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Abstract

Learning general image representations has proven key

to the success of many computer vision tasks. For example,

many approaches to image understanding problems rely

on deep networks that were initially trained on ImageNet,

mostly because the learned features are a valuable starting

point to learn from limited labeled data. However, when it

comes to 3D motion capture of multiple people, these fea-

tures are only of limited use.

In this paper, we therefore propose an approach to learn-

ing features that are useful for this purpose. To this end, we

introduce a self-supervised approach to learning what we

call a neural scene decomposition (NSD) that can be ex-

ploited for 3D pose estimation. NSD comprises three layers

of abstraction to represent human subjects: spatial layout

in terms of bounding-boxes and relative depth; a 2D shape

representation in terms of an instance segmentation mask;

and subject-specific appearance and 3D pose information.

By exploiting self-supervision coming from multiview data,

our NSD model can be trained end-to-end without any 2D

or 3D supervision. In contrast to previous approaches,

it works for multiple persons and full-frame images. Be-

cause it encodes 3D geometry, NSD can then be effectively

leveraged to train a 3D pose estimation network from small

amounts of annotated data. Our code and newly introduced

boxing dataset is available at github.com and cvlab.epfl.ch.

1. Introduction

Most state-of-the-art approaches to 3D pose estimation

use a deep network to regress from the image either directly

to 3D joint locations or to 2D ones, which are then lifted to

3D using another deep network. In either case, this requires

large amounts of training data that may be hard to obtain,

especially when attempting to model non-standard motions.

In other areas of computer vision, such as image classifi-

cation and object detection, this has been handled by using a

large, generic, annotated database to train networks to pro-

duce features that generalize well to new tasks. These fea-

tures can then be fed to other, task-specific deep nets, which
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Figure 1. Neural Scene Decomposition disentangles an im-

age into foreground and background, subject bounding boxes,

depth, instance segmentation, and latent encodings in a fully self-

supervised manner using a second view and its relative view trans-

formation for training.

can be trained using far less labeled data. AlexNet [27] and

VGG [57] have proved to be remarkably successful at this,

resulting in many striking advances.

Our goal is to enable a similar gain for 3D human pose

estimation. A major challenge is that there is no large,

generic, annotated database equivalent to those used to train

AlexNet and VGG that can be used to learn our new repre-

sentation. For example, Human 3.6M [20] only features

a limited range of motions and appearances, even though

it is one of the largest publicly available human motion

databases. Thus, only limited supervision has to suffice.

As a step towards our ultimate goal, we therefore intro-

duce a new scene and body representation that facilitates the

training of 3D pose estimators, even when only little anno-

tated data is available. To this end, we train a neural net-

work that infers a compositional scene representation that

comprises three levels of abstraction. We will refer to it as

Neural Scene Decomposition (NSD). As shown in Fig. 1,

the first one captures the spatial layout in terms of bound-

ing boxes and relative depth; the second is a pixel-wise in-

stance segmentation of the body; the third is a geometry-

aware hidden space that encodes the 3D pose, shape and
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Figure 2. 3D pose estimation. Pose is regressed from the NSD

latent representation that is inferred from the image. During train-

ing, the regressor P requires far less supervision than if it had to

regress directly from the image.

appearance independently. Compared to existing solutions,

NSD enables us to deal with full-frame input and multiple

people. As bounding boxes may overlap, it is crucial to also

infer a depth ordering. The key to instantiating this repre-

sentation is to use multi-view data at training time for self-

supervision. This does not require image annotations, only

knowledge of the number of people in the scene and camera

calibration, which is much easier to obtain.

Our contribution is therefore a powerful representation

that lets us train a 3D pose estimation network for multiple

people using comparatively little training data, as shown in

Fig. 2. The network can then be deployed in scenes contain-

ing several people potentially occluding each other while

requiring neither bounding boxes nor even detailed knowl-

edge of their location or scale. This is made possible though

the new concept of Bidirectional Novel View Synthesis (Bi-

NVS) and is in stark contrast to other approaches based on

classical Novel View Synthesis (NVS). These are designed

to work with only a single subject in an image crop so that

the whole frame is filled [49] or require two or more views

not only at training time but also at inference time [12].

Our neural network and the new boxing dataset are avail-

able for download at github.com and cvlab.epfl.ch.

2. Related work

Existing human pose estimation datasets are either large

scale but limited to studio conditions, where annotation can

be automated using marker-less multiview solutions [55, 35,

20, 22], simulated [7, 75], or generic but small [5, 50] be-

cause manual annotation [32] is cumbersome. Multi-person

pose datasets are even more difficult to find. Training sets

are usually synthesized from single person 3D pose [36] or

multi-person 2D pose [52] datasets; real ones are tiny and

meant for evaluation only [36, 76]. In practice, this data

bottleneck starkly limits the applicability of deep learning-

based single [41, 67, 45, 38, 34, 37, 51, 42, 89, 63, 59] and

multi-person [36, 52, 83] 3D pose estimation methods. In

this section, we review recent approaches to addressing this

limitation, in particular those that are most related to ours

and exploit unlabeled images for representation learning.

Weak Pose Supervision. There are many tasks for which

labeling is easier than for full 3D pose capture. This has

been exploited via transfer learning [37], cross-modal vari-

ational [58] and adversarial [81] learning both 2D and 3D

pose estimation; minimizing the re-projection error of 3D

poses to 2D labels in single [89, 28, 30] and multiple

views [22, 42]; annotating the joint depth order instead

of the absolute position [44, 40]; re-projection to silhou-

ettes [60, 73, 23, 43, 74].

Closer to us, in [56], a 2D pose detector is iteratively re-

fined by imposing view consistency in a massive multi-view

studio. A similar approach is pursued in the wild in [87, 50].

While effective, these approaches remain strongly super-

vised as their performance is closely tied to that of the re-

gressors used for bootstrapping.

In short, all of these methods reduce the required amount

of annotations but still need a lot. Furthermore, the process

has to be repeated for new kinds of motion, with potentially

different target keypoint locations and appearances. Box-

ing and skiing are examples of this because they involve

motions different enough from standard ones to require full

re-training. We build upon these methods to further reduce

the annotation effort.

Learning to Reconstruct. If multiple views of the same

object are available, geometry alone can suffice to infer 3D

shape. By building on traditional model-based multi-view

reconstruction techniques, networks have been optimized

to predict a 3D shape from monocular input that fulfills

stereo [15, 87], visual hull [79, 24, 69, 46], and photometric

re-projection constraints [71]. Even single-view training is

possible if the observed shape distribution can be captured

prior to reconstruction [91, 14]. The focus of these methods

is on rigid objects and they do not apply to dynamic and ar-

ticulated human pose. Furthermore, many of them require

silhouettes as input, which are difficult to automatically ex-

tract from natural scenes. We address both of these aspects.

Representation Learning. Completely unsupervised

methods have been extensively researched for represen-

tation learning. For instance autoencoders have long

been used to learn compact image representations [4].

Well-structured data can also be leveraged to learn disen-

tangled representations, using GANs [8, 68] or variational

autoencoders [18]. In general, the image features learned

in this manner are rarely relevant to 3D reconstruction.

Such relevance can be induced by hand-crafting a pa-

rameteric rendering function that replaces the decoder in

the autoencoder setup [64, 3], or by training either the en-

coder [29, 16, 72, 53, 26] or the decoder [10, 11] on struc-

tured datasets. To encode geometry explicitly, the methods

of [66, 65] map to and from spherical mesh representations

without supervision and that of [85] selects 2D keypoints to

provide a latent encoding. However, these methods have

only been applied to well-constrained problems, such as

face modeling, and do not provide the hierarchical 3D de-

composition we require.
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Most similar to our approach are methods using camera

pose estimation [82] and NVS [49, 12] as auxiliary tasks

for geometry-aware representation learning. In particular, it

was shown in [12] that reinforcement learning of 3D grasp-

ing converges much faster when using NVS features instead

of raw images. This, however, was demonstrated only in

simulation. In [49], NVS is applied in natural scenes for

human pose estimation, using a geometry-aware represen-

tation based on transforming autoencoders [19, 9, 78]. This

approach, however, is restricted to images of single humans

with tight ground-truth bounding box annotations used at

training and test time. Here, we introduce a hierarchical

scene decomposition that allows us to deal with images de-

picting multiple subjects, without requiring any other in-

formation than the multiview images and the camera poses

during training, and only single view images at test time.

3. Method

Our goal is to learn a high-level scene representation that

is optimized for 3D human pose estimation tasks, that is, de-

tecting people and recovering their pose from single images.

We refer to this as Neural Scene Decomposition (NSD). To

create this NSD, we rely at training time on Novel View

Synthesis (NVS) using multiple views and enforcing con-

sistency among the results generated from different views.

Fig. 1 summarizes our approach. Given a scene contain-

ing N people, we want to find N corresponding bounding

boxes (bi)
N
i=1, segmentation masks (Si)

N
i=1, depth plane

estimates (zi)
N
i=1, and latent representation ([Lapp

i ,L3D
i ])Ni=1

where L
app
i is a vector representing appearance and L

3D
i a

matrix encoding geometry. Our challenge then becomes

training a deep network to instantiate this scene decompo-

sition from images in a completely self-supervised fashion.

This means training without bounding boxes, human pose

estimates, depth, or instance segmentation labels.

To meet this challenge, we ground NSD on standard deep

architectures for supervised object detection and represen-

tation learning [30, 70] and NVS [49], and add new network

layers and objective functions to enable self-supervision. In

the remainder of this section, we first summarize NVS. We

then show how we go from there to NSD, first for a single

person and then for multiple. We provide more implemen-

tation details in the supplementary material.

3.1. Novel View Synthesis

Given two images, (Iv, Iv′), of the same scene taken

from different viewpoints, NVS seeks to synthesize from

Iv a novel view F(Iv,Rv,v′ , tv,v′) that is as close as possi-

ble to Iv′ , where Rv,v′ and tv,v′ are the rotation matrix and

translation vector defining the camera motion from v to v′.

This is typically done by minimizing

L(F(Iv,Rv,v′ , tv,v′), Iv′) , (1)

where L is an appropriate image-difference metric, such

as the L2 norm. This requires static and calibrated cam-

eras, which much less labor intensive to setup than precisely

annotating many images with bounding boxes, 3D poses,

depth ordering, and instance segmentation. This is one of

the main attractions of using NVS for training purposes.

Previous NVS approaches focused merely on rigid ob-

jects [61, 62, 80, 39, 88, 13, 9, 78]. Methods that syn-

thesize human pose and appearance have used clean sil-

houettes and portrait images [86, 90] and intermediate 2D

and 3D pose estimates to localize the person’s body parts

[33, 31, 84, 54, 1, 77, 25]. We rely on the approach

of [49] that focuses on representation learning and uses

an encoding-decoding architecture without needing human

pose supervision. Its encoder E(·) maps the input image

Iv to an appearance vector L
app
v and a 3D point cloud L

3D
v

that represents geometry. In the rest of the paper we will

refer to the pair [Lapp
v ,L3D

v ] as the latent representation of

Iv . A novel view is then obtained by rotating L
3D
v by

Rv,v′ and then running the decoder D(·) on the rotated

cloud and original appearance vector, that is, computing

D(Rv,v′L
3D
v ,L

app
v ).

This NVS formulation assumes that subjects are por-

trayed individually and at the same scale in each image,

which makes it possible to ignore the translation tv,v′ but

precludes real-world application where scale may vary sig-

nificantly. In practice, this is achieved by exploiting the

ground-truth bounding box around each subject at both

training and test time.

To overcome this limitation, we propose to comple-

ment the latent representations produced by this NVS-based

scene decomposition with all the information required to

deal with multiple people appearing at different scales in

the multi-view images. We therefore introduce a novel ar-

chitecture that we first describe in the case where there is

only one person and then in the multi-person scenario.

3.2. NSD with a Single Subject

Existing NVS solutions require scale and position nor-

malization because changes in object scale and translations

along the camera optical axis can compensate each other

under perspective projection. In particular, a person’s abso-

lute height can be predicted from an image only with uncer-

tainty [17]. Hence, it is geometrically impossible to predict

the size and position in a novel view.

To alleviate this problem and to attain the sought NSD,

we introduce an explicit detection and localization step,

along with the notion of bidirectional NVS, that allows us to

mix the information extracted from two views in the NVS

process. Our complete framework is outlined in Fig. 3. We

now describe each one of these components individually,

assuming there is only one person in the scene.
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Figure 3. Bidirectional NVS jointly predicts a novel view v
′ from v and v from v

′, mixing object location and scale estimates between the

two directions. This overcomes scale ambiguities in classical NVS, which predicts v′ from v without backwards flow from v
′.

Subject Detection and Localization. To estimate the po-

sition and observed size of a single subject whose height

and 3D location are initially unknown, we run a detector

network B on the input image Iv . Let bv = B(Iv) denote

the resulting bounding box that tightly contains the subject.

We use it to define the spatial transformer (ST) network, T ,

that returns Īv = T (Iv,bv), an image window of fixed size

in which the person is centered. As both detection and win-

dowing are performed by neural networks, this process is

end-to-end differentiable.

Bidirectional NVS. The simplest way to use the detec-

tions described above would be to obtain them in two views

Iv and Iv′ and apply the NVS strategy of Section 3.1 to the

corresponding windows Īv and Īv′ , that is, aim to approx-

imate Īv′ as F(Īv,Rv,v′). This, however, would provide

very little supervisory signal to the detection process and

may result in trivial solutions where the detector focuses on

background regions that are easy to match. To prevent this,

we propose to reconstruct the entire image Iv′ instead of just

the window Īv′ . This requires mixing the representations of

the two views v and v′, because generating the entire image

Iv′ from the window Īv requires knowing the background

and where to insert the transformed version of this window.

Therefore, we estimate background images and simultane-

ously approximate Iv′ given Iv and Iv given Iv′ .

Formally, given the bounding boxes and spatial trans-

former introduced above, applying the encoder E of Sec-

tion 3.1 to both image windows Īv = T (Iv,bv) and Īv′ =
T (I′v,bv′) returns the latent representations [Lapp

v ,L3D
v ] and

[Lapp
v′ ,L

3D
v′ ], one per view. We can then invoke the decoder

D of Section 3.1 to reconstruct the entire images as

Îv = T −1(D(Lapp
v′ ,Rv′,vL

3D
v′ ),bv) , (2)

Îv′ = T −1(D(Lapp
v ,Rv,v′L

3D
v ),bv′) .

Intuitively, the reconstruction Îv of view v is obtained by

taking the pose seen in v′, rotating it to view v, applying

the appearance in view v′ to it, and reversing the spatial

transformation obtained from view v. Equivalently, Îv′ is

reconstructed from v, with the roles of v and v′ exchanged.

As such, the two reconstructions exchange parts of their de-

composition, which creates a bidirectional synthesis.

The final ingredient is to blend in the target view back-

ground. To make this easier, we assume the cameras to be

static and compute background images Bv and Bv′ by tak-

ing the median pixel value across all frames in views v and

v′, respectively. For each view, we then learn to produce

a segmentation mask S̄v as an additional output channel of

the decoder D. Since this mask corresponds to the image

window Īv , we apply the inverse spatial transformer to ob-

tain a mask Ŝv′ corresponding to the full image. We then

use these segmentation masks to blend the reconstructed

images Îv and Îv′ of Eq. 2 with the corresponding back-

grounds Bv and Bv′ to produce the final reconstructions

FIv
(Iv′ ,Rv′,v) = Ŝv Îv + (1− Ŝv)Bv

FIv′
(Iv,Rv,v′) = Ŝv′ Îv′ + (1− Ŝv′)Bv′ . (3)

While our approach to blending is similar in spirit to that

of [1], it does not require supervised 2D pose estimation. It

also differs from that of [49] where the background compo-

sition is formulated as a sum without explicit masks. The

generated segmentation masks allows NSD to operate on

images with complex background at test time and equips it

with a shape abstraction layer.

3.3. NSD with Multiple Subjects

The approach of Section 3.2 assumes that there is a sin-

gle subject in the field of view. We now extend it to the case

where there are a fixed number of N > 1 subjects of varying

stature. To this end, we first generalize the detectorB to pro-

duce N bounding boxes (bv,i)
N
i=1 = B(Iv), instead of only
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Figure 4. Multi-person Bi-NVS. Multiple subjects are detected in each input image and their encoding and decoding is processed sepa-

rately, akin to single person Bi-NVS. Key is the association of multiple persons across views by Eq. 5 and their composition by Eq. 7.
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Figure 5. Identity association. In this example, the light subject is

detected once as the first and once as the second subject, here vi-

sualized by red and green boxes. To match subjects across views,

we build a similarity matrix from their respective appearance en-

codings, as shown on the right.

one. NVS is then applied in parallel for each detection as

shown in Fig. 4. This yields tuples of latent codes (Lapp
v,i)

N
i=1

and (L3D
v,i)

N
i=1, transformed windows (Īv′,i)

N
i=1, and corre-

sponding segmentation masks (S̄v′,i)
N
i=1. The only step that

is truly modified with respect to the single subject case is the

compositing of Eq. 3 that must now account for potential

occlusions. This requires the following two extensions.

Appearance-based view association. Objects in the

source and target views are detected independently. To

implement the bidirectional NVS of Section 3.1, we need

to establish correspondences between bounding boxes in

views v and v′. Doing so solely on the basis of geome-

try would result in mismatches due to depth ambiguities.

To prevent this, we perform an appearance-based matching.

As shown in Fig. 5, it relies on the fact that the appearance

latent vector L
app
v,i of object i in view v should be the same

same as L
app
v′,j in view v′ when i and j correspond to the

same person in views v and v′. We therefore build the sim-

ilarity matrix M whose elements are the cosine distances

Mj,i =
L

app
v,i · L

app
v′,j

||Lapp
v,i || ||L

app
v′,j ||

, (4)

where · is the dot product. In practice, we found that us-

ing only the first 16 out of 128 latent variables of the L
app
v,is

in this operation to leave room to encode commonalities

between different subjects in L
app for the NVS task while

still allowing for distinctive similarity matrices for the pur-

pose of association. Ideally, subject i in view v should be

Volumetric renderingvisibility * segmentation class color

visibility * depth

visibility * pixel color

Gaussian

density

Transmittance

Figure 6. A visual breakup of Eq. 7. The novel view is the sum

of decoding layers and background, weighted by their respective

visibility maps. Similarly, the segmentation mask and depth map

is computed from weighted color and depth values. Visibility is

computed through volumetric rendering. We plotted the computa-

tion for four pixels marked in red, green blue and magenta. Each

person forms a translucent layer with Gaussian density in depth di-

rection (see lower plot), so that transmittance decays smoothly at

each layer and proportionally to the segmentation mask (top plot).

matched to the subject j∗ in view v′ for which Mj,i is max-

imized with respect to j. To make this operation differen-

tiable, we apply a row-wise softmax of the scaled similarity

matrix βM, with β = 10 to promote sharp distinctions. We

use the resulting N × N association matrix A to re-order

the transformed windows and segmentation masks as

(Īv′,j)
N
j=1 ← A(Īv′,i)

N
i=1 ,

(S̄v′,j)
N
j=1 ← A(S̄v′,i)

N
i=1 . (5)

This weighted permutation is differentiable and, hence, en-

ables end-to-end training.

Reasoning about Depth. After re-ordering the trans-

formed windows and segmentation masks, the recon-

structed image for view v can in principle be obtained as

FIv
((Iv′,i),Rv′,v) =

(

N
∑

i=1

Ŝv,iÎv,i

)

+

(

1−

N
∑

i=1

Ŝv,i

)

Bv ,

(6)

where Îv,i is the initial reconstruction for view v and subject

i, computed independently for each person via Eq. 2. In

short, this combines the foreground region of every subject
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with the overall background. This strategy, however, does

not account for overlapping subjects; depth is ignored when

computing the intensity of a pixel that is covered by two

foreground masks.

To address this, we extend the detector B to predict a

depth value zv,i in addition to the bounding boxes. We

then compute a visibility map for each subject based on

the depth values of all subjects and their segmentation

masks. To this end, we use the occlusion model intro-

duced in [48, 47] that approximates solid surfaces with

Gaussian densities to attain differentiability. This model re-

lies on the transmittance to depth z, given in our case by

T(z) = exp(−
∑

i Sv,i(erf(zv,i − z) + 1)). Given this

transmittance, the visibility of subject i is then defined as

T(zv,i)Sv,i. These visibility maps form the instance seg-

mentation masks, and we obtain depth maps by weighting

each by zv,i. This process is depicted in Fig. 6. Altogether,

this lets us re-write the reconstruction of image Iv as

FIv
((Iv′,i),Rv′,v) =

(

∑

i

T(zv,i)Sv,iÎv,i

)

Z+T(∞)Bv ,

(7)

where Z = 1−T(∞)∑
j
T(zv,j)Sv′,i

is a normalization term. More

details on this occlusion model are provided in the supple-

mentary material.

If at all, depth order in NVS has been handled through

depth maps [61] and by introducing a discrete number of

equally spaced depth layers [13], but none of these address

the inherent scale ambiguity as done here with Bi-NVS.

Closely related is the unsupervised person detection and

segmentation method proposed in [2], which localizes and

matches persons across views through a grid of candidate

positions on the ground plane.

In short, we train a combined detetection-encoding-

decoding network to individually detect, order, and model

foreground objects, that is, representing the objects visible

from all views and not contained in the static background.

3.4. NSD Training

NSD is trained in a fully self-supervised fashion to carry

out Bi-NVS as described in Section 3.2. We perform gra-

dient descent on batches containing pairs of images taken

from two or more available views at random. Since no la-

bels for intermediate supervision are available and B, E and

D are deep neural networks, we found end-to-end training

to be unreliable and rely on the following. To counteract, we

introduce focal spatial transformers (explained in the sup-

plemental document) and the following priors.

Using Weak Priors. Without guidance, the detector con-

verged to a fixed location on an easy to memorize back-

ground patch. To push the optimization process towards

exploring detection positions on the whole image, we add

a loss term that penalizes the squared deviation of the av-

erage bounding box position across a batch from the image

center. Note that this is different from penalizing the posi-

tion of each detection independently, which would lead to a

strong bias towards the center. Instead, it assumes a Gaus-

sian prior on the average person position, which is fulfilled

not only when the subjects are normally distributed around

the center, but, by the central limit theorem, also when they

are uniformly distributed. We build independent averages

for the N detection windows, which avoids trivial solutions.

Similarly, we introduce a scale prior that encourages the

average detection size to be close to 0.4 times the total im-

age size and favors an aspect ratio of 1.5. As for position,

this prior is weak and would be fulfilled if sizes vary uni-

formly from 0.1 to 0.7. Both terms are given a small weight

of 0.1 to reduce the introduced bias.

4. Evaluation

In this section, we evaluate NSD for the tasks of multi-

people detection, 3D pose estimation, and novel view syn-

thesis. First, we show that, in single-person scenarios, our

method delivers similar accuracy compared to existing self-

supervised approaches, even though they require ground-

truth bounding box annotations whereas we do not. Sec-

ond, we use a boxing scenario that stumps state-of-the-art

algorithms to demonstrate that our method can effectively

handle closely interacting people. Finally, we provide re-

sults on scenes containing three people. Additional scene

decomposition and re-composition results are given in the

supplementary material.

4.1. Baselines

We refer to our method as Ours and compare it against:

• LCR-H36M and LCR-ITW. They are both versions

of LCR++ [52], which is the current state of the art in

multi-person 3D pose estimation. The first is trained

on Human3.6M (H36M) and the second on in-the-wild

2D and 3D datasets.

• Resnet-I and Resnet-Ī. Two baselines that use a

Resnet [37], whose architecture is similar to the one

we use, to regress directly from the image to the 3D

pose. Resnet-I runs on the whole image I whereas

Resnet-Ī runs on the cropped one Ī that NSD returns.

• Auto-encoder. A baseline that uses the same spatial

transformer and encoder-decoder as we do but learns

an image auto-encoding instead of NVS in Ours.

In the above list, we distinguish between baselines Resnet-

I, Resnet-Ī, and Auto-encoder that we implemented our-

selves and the recently published method LCR. The latter

has been discussed in Section 2. We have used publicly

available code to run LCR on our data.
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Figure 7. Novel view synthesis. The images on the left and right

were taken at the same time by two different cameras. The dot-

ted lines denote the NSD bounding box. The image in the middle

was synthesized from the image on the left with the subject retain-

ing his original appearance, with shorts instead of long pants, but

being shown in the pose of the one on the right.

90

110

130

150

100 (0.3%) 500  (1%) 5k (14%) 15k (42%) 35K (all)

MPJPE in mm

Ours Ours-transductive Auto-encoder Resnet- Resnet-

Figure 8. Accuracy of single-person NSD. We plot the MPJPE on

the PoseTrack validation set as a function of the number of training

samples used to train P .

4.2. Supervised Training

Recall from Section 3.4 that we learn our NSD represen-

tation in a completely self-supervised way, as shown on the

left side of Fig. 2. This being done, we can feed an image

to the encoder E that yields a representation in terms of one

or more bounding boxes, along with the corresponding seg-

mentation masks, and latent representations. As our central

goal is to demonstrate the usefulness of this representation

for 3D pose estimation using comparably little annotated

data, we then use varying amounts of such data to train a

new network P that regresses from the representation to the

3D pose. The right side of Fig. 2 depicts this process.

At inference time on an image I, we therefore compute

E(I) and run the decoder P on each resulting bounding

box and corresponding latent representation. Because the

learned representation is rich, we can use a simple two-layer

fully-connected network for P .

4.3. SinglePerson Reconstruction

We test single-person NSD on the PoseTrack2018 chal-

lenge of the well known H36M [20] dataset. The images

were recorded in a four-camera studio and the task is to es-

timate 17 3D joint locations relative to the subject’s hip.

Accuracy is usually measured in terms of the mean per

joint position error (MPJPE) expressed in mm. To com-

pare against [50] and [49], we also report the N-MPJPE,

that is, the MPJPE after rigidly aligning the prediction to

the ground truth in the least squares sense.

We learn our NSD representation from the training se-

Ours GT Ours GT Ours GT Ours GT Ours GT

Figure 9. Pose estimation using only 15% of the training labels

to train P . Top row: Images with detected bounding box. Bottom

row: Recovered and ground-truth poses shown side by side.

quences featuring five different subjects. We evaluate on

the validation sequences that feature two different subjects.

In Fig. 7, we use one image pair from the validation set

to show that NSD localizes and scale normalizes a subject

well enough for resynthesis in a different view. We provide

additional examples in the supplementary material.

P is learned on subsets of the complete training set. In

Fig. 8, we plot the MPJPE as a function of the amount of

labeled training data we used for supervised training, as de-

scribed in Section 4.2. In practice, the smaller training sets

are obtained by regularly sub-sampling the dedicated 35k

examples. Direct regression from the full-frame image as in

Resnet is very inaccurate. Using the NSD bounding boxes

as in Resnet-Ī and Auto-encoder significantly improves

performance. Using our complete model further improves

accuracy by exploiting the learned high level abstraction. It

remains accurate when using as few as 1% of the available

labels. Fig. 9 depicts predictions obtained when P has been

trained using less than 15% of the available labels.

Among the semi-supervised methods, Ours is more than

15mm more accurate than Auto-encoder. The results re-

ported by [50] and [49] are not directly comparable, since

their evaluation is on a non-standard training and test sets

of H36M and they use ground truth bounding boxes. Nev-

ertheless, their reported N-MPJPE are higher than ours

throughout, for example 153.3 and 117.6 for 15k supervised

labels while we obtain 91. This confirms that our approach

can handle full-frame input without drastic loss in accuracy.

To demonstrate that our approach benefits from addi-

tional multi-view data without additional annotations, we

retrained the encoder E using not only the training data but

also the PoseTrack challenge test data for which the ground-

truth poses are not available to us. Furthermore, our ap-

proach can also be used in a transductive manner, by ad-

ditionally incorporating the images used during evaluation

without the corresponding annotations at training time. We

refer to these two strategies as Ours-extended and Ours-

transductive, respectively. As can be seen in Fig. 7, they

both increase accuracy. More specifically, when using only

500 pose labels, the error reduces by 5mm with the former

and another 10mm with the latter, as shown in Fig. 10,

Of course, many existing methods attain a higher accu-
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Figure 10. Varying the unlabeled training set size. Using more

samples improves accuracy, particularly in the transductive case,

where examples come from the test distribution.

Ours GT Ours GT Ours GT

Figure 11. Estimating the poses of two boxers. Top row: Images

with one detected bounding box per boxer. Bottom row: Recov-

ered and ground-truth poses shown side by side.

Method MPJPE in mm NMPJPE in mm NMPJPE⋆ in mm Detection rate

Ours 125.4 99.7 97.8 99.8 %

LCR-ITW 155.6 154.37 122.7 79.7 %

LCR-H36M 240.9 238.5 171.7 37.6 %

Resnet-Ī 196.0 194.8 182.2 98.9 %

Figure 12. Accuracy of two-person NSD on the boxing dataset,

as average over all detected persons. NMPJPE⋆ is a version of

NMPJPE that accounts for LCR’s different skeleton dimensions.

It normalize predictions before error computation with the 17×17

linear map that aligns prediction and GT in the least squares sense.

racy than Ours by using all the annotated data and adding

to it either synthetic data or additional 2D pose datasets for

stronger supervision. While legitimate under the PoseTrack

challenge rules, it goes against our aim to reduce the re-

quired amount of labeling. For example, LCR-H36M re-

ports an accuracy of 49.4mm, but this has required creating

an additional training dataset of 557,000 synthetic images to

supplement the real ones. Without it, the original LCR [51]

achieves accuracies that are very close to those of Ours—

ranging from 75.8 to 127.1 depending on the motion—when

using full supervision. However, the strength of Ours is that

its accuracy only decreases very slowly when reducing the

amount of annotated data being used.

4.4. TwoPerson Reconstruction

To test the performance of NSD when two people are in-

teracting, we introduce a new boxing dataset that comprises

8 sequences with sparring fights between 11 different box-

ers. We used a semi-automated motion capture system [6]

to annotate 6 of these sequences, of which we set aside 4

for supervised training of P and 2 for testing purposes. We

then use the remaining 2 in combination with the annotated

training sequences for self-supervised NSD learning.

Fig. 11 depicts 3 different images and the recovered

3D poses for each boxer, which are accurate in spite of

the strong occlusions. In Fig. 12, we compare our results

(a) (b) (c) (d)
Figure 13. Three-person NSD training. (a) The three detected

bounding boxes. (b) Segmentation masks. (c) Depth ordering,

where darker pixels are closer. (d) Re-synthesized images.

to those of LCR-H36M, LCR-ITW, and Resnet-Ī. We

clearly outperform all three. While LCR is trained on an-

other dataset, which precludes a direct comparison, this

demonstrates the importance of domain specific training

and NSD’s ability to learn a depth ordering and occlusions.

4.5. MultiPerson Reconstruction

Our formalism is designed to handle a pre-defined yet

arbitrary number of people. To test this, we captured a 10

minute five-camera sequence featuring 6 people interacting

in groups of three and used it to train a 3-people NSD rep-

resentation, still in a fully self-supervised way. Fig. 13 de-

pict the NSD representation of two images of that sequence,

along with the image re-synthesized using it. Note that, in

both cases, there are only three people in the re-synthesized

image, which makes sense in this case.

5. Conclusion

We have proposed a multi-view self-supervision ap-

proach to training a network to produce a hierarchical scene

representation that is tailored for 3D human pose capture,

yet general enough to be employed for other reconstruc-

tion tasks. It includes 3 levels of abstraction, spatial layout

(bounding box and relative depth), instance segmentation

(masks), and body representation (latent vectors that encode

appearance and pose). Given that representation, very little

annotated data suffices to train a secondary network to map

it to a full 3D pose. The trained network can then operate

without being given a priori locations for the people. It can

compute their poses in parallel, even when they overlap.

In this work, we have limited ourselves to a few people

in the scene. It serves well to our primary application do-

main of sports performance analysis, which demands high

accuracy but where the number of athletes is known in ad-

vance. In future work, we will extend this to a larger and

unknown number of people.
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