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Abstract

Keyword spotting (KWS) is defined as the problem of

detecting all instances of a given word, provided by the

user either as a query word image (Query-by-Example,

QbE) or a query word string (Query-by-String, QbS) in a

body of digitized documents. Keyword detection is typi-

cally preceded by a preprocessing step where the text is seg-

mented into text lines (line-level KWS). Methods following

this paradigm are monopolized by test-time computation-

ally expensive handwritten text recognition (HTR)-based

approaches; furthermore, they typically cannot handle im-

age queries (QbE). In this work, we propose a time and

storage-efficient, deep feature-based approach that enables

both the image and textual search options. Three distinct

components, all modeled as neural networks, are combined:

normalization, feature extraction and representation of im-

age and textual input into a common space. These com-

ponents, even if designed on word level image representa-

tions, collaborate in order to achieve an efficient line level

keyword spotting system. The experimental results indicate

that the proposed system is on par with state-of-the-art KWS

methods.

1. Introduction and Related work

A significant, as well as ever-increasing amount of digi-

tized handwritten documents exists today all over the world,

creating an urgent need for efficient and automatic docu-

ment collection indexing. Keyword spotting (KWS) refers

to the task of automatically retrieving instances of a given

keyword query within a document image. KWS has been

proposed as an alternative to full text recognition in cases

where recognition is deemed to be very difficult or expected

to give poor results [5].

Depending on how the query word is specified by the

user, either using an example word image or just a text

string, we can distinguish Query-by-Example (QbE) from

Query-by-String (QbS) keyword spotting methods, respec-

tively. A different taxonomy of KWS systems is related

with the existence of segmentation of the document collec-

tion resulting to the distinction into segmentation-based and

segmentation-free systems. Segmentation-free approaches

aim to locate the query instances on the entire document

without the involvement of any segmentation procedure

whereas segmentation-based approaches assume that a seg-

mentation step into either line (line-based) or word (word-

based) level has preceded. The proposed method is consid-

ered as segmentation-based (more specifically line-based)

since it is assumed that the segmented lines are provided.

The main innovation introduced is that, for the first time,

both QbE and QbS search options on line level are allowed

under the same KWS system. The proposed system, which

relies on the success of Pyramidal Histogram of Charac-

ters (PHOC) embeddings [1], is based on the combination

of three components, namely the Character Width Normal-

ization, the Feature Extraction and the Common Space En-

coder. It should be noted that the main component of each

subtask is a neural network. Experiments conducted on the

well-known data set IAM [9] prove the effectiveness of the

proposed system.

Concerning word-based KWS methods, the seminal

work of Almazán et al. [1], which introduced the PHOC

representation, has influenced many recently proposed

methods. In a nutshell, the PHOC representation encodes

whether a specific character appears in a particular spatial

region of a text string. The main idea of this method re-

lies on the ability to embed both word images as well as

text strings into a common vectorial subspace. The use of

a common representation for both word images and text

strings makes feasible a search using either a word im-

age (QbE) or a word string (QbS). The abovementioned

PHOC representation is learned using Support Vector Ma-

chines (SVMs) while Kernel Common Subspace Regres-

sion (KCSR) is used in order to find projections that max-
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imize the correlation of the image space and the text space

in a common latent subspace.

A number of recent methods have been inspired by the

work of Almazán et al., further extending or adapting the

base model [11],[12],[7],[8],[16]. All these word-based ap-

proaches for keyword spotting make use of Convolutional

Neural Networks (CNNs) instead of SVMs and KCSR for

the attribute and common subspace learning. Sudholt and

Fink [11, 12] were the first to use CNNs in order to learn

the PHOC representation given the raw word image con-

tent. The method is able to outperform Almazán’s method

under both QbE and QbS scenarios. In Krishnan et al. [7], a

word image representation is first learned using a CNN and

subsequently used to learn a common subspace with KCSR

as in [1]. Finally, in Wilkinson et al. [16] a triplet CNN

is employed, accepting pairs of positive word matches to-

gether with a negative word match. Moreover, a new word

embedding is proposed, dubbed DCT of Words (DCTofW).

Methods categorized to the line-based approach typi-

cally subscribe to the QbS paradigm. Line-based keyword

spotting was first introduced by Fischer et al. [3]. It is

a supervised method which is based on character Hidden

Markov Models (HMMs). The main advantage of the pro-

posed method is its ability to work on line images making a

word segmentation step unnecessary. Furthermore, the sys-

tem is making use of character models which can be trained

very easily since line level transcription and segmentation

of document images can be produced very easily, while en-

abling zero-shot learning at the same time. The authors ex-

tended this work in [2], where they incorporated charac-

ter language models (unigrams and bigrams) at the decod-

ing step leading to a better performance compared to their

previous method. A major drawback of the methods pre-

sented by Fischer et al. is the large computational cost of the

keyword-specific HMM Viterbi decoding process needed to

obtain the confidence scores of each word to be spotted.

Toselli and Vidal [14] presented a novel approach for the

computation of confidence scores, directly from character

lattices produced during a single Viterbi decoding process

using only the filler model. Experiments showed that same

spotting results were obtained using the proposed method,

while requiring between one and two orders of magnitude

less query computing time.

The best-performing approach for line-based keyword

spotting was reported by Frinken et al. [4]. In this work, the

authors make use of a recurrent neural network (BLSTM

network) using a modification of the CTC token passing al-

gorithm which was previously used for Handwritten Text

Recognition (HTR). Experiments conducted on the IAM

dataset showed that the method outperformed the classical

HMM approach. Finally, Toselli et al. [15] presented a line-

based keyword spotting method on the basis of frame-level

word posterior probabilities. KWS confidence scores are

obtained by word graphs produced by a full-fledged statisti-

cal HTR system, based on stochastic optical character mod-

els, as well as probabilistic lexicon and language models.

Their system achieved very promising results requiring less

time for indexing when compared to the system of Frinken

et al., which is still the best in terms of performance.

The rest of this paper is organized as follows. We present

an overview of the proposed system and outline its main

contributions in Section 2. Sections 3, 4 and 5 describe

in detail the main components of the proposed system,

i.e. Character Width Normalization, Feature Extraction and

Common Space Encoder. In Section 6, the proposed line

matching procedure is presented, while experimental results

on KWS trials are reported in Section 7 highlighting the ef-

fectiveness of the proposed system. Finally, conclusions are

drawn in Section 8.

2. System Overview and Contribution

In this work, we present a novel keyword spotting

method that is based on deep feature extraction and fast

query to text line matching. The key idea of the proposed

method is that the features extracted from the convolutional

output of a PHOC estimation network, trained on word im-

ages, should be similar in the case when the input is a line

image or even a document image. We should stress that the

convolutional layers are not constrained by the size of the

input image. As a result, the keyword search procedure can

be addressed as a feature matching procedure, 1-d search

when the input is a line image or 2-d when the input is a

document image (segmentation-free approach). Based on

the success of line segmentation methods [6], we assume

line images as input since the matching procedure is signif-

icant simplified (1-d search).

Our processing pipeline consists of three components,

all modeled as neural networks: (a) the Character Width

Normalization. With this component we can normalize in-

puts, rendering horizontal zones of deep features consum-

merate to one another, and enabling fast query matching,

since instances of the same word have similar width at the

normalized line images. (b) the Feature extraction. This

component is responsible for producing discriminative fea-

tures for the query as well as the text lines of the document

collection. Deep features are defined as the activations of

an intermediate layer, produced when feeding an image to

the network. Such features have proven to be robust on

training-test content disparity; for example they have been

successfully applied to cross-language KWS tasks without

the need for model refinement [10]. (c) the Common Space

Encoder. This component enables the QbS option, i.e. us-

ing a string as a query instead of a word image.

After having processed the query and the text lines, a

step which is preformed offline, the query can be compared

against the set of text lines on the fly using a fast matching
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Figure 1. The proposed KWS system overview. Word image and string attribute inputs are encoded into a common space, suitable for

performing an efficient line matching approach on the sequence of convolutional features representing the line image. xq is the final

feature vector and nq is the number of line segments extracted from the query.

procedure. Matching of a specific query with a single text

line can be accomplished very efficiently due to two factors:

(a) matched features are extracted by max-pooling over a

set number of horizontal zones (b) the size of the pooling

filter is fixed given the word length of the query, due to the

Character Width Normalization component. Matched to-

kens are then sorted and returned to the user. The proposed

model processing pipeline together with the query to text

line matching can be reviewed in Fig. 1.

One interesting aspect of this work is that, all the afore-

mentioned components focus on the simplest word-level

image representation and collaborate in order to efficiently

address the complex problem of line-level KWS.

3. Character Width Normalization

The existence of different writing styles as well as dif-

ferent scales leads to considerable image width differences,

even for the same word. This variance, closely related to

scale, complicates the line matching procedure, since we

cannot pre-define the space that a specific word, the query

word, occupies. Therefore, in order to build an efficient

KWS system, we propose an image normalization scheme,

where different instances of the same word have the same

width. Key step towards such a normalization is the estima-

tion of the average character width which is performed by a

convolution neural network since it can be easily correlated

with visual features (e.g. curvature of strokes).

The normalization step should be able to estimate the

character width irrespective of the size of the input image

(word or line). One simple and efficient way to perform

the width estimation on both categories, word and line, is

to extract a set of fixed-size patches from the images. The

patches are randomly sampled from the image while their

number is proportional to the size of the input image. The

width estimation network fw(), expects a fixed-sized image

patch as input and provides an estimation of the character

width for the specific patch. As the task at hand is a re-

gression problem, the network fw is trained using the mean

squared error (MSE) loss function.

Even though the problem was clearly stated, the required

labels for training the CNN, i.e. the character widths corre-

sponding to image patches, are not known in advance. We

follow a simple procedure for the assignment of the average

character width (label) to each image patch. Given a word

image and its transcription, the expected average character

width (label) of every patch generated by this word image

is the value w/nc, where w is the image width and nc is the

number of characters of the word’s transcription. Albeit the

generated regression labels are not accurate, they suffice for

this regression task since a few pixels difference will not af-

fect the final result. In fact, the trained network provides an

average loss of 3 pixels at test set, which is acceptable for

the purpose of the normalization task.

Given an image I , a set of patches Pi, i = 1, ..., np

is generated and each patch has its own width estimation

wi = fw(Pi). It is possible that the system produces

erroneous character width estimations, especially for the

case of patches not containing representative information

(e.g. patch which mostly contains blank space). This is-

sue is addressed by the assignment of the median value
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wc = median({wi}) (more likely to correspond to the av-

erage character width) as the estimation for the whole im-

age.

After estimating the average character width, we normal-

ize the initial image to a fixed average character width wref

(defined by the user). This normalization corresponds to a

simple image resizing, for which the width is rescaled by a

factor wref/wc. The normalization process is depicted at

Figure 1.

4. Feature Extraction

A neural network, trained to learn a semantic prediction

task can be used to easily extract so-called deep features

[17]. We use deep features to describe both text lines and

queries since such features are known to outperform tradi-

tional feature extraction methods on various vision tasks.

These features are extracted as activations of a neural net-

work with a feed-forward architecture, tuned to a semantic

attribute prediction task.

In particular, the task is predicting word-level attributes

that correspond to the existence or absence of a unigram or

bigram at a specific section of the word. To this end, we

adapt on the PHOCNet architecture inspired by the VGG

architecture [11, 12]. The input is a word image of arbitrary

size, processed by a convolutional backbone that leads to a

fully-connected head topped by sigmoid outputs. Each sig-

moid output predicts a word semantic attribute, e.g. whether

the letter ’b’ exists on the first half of the word, or whether

the bigram ’st’ exists on the second third of the word, and

so on.

The proposed PHOC estimator network bears two dif-

ferences w.r.t. to the PHOCNet architecture. The first novel

point is the application of adaptive pooling on a specific re-

gion of interest (ROI), which corresponds to a part of the

initial input image. We perform training using word images

that contain information from neighboring words, i.e. not

a tight crop of the word image as the word segmentation

ground truth indicates (see Figure 2). This training strategy

tunes the neural network in such a way that it can efficiently

generalize to inputs corresponding to entire line images. In

addition, it enables the creation of more robust filters, not

affected by the existence of neighboring image elements.

To this end, a bounding box with the region of interest is

also defined for the pooling operation as it is shown in Fig-

ure 2. Hence, the training input consists of pairs of images

and bounding boxes.

The second novel point is related with the pooling

scheme used to create a fixed-size bridge with the fully-

connected head. We employ a horizontal zoning-based

scheme, dividing the text-line or word input into fixed-size

horizontal segments. This scheme follows the rationale of

zoning techniques that have been widely used for keyword

spotting [5]. The use of pyramidal pooling is also avoided,

contrary to [11, 12]. We further simplify the above men-

tioned pooling scheme by completely ignoring the segmen-

tation scheme over the convolutional map and instead, apply

max-pooling over the entire map. This procedure will result

to the creation of a feature vector whose size will be equal

to the depth of the last convolutional layer. Furthermore,

the application of a max-pooling operation over the entire

convolutional map drastically reduces the size of the gener-

ated feature vector and therefore the number of parameters

of the upcoming fully connected layer. The significance of

this observation in the context of the proposed system, is

that each word is represented using a collection of differ-

ent filter responses instead of a sequence of feature vectors

(zoning) or a set of sequences (pyramidal). The creation

of a single feature vector simplifies the forthcoming match-

ing procedure which can be accomplished using a nearest

neighbor algorithm. The proposed pooling strategy hence

results to the creation of a simplified and compact feature

descriptor, suitable for fast matching.
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Figure 2. The PHOC estimation CNN consists of three distinct

parts: 1) Convolutional 2) ROI Pooling and 3) Fully connected.

Training is performed on an extended image containing a word

instance along with the ROI bounding box of the word.

Given that fc is the function consisting of the convolu-

tional layers, fp is the pooling operation over the ROI and

ffc is the fully connected part which results to the PHOC

description, the PHOC estimation process can be formu-

lated as follows:

x = fp(fc(I), b), y = ffc(x) (1)

where I is the input image, b is the ROI bounding box, x ∈
R

nd is the extracted deep feature vector and y ∈ R
nphoc is

the estimated PHOC. Note that nd is an important hyper-

parameter of the PHOC estimation network, since it defines

the dimensionality of the extracted deep features.

5. Common Space Encoder

The PHOC estimation network, after discarding the fully

connected layers, provides discriminative features, ideal for

a line-based approach. Nevertheless, the discarded layers

create the connection between the convolutional features

and the PHOC representation which is mandatory for the
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QbS scenario. Therefore, an inverse function is required

for the QbS scenario, i.e. a function that accepts a PHOC

embedding (input) and produces a feature vector which is

similar to the feature vector generated by the PHOC’s esti-

mator convolutional part (output).

One problem that may arise with this function is related

with the fact that each input (PHOC representation) corre-

sponds to a variety of outputs (word images of the same

word written by different writers) and therefore the prob-

lem is ill-posed, since the function has to describe an one-

to-many relation. This problem can be effectively solved by

choosing to encode the PHOC embedding y as well as the

convolutional feature vector x into a common space of fixed

dimensionality ne.

The encoding process is performed by two separate en-

coding functions, namely ep (encodes the PHOC embed-

dings) and ef (encodes the convolutional features), which

are modeled by neural networks consisting of fully con-

nected layers. Therefore, given a pair (x ∈ R
nd ,y∈ R

nphoc )

the resulting ep(y) ∈ R
ne and ef (x) ∈ R

ne must be identi-

cal in the encoding space.

A critical aspect concerning the training of the encod-

ing functions is the creation of an appropriate loss function.

The obvious goal is to minimize the distance between ep(y)
and ef (x), but such an approach may lead to trivial solu-

tions (e.g. projection to the origin point). To address this

problem, the training is performed using pairs of different

words, i.e. (x1, y1) and (x2, y2), and the goal is the min-

imization of the encoding distance within the same word

while preserving an appropriate distance between different

words.

Given a distance d(·, ·), the inner distance i and cross

distance c are defined as:

i1 = d(ef (x1), ep(y1)), i2 = d(ef (x2), ep(y2))

c1 = d(ef (x1), ef (x2)), c2 = d(ef (x1), ep(y2))

c3 = d(ep(y1), ef (x2)), c4 = d(ep(y1), ep(y2))

i = (i1 + i2)/2 (2)

c = (c1 + c2 + c3 + c4)/4 (3)

The obvious choice is to minimize the inner distance, while

at the same time maximize the cross distance, i.e. the loss

would be L = i − c. However, our goal is to preserve

a cross distance at least as big as the reference distance

m = d(y1, y2) in order to preserve the correlation of the

initial PHOC representations. We call this reference dis-

tance as margin m. The margin term is crucial since the data

distribution on the new space (with the help of the margin

term) is expected to be similar to the data distribution on

the PHOC space. In fact, the cross distance should be al-

ways greater than the inner distance by the aforementioned

margin (c > i +m) in order to ensure separable classes of

words. Therefore, the loss function is formulated as:

L = i+max(0, i− c+m) (4)

Implementation details: 1) The ep consists of 4 fully con-

nected layers with ReLU non-linearities, while ef is a linear

transformation. 2) The dimension of the encoding space is

set to ne = 128. 3) The cosine distance is selected as the

distance function d. 4) The pairs (x, y) are selected such as

their PHOC representations are not far apart, i.e. d(y1, y2)
is less than a threshold t. The latter assists convergence,

since unconstrained selection of pairs may generate dissim-

ilar pairs which are easy to separate.

6. Line Image Features and Matching

Following the definitions of the subsystems and their re-

spective networks, this section contains a detailed descrip-

tion on how the aforementioned systems are cooperating in

order to perform line based KWS.

We can distinguish two main steps: 1) Extract compact

features from a line image and store them. This step is per-

formed off-line in a KWS application. 2) Given a query (ei-

ther image or string), extract appropriate features and com-

pute a matching score between the specific keyword and the

line (see Fig. 1).

6.1. Line Features Extraction

The extraction of line features consists of three steps pre-

sented in Figure 1, as part of the overall system:

1. Resize the input line image (hi × wi) with respect to

a pre-defined average character width wref using the

Character Width Normalization component (see Sec-

tion 3). The size of the resized image is h× w.

2. Apply the convolutional part of the PHOC estimator

network (fc, see section 4) to the resized image pro-

duced in step 1. The output corresponds to a 3-d fea-

ture map, for which the height and width is propor-

tional to the height and width of the resized line image

(h/4×w/4 - the two max pooling layers of kernel and

stride 2 of fc downsample the image by 4) while its

depth corresponds to the number of filters of the final

convolution layer (nd = 512).

3. Organize the aforementioned 3-d map (h/4 × w/4 ×
nd) of visual features into a sequence of feature vec-

tors (nl × nd). The organization of the 3-d map into

a sequence of feature vectors makes possible the effi-

cient matching between a query word and a line im-

age. The 3-d map is reduced by making use of local

max-pooling performed on non-overlapping segments

of size h/4 × wstep, where wstep = wref/4nquant.

As a result, each line image is described by a short
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sequence of feature vectors reducing the storage cost

as well as the matching time. This step is depicted at

Figure 3.

𝑤𝑠𝑡𝑒𝑝
𝑥𝑖1
𝑥𝑖𝑗
𝑥𝑖𝑛𝑑

…
…

max

j-th map

h/4

w/4

𝑛𝑑

Figure 3. Extraction of line features from the 3-d convolutional

feature map. Each line is represented by a sequence of nl feature

vectors of size nd. Each feature vector occupies wref/nquant

width in the input line image.

6.2. QbE Feature Extraction

Given a query image Iq , we apply the following steps:

1. Estimate the average character width of the image and

use it to resize the image accordingly (the resized im-

age is denoted as I ′q and its size is hq × wq).

2. Calculate the number of line segments nq by divid-

ing the resized image’s width by the step width wstep

which is defined on the line features extraction section.

3. Apply the convolutional part of the PHOC estimator

network (fc, see section 4). This leads to the creation

of a 3-d feature map whose size is hq/4×wq/4× nd.

Finally, extract a single feature vector by performing

max-pooling for each channel (i.e. taking the maxi-

mum value over hq/4 × wq/4 values). It should be

noted that during this step no ROI is defined.

4. Project the produced feature vector into the common

encoding space using the encoding function ef (see

Section 5).

→ The final feature vector xq is generated as: xq =
ef (fp(fc(I

′

q)))

6.3. QbS Feature Extraction

Given a query string sq , we apply the following steps:

1. Calculate the number of line segments nq , by multiply-

ing the number of query’s characters with the character

quantization parameter nquant (each character should

occupy nquant line segments).

2. Compute the PHOC embedding of the query string sq .

3. Encode the PHOC embedding into the common encod-

ing space using the corresponding neural network ep
(see Section 5).

→ The final feature vector xq is generated as: xq =
ep(PHOC(sq)).

6.4. Line Matching

It is assumed that line features are represented as a se-

quence of vectors {xi}, xi ∈ R
nd , i = 1, . . . , nl. The

query (either image or string) is represented as a single fea-

ture vector xq ∈ R
ne . A necessary parameter which should

be known beforehand in order to perform the matching is

the number of line segments nq corresponding to the query

width, i.e. how many line segments make up the query. The

number nq is calculated during the query feature extraction

step (see Sections 6.2 and 6.3).

For each line, a set of scores is calculated using the co-

sine distance. In more detail, the scoring is performed using

the cosine distance between the query feature vector and a

feature vector created using a max-pooling procedure over

consecutive nq line features, i.e.:

x̄i[k] = max
j=0,...,nq−1

xi+j [k], k = 1, . . . , nd − nq + 1 (5)

d[i] = 1− cos(ef (x̄i), xq), x̄i ∈ R
nd , xq ∈ R

ne (6)

The merge of consecutive nq line features into a single fea-

ture vector, using a sliding window approach of max opera-

tions, is visualized at Figure 4. Since a set of feature vectors

xi can be extracted from a line image (the total number is

equal to nl−nq+1), the final score is the minimum among

all scores calculated using the set of feature vectors xi:

line score = min
i=1,...,nl−nq+1

d[i] (7)

For the matching step it is imperative for the two feature

vectors to have the same dimensions. To this end, each fea-

ture vector xi is projected to the common encoding space

using the network ef . This task has been already performed

for the query feature vector xq during the feature extraction

step. The simplicity of the matching procedure described

above, is a considerable advantage of the proposed method,

since it reduces the retrieval time.

7. Experimental Results

7.1. Experimental Setup

The performance of the proposed system was evaluated

on the well-known IAM dataset1. It consists of 1539 hand-
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Figure 4. Line features transformation according to query size nq .

This step is essential in order to have comparable query and line

features.

written document images of modern English written by 657

different writers and it has been partitioned into writer-

independent training (6161 lines), validation (920 lines) and

test sets (929 lines).

In order to be comparable with the results reported in the

bibliography, we follow the two most widely used setups

of the IAM dataset. IAMDB1: 882 queries selected as in

[3] using all non-stop words that appear at least once in the

training set as well as the test set. IAMDB2: All non-stop

words among the 4000 most frequent words that also occur

in the training set are selected as queries as in [4], resulting

in 3421 queries in total.

In addition, for measuring the performance of the pro-

posed system we consider two possible scenarios as in [3].

In the first scenario (local), a local threshold is used for

each keyword separately. Concerning the second scenario

(global), a global threshold is used that is independent of

the keyword. For a vocabulary of common keywords, local

thresholds can be optimized at training stage. On the other

hand, for arbitrary out-of-vocabulary keywords, a global

threshold has to be applied.

Another critical aspect for KWS techniques is the defi-

nition of the character set. Word-based approaches assume

only lowercase and numeric characters [1]. On the con-

trary, line-based approaches [4] assume a wider variety of

possible characters, including capital letters as well as some

special characters (e.g. ‘/’, ‘-’ e.t.c). This variety also ex-

1http://www.fki.inf.unibe.ch/databases/

iam-handwriting-database

Approaches QbE-PHOC QbE-cfeat QbS-PHOC

TPP 83.98 82.15 93.01

Zoning 83.66 82.24 92.47

Entire 83.27 81.73 91.11

Table 1. MAP (%) performance evaluation of different pooling

strategies on the word-segmented IAM dataset.

ists in the aforementioned query lists and therefore, for our

experiments, we adopt the same characters set (68 unique

characters) and create 5-level PHOC embeddings with as

many unigrams (1020 dimensional vectors).

The performance of the KWS methods is recorded in

terms of the Mean Average Precision (MAP) since it is a

retrieval problem. The retrieval list consists of the lines in

the test set sorted according to their matching score with the

query. A line that contains the requested query is considered

as a hit.

7.2. Pooling strategies on PHOC estimation

One major difference of the proposed system with re-

spect to PHOCNet is the usage of a PHOC estimation net-

work with only one segment at the adaptive pooling layer,

between the convolutional and the fully connected part. We

experimented on the impact of the pooling operation to the

system performance by evaluating three different strategies

at the adaptive pooling layer: 1) Temporal Pyramidal Pool-

ing - TPP (initial PHOCNet architecture [12]) 2) Zoning

into 5 segments (without the pyramidal scheme) 3) Using

max-pooling on the entire convolutional output (1 segment).

These strategies are evaluated on the segmented words

as in [12] and the query list is extracted similarly to [1]. It

should be stressed that the results are not directly compa-

rable with the state-of-the-art word-level KWS techniques

due to the fact that the characters set used in this work is

significantly different (see Section 7.1). The results are pre-

sented at Table 1, where we distinguish the QbE scenario,

both on PHOC level (QbE-PHOC) and on deep feature level

(QbE-cfeat) and the QbS scenario on PHOC level (QbS-

PHOC). As the experimental results indicate, the pooling

strategy does not play significant role since the performance

of the system is similar regardless the pooling scheme or

the feature level. As a result, using max-pooling on the en-

tire convolutional output simplifies the subsequent match-

ing procedure while barely affecting the performance of the

overall system.

7.3. Encoder Performance

A major contribution of this work is that it enables both

QbS and QbE scenarios on deep features level, using an

encoding neural network which projects convolutional fea-

tures as well as PHOC embeddings into a common encoding
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methods local global

QbS with ROI 88.73 83.15

QbS without ROI 87.13 79.14

QbE with ROI 84.25 73.16

QbE without ROI 83.01 71.58

Table 2. Impact of the ROI variation on the KWS system perfor-

mance. MAP (%) results are reported at the line-level IAMDB1

setup (nquant = 3).

space. Therefore, we can evaluate both QbE and QbS on the

new encoding space. For this experiment we used the pool-

ing strategy over the entire convolutional map. The word

level KWS with encoder component results to: 81.36% and

89.43% MAP for QbE and QbS respectively. These results

are similar to the KWS scenario without the encoder even

though the feature dimension is compressed (from 1020 of

PHOC and 512 of convolutional features to 128 of the en-

coded features), while feature-based QbS is enabled.

7.4. Line level KWS

Having confirmed the effectiveness of the systems com-

ponents we proceed to the evaluation of the whole proposed

KWS system using the IAMDB1 and IAMDB2 setups. It is

worth to note that, even if QbE scenario is not considered

on line-level by existing methods, we evaluated it using the

query list of IAMDB1 setup since the corresponding query

images can be detected at the training set. If there are more

than one instance for a query string the query image is se-

lected randomly (the reported QbE results are the average

MAP of 10 runs). However, the IAMDB2 setup cannot be

used for this case since query strings do not necessarily exist

on the training set.

First, we evaluate the impact of the ROI variation of

feature extraction network as shown in Table 2 using the

IAMDB1 setup. The results indicate that the usage of a

training scheme with expanded word images, as done in the

ROI variation, assist the network to generate features that

are more similar to the extracted line features.

The experimental results of the proposed method along

with several state-of-the-art methods, for both IAMDB1

and IAMDB2 setups, are reported at Table 3. The pro-

posed system, concerning the QbS scenario, significantly

outperforms the majority of the line-based KWS methods

reported in the literature and it achieves comparable per-

formance compared to the best system [4]. Morever, the

experimental results indicate the validity and the effective-

ness of the proposed method, which enables both QbS and

QbE scenarios, since the QbE scenario achieves compara-

ble results with the QbS scenario (especially for the local

evaluation scenario). The gap in performance between QbS

and QbE cases can be attributed to the fact that the QbE ap-

IAMDB1 IAMDB2

methods local global global

Fisher et al. [3] 68.92 47.75 -

Fisher et al. [2] - 55.05 36.00

Toselli et al. [13] - - 61.03

Toselli et al. [15] - - 72.00

Frinken et al. [4] - - 76.00

proposed QbS 88.73 83.15 75.31

proposed QbE 84.25 73.16 -

Table 3. MAP (%) evaluation on the line-level IAMDB1 and

IAMDB2 setups (nquant = 3).

proach may generates a feature vector that lies on the mar-

gin of the word cluster (defined by the feature vectors of all

the instances of the same word), compared to QbS features

that are unique per word and by default are in the center of

the word cluster.

Another important observation is that even though we

cannot straightforwardly evaluate the Character Width Nor-

malization component, since we do not have accurate la-

bels, we can conclude that it performs sufficiently well since

the full pipeline provides noteworthy results.

Finally, we should stress that the proposed method can

be used for real-time applications due to its storage and time

efficiency. For clarity, we report some indicative storage

and time requirements on the IAM dataset: the line image

features, which computed offline, require 260KB storage

(without any quantization), while it takes around 0.28msec

to compare a query to a line.

8. Conclusions

In this work we have proposed a keyword spotting sys-

tem that is capable of performing QbE and QbS KWS un-

der a unified framework. The proposed system is built on

the synergy of three distinct neural networks, respectively

trained to normalize, encode image content into features,

and construct a common text and image space. Even though

the training is performed on word level, the comparative ex-

perimental results indicate that the proposed system is on

par with state-of-the-art HTR-based QbS KWS methods,

while it also enables successfully the QbE alternative. As

future work, we envisage the generalization of the proposed

framework for the segmentation-free scenario, i.e. not de-

pending on the existence of document image segmentation

at any level, but instead applying the method to the entire

(unsegmented) document image.
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