, hybrid loss functions, e.g., MSE+SSIM [4],

ℓ1+SSIM [7] and even adversarial loss [33], have been

widely adopted for training deraining networks, but incred-

ibly increase the burden of hyper-parameter tuning. In con-

trast, benefited from the progressive network architecture,

we empirically find that a single loss function, e.g., MSE

loss or negative SSIM loss [29], is sufficient to train PRN

and PReNet.

For a model with T stages, we have T outputs, i.e., x1,

x
2,..., xT . By only imposing supervision on the final output

x
T , the MSE loss is

L = ‖xT − x
gt‖2, (3)

and the negative SSIM loss is

L = −SSIM
(

x
T ,xgt

)

, (4)

where xgt is the corresponding ground-truth clean image. It

is worth noting that, our empirical study shows that negative

SSIM loss outperforms MSE loss in terms of both PSNR

and SSIM.

Moreover, recursive supervision can be imposed on each

intermediate result,

L = −
∑T

t=1
λtSSIM

(

x
t,xgt

)

, (5)

where λt is the tradeoff parameter for stage t. Experimental

result in Sec. 4.1.1 shows that recursive supervision can-

not achieve any performance gain when t = T , but can be

adopted to generate visually satisfying result at early stages.

4. Experimental Results

In this section, we first conduct ablation studies to veri-

fy the main components of our methods, then quantitatively

and qualitatively evaluate progressive networks, and final-

ly assess PReNet on real rainy images and video. All the

source code, pre-trained models and results can be found at

https://github.com/csdwren/PReNet.

Our progressive networks are implemented using Py-

torch [24], and are trained on a PC equipped with two N-

VIDIA GTX 1080Ti GPUs. In our experiments, all the

progressive networks share the same training setting. The

patch size is 100 × 100, and the batch size is 18. The

ADAM [17] algorithm is adopted to train the models with

an initial learning rate 1× 10−3, and ends after 100 epochs.

When reaching 30, 50 and 80 epochs, the learning rate is

decayed by multiplying 0.2.

4.1. Ablation Studies

All the ablation studies are conducted on a heavy rainy

dataset [30] with 1,800 rainy images for training and 100

rainy images (Rain100H) for testing. However, we find that

546 rainy images from the 1,800 training samples have the

same background contents with testing images. Therefore,

we exclude these 546 images from training set, and train all

our models on the remaining 1,254 training images.

4.1.1 Loss Functions

Using PReNet (T = 6) as an example, we discuss the effect

of loss functions on deraining performance, including MSE

loss, negative SSIM loss, and recursive supervision loss.

Negative SSIM v.s. MSE. We train two PReNet models

by minimizing MSE loss (PReNet-MSE) and negative S-

SIM loss (PReNet-SSIM), and Table 1 lists their PSNR

and SSIM values on Rain100H. Unsurprisingly, PReNet-

SSIM outperforms PReNet-MSE in terms of SSIM. We al-

so note that PReNet-SSIM even achieves higher PSNR, par-

tially attributing to that PReNet-MSE may be inclined to get

trapped into poor solution. As shown in Fig. 4, the derain-

ing result by PReNet-SSIM is also visually more plausible

than that by PReNet-MSE. Therefore, negative SSIM loss

is adopted as the default in the following experiments.

Table 1. Comparison of PReNet (T = 6) with different loss func-

tions.
Loss PReNet-MSE PReNet-SSIM PReNet-RecSSIM

PSNR 29.08 29.32 29.12

SSIM 0.880 0.898 0.895

Table 2. Comparison of PReNet models with different T stages.

Model PReNet2 PReNet3 PReNet4 PReNet5 PReNet6 PReNet7
PSNR 27.27 28.01 28.60 28.92 29.32 29.24

SSIM 0.882 0.885 0.890 0.895 0.898 0.898

Table 3. Comparisons of PReNet variants for ablation studies.

PReNetx, PReNet-LSTM, and PReNet-GRU learn direct mapping

for predicting background image. In particular, PReNetx only

takes current deraining result xt−1 as input, the recurrent layers

in PReNet-LSTM and PReNet-GRU are implemented using LST-

M and GRU, respectively. PReNet is the final model by adopt-

ing residual learning and LSTM recurrent layer, and taking y and

x
t−1 as input.

Model PReNetx PReNet-LSTM PReNet-GRU PReNet

PSNR 28.91 29.32 29.08 29.46

SSIM 0.895 0.898 0.896 0.899

Table 4. Effect of recursive ResBlocks. PRN and PReNet contain

5 ResBlocks. PRNr and PReNetr unfold 1 ResBlock 5 times.
Model PRN PReNet PRNr PReNetr
PSNR 28.07 29.46 27.43 28.98

SSIM 0.884 0.899 0.874 0.892

#. Parameters 95,107 168,963 21,123 94,979

Single v.s. Recursive Supervision. The negative SSIM loss

can be imposed only on the final stage (PReNet-SSIM) in
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Rainy image Ground-truth PReNet-MSE PReNet-SSIM PReNet-RecSSIM

Figure 4. Visual quality comparison of PReNet models trained by different loss functions, including single MSE loss (PReNet-MSE),

single negative SSIM loss (PReNet-SSIM) and recursive negative SSIM supervision (PReNet-RecSSIM).

Figure 5. Average PSNR and SSIM of PReNet-SSIM (T = 6) and

PReNet-RecSSIM (T = 6) at stage t = 1, 2, 3, 4, 5, 6.

Eqn. (4) or recursively on each stage (PReNet-RecSSIM)

in Eqn. (5). For PReNet-RecSSIM, we set λt = 0.5 (t =
1, 2, ..., 5) and λ6 = 1.5, where the tradeoff parameter for

the final stage is larger than the others. From Table 1,

PReNet-RecSSIM performs moderately inferior to PReNet-

SSIM. As shown in Fig. 4, the deraining results by PReNet-

SSIM and PReNet-RecSSIM are visually indistinguishable.

The results indicate that a single loss on the final stage

is sufficient to train progressive networks. Furthermore,

Fig. 5 shows the intermediate PSNR and SSIM results at

each stage for PReNet-SSIM (T = 6) and PReNet-RecSSIM

(T = 6). It can be seen that PReNet-RecSSIM can achieve

much better intermediate results than PReNet-SSIM, mak-

ing PReNet-RecSSIM (T = 6) very promising in comput-

ing resource constrained environments by stopping the in-

ference at any stage t.

4.1.2 Network Architecture

In this subsection, we assess the effect of several key mod-

ules of progressive networks, including recurrent layer,

multi-stage recursion, and intra-stage recursion.

Recurrent Layer. Using PReNet (T = 6), we test two

types of recurrent layers, i.e., LSTM (PReNet-LSTM) and

GRU (PReNet-GRU). It can be seen from Table 3 that L-

STM performs slightly better than GRU in terms of quan-

titative metrics, and thus is adopted as the default imple-

mentation of recurrent layer in our experiments. We further

compare progressive networks with and without recurren-

t layer, i.e., PReNet and PRN, in Table 4, and obviously

the introduction of recurrent layer does benefit the derain-

ing performance in terms of PSNR and SSIM.

Intra-stage Recursion. From Table 4, intra-stage recur-

sion, i.e., recursive ResBlocks, is introduced to significant-

ly reduce the number of parameters of progressive network-

s, resulting in PRNr and PReNetr. As for deraining per-

formance, it is reasonable to see that PRN and PReNet re-

spectively achieve higher average PSNR and SSIM values

than PRNr and PReNetr. But in terms of visual quality,

PRNr and PReNetr are comparable with PRN and PReNet,

as shown in the supplementary material.

Recursive Stage Number T . Table 2 lists the PSNR and

SSIM values of four PReNet models with stages T =
2, 3, 4, 5, 6, 7. One can see that PReNet with more stages

(from 2 stages to 6 stages) usually leads to higher aver-

age PSNR and SSIM values. However, larger T also makes

PReNet more difficult to train. When T = 7, PReNet7 per-

forms a little inferior to PReNet6. Thus, we set T = 6 in

the following experiments.

4.1.3 Effect of Network Input/Output

Network Input. We also test a variant of PReNet by only

taking x
t−1 at each stage as input to fin (i.e., PReNetx),

where such strategy has been adopted in [20, 30]. From

Table 3, PReNetx is obviously inferior to PReNet in terms

of both PSNR and SSIM, indicating the benefit of receiving

y at each stage.

Network Output. We consider two types of network out-

puts by incorporating residual learning formulation (i.e.,

PReNet in Table 3) or not (i.e., PReNet-LSTM in Table 3).

From Table 3, residual learning can make a further contribu-

tion to performance gain. It is worth noting that, benefited

from progressive networks, it is feasible to learn PReNet

for directly predicting clean background from rainy image,

and even PReNet-LSTM can achieve appealing deraining

performance.

4.2. Evaluation on Synthetic Datasets

Our progressive networks are evaluated on three syn-

thetic datasets, i.e., Rain100H [30], Rain100L [30] and

Rain12 [21]. Five competing methods are considered, in-

cluding one traditional optimization-based method (GM-

M [21]) and three state-of-the-art deep CNN-based models,

i.e., DDN [6], JORDER [30] and RESCAN [20], and one

lightweight network (RGN [4]). For heavy rainy images

(Rain100H) and light rainy images (Rain100L), the model-

3942



Table 5. Average PSNR and SSIM comparison on the synthetic datasets Rain100H [30], Rain100L [30] and Rain12 [21]. Red, blue and

cyan colors are used to indicate top 1
st, 2nd and 3

rd rank, respectively. ⊲ means these metrics are copied from [4]. ◦ means the metrics are

directly computed based on the deraining images provided by the authors [30]. ⋆ donates the method is re-trained with their default settings

(i.e., all the 1800 training samples for Rain100H).

Method GMM [21] DDN [6] RGN [4]⊲ JORDER [30]◦ RESCAN [20]⋆ PRN PReNet PRNr PReNetr

Rain100H 15.05/0.425 21.92/0.764 25.25/0.841 26.54/0.835 28.88/0.866 28.07/0.884 29.46/0.899 27.43/0.874 28.98/0.892

Rain100L 28.66/0.865 32.16/0.936 33.16/0.963 36.61/0.974 —— 36.99/0.977 37.48/0.979 36.11/0.973 37.10/0.977

Rain12 32.02/0.855 31.78/0.900 29.45/0.938 33.92/0.953 —— 36.62/0.952 36.66/0.961 36.16/0.961 36.69/0.962

Rainy image GMM [21] DDN [6] RESCAN [20]

Ground-truth JORDER [30] PRN PReNet

Figure 6. Visual quality comparison on an image from Rain100H [30].

Rainy image DDN [6] PRN PReNet

Figure 7. Visual quality comparison on an image from Rain1400 [6].

s are respectively trained, and the models for light rain are

directly applied on Rain12. Since the source codes of RGN

are not available, we adopt the numerical results reported

in [4]. As for JORDER, we directly compute average PSNR

and SSIM on deraining results provided by the authors. We

re-train RESCAN [20] for Rain100H with the default set-

tings. Besides, we have tried to train RESCAN for light

rainy images, but the results are much inferior to the others.

So its results on Rain100L and Rain12 are not reported in

our experiments.

Our PReNet achieves significant PSNR and SSIM gain-

s over all the competing methods. We also note that for

Table 6. Quantitative comparison on Rain1400 [6].

Method DDN [6] PRN PReNet PRNr PReNetr
PSNR 29.91 31.69 32.60 31.31 32.44

SSIM 0.910 0.941 0.946 0.937 0.944

Table 7. Comparison of running time (s)

Image Size DDN [6] JORDER [30] RESCAN [20] PRN PReNet

500× 500 0.407 0.179 0.448 0.088 0.156

1024× 1024 0.754 0.815 1.808 0.296 0.551

Rain100H, RESCAN [20] is re-trained on the full 1,800

rainy images, the performance gain by our PReNet trained
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Rainy image DDN [6] JORDER [30] PReNet

Figure 8. Visual quality comparison on two real rainy images.

on the strict 1,254 rainy images is still notable. And PReNet

trained on 1,800 samples achieves PSNR 30.04dB and SSIM

0.905. Moreover, even PReNetr can perform better than all

the competing methods. From Fig. 6, visible dark noises a-

long rain directions can still be observed from the results by

the other methods. In comparison, the results by PRN and

PReNet are visually more pleasing.

We further evaluate progressive networks on another

dataset [6] which includes 12,600 rainy images for train-

ing and 1,400 rainy images for testing (Rain1400). From

Table 6, all the four versions of progressive networks out-

perform DDN in terms of PSNR and SSIM. As shown in

Fig. 7, the visual quality improvement by our methods is al-

so significant, while the result by DDN still contains visible

rain streaks.

Table 7 lists the running time of different methods based

on a computer equipped with an NVIDIA GTX 1080Ti G-

PU. We only give the running time of DDN [6], JORDER

[30] and RESCAN [20], due to the codes of the other com-

peting methods are not available. We note that the running

time of DDN [6] takes the separation of details layer into

account. Unsurprisingly, PRN and PReNet are much more

efficient due to its simple network architecture.

4.3. Evaluation on Real Rainy Images

Using two real rainy images in Fig. 8, we com-

pare PReNet with two state-of-the-art deep methods, i.e.,

JORDER [30] and DDN [6]. It can be seen that PReNet

and JORDER perform better than DDN in removing rain

streaks. For the first image, rain streaks remain visible in

the result by DDN, while PReNet and JORDER can gen-

erate satisfying deraining results. For the second image,

there are more or less rain streaks in the results by DDN

and JORDER, while the result by PReNet is more clear.

5. Conclusion

In this paper, a better and simpler baseline network is

presented for single image deraining. Instead of deeper

and complex networks, we find that the simple combina-

tion of ResNet and multi-stage recursion, i.e., PRN, can

result in favorable performance. Moreover, the deraining

performance can be further boosted by the inclusion of re-

current layer, and stage-wise result is also taken as input

to each ResNet, resulting in our PReNet model. Further-

more, the network parameters can be reduced by incorporat-

ing inter- and intra-stage recursive computation (PRNr and

PReNetr). And our progressive deraining networks can be

readily trained with single negative SSIM or MSE loss. Ex-

tensive experiments validate the superiority of our PReNet

and PReNetr on synthetic and real rainy images in compari-

son to state-of-the-art deraining methods. Taking their sim-

plicity, effectiveness and efficiency into account, it is also

appealing to exploit our models as baselines when develop-

ing new deraining networks.
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