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Abstract

In this paper we propose multi-resolution data fusion meth-

ods for deep learning-based high-resolution land cover map-

ping from aerial imagery. The land cover mapping problem, at

country-level scales, is challenging for common deep learning

methods due to the scarcity of high-resolution labels, as well

as variation in geography and quality of input images. On the

other hand, multiple satellite imagery and low-resolution ground

truth label sources are widely available, and can be used to

improve model training efforts. Our methods include: introduc-

ing low-resolution satellite data to smooth quality differences

in high-resolution input, exploiting low-resolution labels with

a dual loss function, and pairing scarce high-resolution labels

with inputs from several points in time. We train models that are

able to generalize from a portion of the Northeast United States,

where we have high-resolution land cover labels, to the rest of

the US. With these models, we produce the first high-resolution

(1-meter) land cover map of the contiguous US, consisting of

over 8 trillion pixels. We demonstrate the robustness and poten-

tial applications of this data in a case study with domain experts

and develop a web application to share our results. This work is

practically useful, and can be applied to other locations over the

earth as high-resolution imagery becomes more widely avail-

able even as high-resolution labeled land cover data remains

sparse.

1. Introduction

Land cover mapping is a semantic segmentation problem:

each pixel in an aerial or satellite image must be classified into

one of several land cover classes. These classes describe the

surface of the earth and are typically broad categories such

as “forest” or “field”. High-resolution land cover data (≤1m /

pixel) is essential in many sustainability-related applications. Its
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uses include informing agricultural best management practices,

monitoring forest change over time [10] and measuring urban

sprawl [31]. However, land cover maps quickly fall out of

date and must be updated as construction, erosion, and other

processes act on the landscape.

In this work we identify the challenges in automatic

large-scale high-resolution land cover mapping and de-

velop methods to overcome them. As an application of

our methods, we produce the first high-resolution (1m)

land cover map of the contiguous United States. We have

released code used for training and testing our models at

https://github.com/calebrob6/land-cover.

Scale and cost of existing data: Manual and semi-manual

land cover mapping of aerial imagery is currently expensive and

scales poorly over large areas. For example, the Chesapeake

Conservancy spent 10 months and $1.3 million to produce a

high-resolution (1m) land cover map of the Chesapeake Bay

watershed in the Northeast US. This project, the largest of its

kind, labeled only∼160,000 km2, or 2% of the US [5]. Existing

benchmark land cover segmentation datasets and studies are

limited to even smaller scales. The DeepGlobe challenge

dataset [6, 24] covers a total area of 1,717 km2, the Dstl

satellite imagery dataset [2] covers ∼400 km2, the UC Merced

land use dataset [30, 4] covers just 7 km2, and the ISPRS

Vaihingen and Potsdam dataset [1] contains fewer than 36 km2

of labeled data. In comparison, a single layer of aerial imagery

of the contiguous US covers 8 million km2 (8 trillion pixels

at 1m resolution), occupying 55 TB on disk – two orders of

magnitude larger than ImageNet, a standard corpus for training

computer vision models. Deep learning-based approaches

for land cover mapping have shown to be effective, however,

in limited-size studies: [19] compare common CNN image

classification architectures at a 6.5m spatial resolution in a small

part of Newfoundland, Canada, while [7] use a multi-resolution

approach for handling panchromatic and multispectral bands

separately at a 1.5m spatial resolution in a ∼4000 km2 area.
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Figure 1: Example 1 km2 image patches. Top row: NAIP imagery from 2012, NAIP imagery from 2015, ground truth land cover.

Bottom row: Landsat leaf-on imagery, Landsat leaf-off imagery, NLCD land cover.

Model generalization: High-resolution land cover labels

at 1m resolution only exist at concentrated locations. Such

localized label sets have not been successfully used to classify

land cover on a larger scale. Indeed, we show that neither

standard random forest approaches [11], nor common semantic

segmentation networks generalize well to new geographic

locations: models trained on a single Northeast US state see

their performance degrade in the entire Northeast region, and

further in the rest of the country. Existing GIS methodology

such as Object Based Image Analysis (OBIA) [31, 15] suffers

from the same generalization issues, yet costs more in terms

of data and effort to deploy. For example, OBIA methods have

been used to create high-resolution (1m) land cover maps in part

of a county in Indiana [17] and the city of Phoenix, Ariz. [16],

but rely on human-engineered features and hand-derived

rule-based classification schemes.

In view of this, we develop methods for generalizing models

to new regions, achieving high-quality results in the entire

US. Specifically, we augment high-resolution imagery with

low-resolution (30m) satellite images, extend labels with

low-resolution land cover data that we use as weak supervision,

and augment data with inputs from multiple points in time

(see Fig. 1). We evaluate models trained with these methods

in the US: a) with ground-truth labels from the Chesapeake

Bay area in the Northeast US; b) through visualizing their

outputs in other US regions; and c) by comparing their

predictions with low-resolution land cover labels over the entire

US. As low-resolution satellite and land cover data sources

are widely available, such as Landsat satellite imagery, or

Global Land Cover [23], our methods are applicable wherever

high-resolution imagery exists.

Evaluation: An important consideration for large-scale land

cover mapping tasks is the cost associated with executing a

trained model over massive scales. We run our best model, a U-

Net variant, over the entire contiguous US to produce a country-

wide high-resolution land cover map. This computation took

one week on a cluster of 40 K80 GPUs, at a cost of about $5000,

representing massive time and cost savings over the existing

methods used to produce land cover maps. We provide a web

tool through which users may interact with the pre-computed

results – see http://aka.ms/cvprlandcover –

exposing over 25TB of land cover data to collaborators.

In practice, land cover models must be verified and updated

with human input. Our proposed models can be adapted to

new regions with relatively little human labor. In a study with

domain experts, we evaluated our best model (trained in the

Chesapeake Bay area from the Northeast US) on a region

in Iowa, then obtained manual corrections on ∼ 1% of this

territory. Using these corrections, we fine-tuned our model

output, which reduced both the overall error and the manual

labor required to perform corrections over the entire area.

2. Multi-Resolution Data Fusion

We assume that we are given a training set of pairs of high-

resolution satellite or aerial imagery and high-resolution land

cover labels, {(X(t),Y (t))}Tt=1 where X(t) = {Xijk}
(t)
i,j,k ∈

R
h×w×c is a multispectral image with height h, width w, and

channel depth c, and Y (t) = {Yij}
(t)
i,j ∈ {1,...,L}h×w are the

associated land cover labels. A straightforward approach for

training a deep neural network, f(X;θ)= Ŷ , on this fully su-

pervised semantic segmentation problem involves minimizing a

standard loss function with respect to the network’s parameters,
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Figure 2: Top Inter-state differences in NLCD class composi-

tion, bottom Inter-state NAIP color histograms per NLCD class.

Different states cover different geographies and have different

land use purposes (e.g., over 60% of Iowa is covered with cul-

tivated crops, while Maryland has a more uniform distribution

of land cover) and different color profiles for each class.

i.e., minθ J(Y, Ŷ ). This approach generally works well in

problems where potential test images are sampled from the

same generating distribution as the training images.

This assumption does not hold for the land cover mapping

problem as high-resolution input images will vary due to differ-

ences in: geography of the earth, atmospheric conditions (e.g.,

cloud cover), ground conditions (e.g., flood conditions), quality

and type of sensor used in capturing the image, time of day or

season that the image was captured, etc. Indeed, these differ-

ences are obvious in the input data we use later in this study, see

Figure 2. As a result, models trained with standard deep learning

methods fail to generalize over wide areas, see Section 5. We

propose the following methods to improve model performance:

Low-Resolution Input Augmentation (LR): Publicly avail-

able low-resolution satellite data has been collected globally

since 1972, starting with the Landsat 1 satellite. We find

that augmenting high-resolution imagery with low-resolution

imagery that has been averaged over large time horizons

improves model performance. This averaged low-resolution

imagery is less susceptible to sources of local noise that impact

high-resolution imagery and can therefore be used by models to

smooth such noise. Formally, for every high-resolution image,

X(t), we assume that we can access a low-resolution image

Z(t) ∈ R
h′
×w′

×c′ . We resample the low-resolution imagery

to the same spatial dimensions (h×w) as the high-resolution

imagery, then concatenate the two image sources, giving new

input imagery X′(t)∈R
h×w×(c+c′).

Label Overloading (LO): The available hand-labeled land

cover maps are created from a single time point of aerial

imagery, but high-resolution imagery is collected periodically.

Given that the true land cover of a location is not likely to

change over short time scales, we augment our training dataset

by pairing high-resolution training labels with high-resolution

image inputs from different points in time. Specifically, given

an image and labels (X,Y ) at some point in time, we augment

our training set with all pairs (X′,Y ), where X′ ranges over

imagery from all time points when it is available. Although this

method has the potential to introduce confusion in cases where

the high-resolution labels do not match the content of the other

images (due to land cover change by construction, flooding,

etc.), we demonstrate that it allows models to learn invariance

to spurious high-resolution image differences.

Input Color Augmentation (Color) We found that within

small geographical regions, individual pixel color is a very pre-

dictive feature for land cover classification, whereas across geo-

graphical locations, color is very inconsistent for each class. As

a result, models trained on limited geographical locations overfit

on color. Thus, we choose to add random color augmentation

to input images. Given a training image, we randomly adjust

the brightness and contrast per channel by up to 5%. Specif-

ically, given a single channel of an image, Xc ∈ R
h×w, and

the mean pixel intensity for that channel, Xc, we sample t,b∈
U(0.95,1.05), as the contrast and brightness adjustments, then

compute the transformed image as X′

ijc=t(Xijc−Xc)+bXc.

Super-Resolution Loss (SR): We augment the training set

with additional low-resolution labels from outside of the spatial

extent in which we have high-resolution training data to better

inform the model. We incorporate pairs of high-resolution

imagery and low-resolution accessory labels corresponding to

the same spatial extent as the imagery, but where low-resolution

labels are assigned to larger (e.g., 30×30m) blocks of the image.

We assume each accessory label class c determines a (known)

distribution over frequencies of each high-resolution label, ℓ.
We then use a variant of the super-resolution loss function of

[20], which encourages the model to match its high-resolution

predictions to the fixed distributions given by the low-resolution
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labels while favoring high certainty of predictions.

Specifically, we assume each low-resolution label c
determines a distribution pmean(ℓ|c) over the frequency of

labels of high-resolution class ℓ in a block labeled c, with

mean µc,l and variance σ2
c,l. These parameters are computed

on a small subset of labeled data where both kinds of labels

are available. Alternatively, they could be manually set. We

view the probabilistic output of the core segmentation model,

pnet, as generating labels independently at each high-resolution

pixel, inducing a corresponding distribution pout(ℓ|c) over label

counts in each block. We then minimize the super-resolution

loss, KL(pnet‖pmean), over all blocks in the input image.

We incorporate this metric into the overall loss function by

minimizing a weighted sum of the standard high-resolution loss

(categorical cross-entropy) and the super-resolution loss:

J(Yi,Ŷi)=γ(HR loss)+η(SR loss). (1)

In offline experiments we have found that a ratio of

γ :η=200 :1 balances the two losses effectively. We use this

setting in all experiments in this work.

3. Data

Imagery data sources: High-resolution (1m) aerial imagery

from the USDA National Agriculture Imagery Program

(NAIP), and low-resolution (30m) multispectral satellite

imagery from the USGS’s Landsat 8 satellite.

Label data sources: High-resolution (1m) land cover labels

from the Chesapeake Conservancy [5], based on imagery

from the years 2013-2014, and low-resolution (30m) land

cover labels from the 2011 National Land Cover Database

(NLCD) [12].

Figure 1 shows aligned example images from each of these

data sources. Combined, these datasets are ∼165TB on disk.

We use NAIP data from 2011 to 2016, which provides 2

to 3 layers of high-resolution imagery for each location in US.

This allows us to implement the Label Overloading method

by pairing our high-resolution labels with multiple years of

NAIP imagery. We implement the Low Resolution Input

Augmentation method by creating two sets of Landsat 8 Tier

1 surface reflectance products: a median of non-cloudy pixels

from 2013 to 2017 over the April-September months (leaf-on)

and a similar product over the October-March months (leaf-off).

These layers are both resampled to the 1m-resolution grid used

in the NAIP data.

The high-resolution land cover labels from the Chesapeake

Conservancy consist of 4 land cover classes – water, forest, field,

and impervious surfaces – for the Chesapeake Bay watershed,

outlined in black in Figure 4. The low-resolution NLCD labels

are from the 2011 data product and consist of 16 land cover

classes covering the contiguous US. We use these low-resolution

labels as additional training supervision with the Super-

Resolution data fusion method. Each label at the 30m resolution

suggests a distribution of high-resolution labels: e.g., an NLCD

label “Developed, Medium Indensity” suggests on average 14%

of the block is forest and 63% of the block is impervious surface.

See Section 2 in the SI for more details about these correlations.

We use an additional set of high-resolution land cover labeled

data in the case study in Iowa (Sec. 5.2), derived from multiple

dates of aerial imagery and LiDAR elevation data, as a held

out test set [13]. We map the 15 land cover classes in this Iowa

dataset to the same 4 Chesapeake land cover classes that our

model is trained on according to the Iowa class specifications.

As expected, the distribution of NLCD low-resolution

classes and their appearance varies between states (see Figure

2 for class distributions and color histograms). In addition,

there is not a standardized national method for collecting NAIP

imagery: it is collected on a 3-year cycle by different contractor

companies, with collection years differing between states (see

Figure 1). These sources of variability in the NAIP imagery

must be accounted for in order to build models that will

generalize over the entire US using only high-resolution training

data from the Chesapeake Bay region, motivating our study.

4. Experiments

4.1. Neural Network Models

We consider three network architectures: FC-DenseNet, U-

Net, and U-Net Large. Each of these architectures contains the

basic structure of four down-sampling and four up-sampling lay-

ers. For down-sampling, we use a simple 2×2 max-pooling. For

up-sampling, we use deconvolution (transposed convolution)

with fixed interpolation, which is useful for reducing checker-

board artifacts [21]. The U-Net models [25] contain three con-

volutional layers between successive down/up-sampling mod-

ules, with batch normalization after each convolution operation

and before a ReLU activation function. The FC-DenseNet

model [14] instead contains “dense blocks” made up of three

convolutional-batchnorm-ReLU layers. The FC-DenseNet

model uses 32 filters in a convolution layer immediately after the

input and 16 filters in all other convolutional layers. The U-Net

model contains 64 3×3 filters in the first three convolutional lay-

ers and 32 3×3 filters in all other convolutional layers. The U-

Net Large model contains 32 3×3 filters in the first three layers

and double the number of filters after each pooling layer, except

in the representational bottleneck layer that uses 128 filters.

For training, we use the largest minibatch that will fit in

GPU memory and the RMSProp optimizer with a learning

rate schedule starting at 0.001 with a factor of 10 reduction

every 6000 mini-batches. We use the Python CNTK library for

implementation [26].
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North Chesapeake Test Set Iowa Test Set

Training Set Models Accuracy Jaccard Accuracy Jaccard

Maryland

RF 37.11% 15.60% 74.95% 31.47%

FC-DenseNet 71.05% 44.92% 77.87% 41.01%

U-Net Large 78.06% 50.50% 82.31% 47.06%

U-Net 61.19% 39.62% 79.07% 47.28%

U-Net + Adapt 63.33% 42.55% 79.69% 44.10%

South

Chesapeake

RF 41.16% 17.96% 72.33% 30.52%

FC-DenseNet 72.46% 47.83% 74.07% 38.34%

U-Net Large 72.38% 46.51% 61.56% 37.44%

U-Net 59.42% 40.47% 71.00% 40.93%

U-Net + Adapt 62.88% 41.60% 62.95% 39.28%

Table 1: Models that are trained solely on high-resolution labels generalize poorly, regardless of the choice of architecture, training,

and testing sets. Compared to the results in Tab. 2, we see that almost all models without multi-resolution data fusion perform worse

than any of the models with multi-resolution data fusion.

North Chesapeake Test Set Iowa Test Set

Training Set Data Fusion Methods Models Accuracy Jaccard Accuracy Jaccard

Maryland

LR + Color RF 64.37% 47.27% 83.03% 49.86%

LR + Color + LO RF 75.06% 54.57% 81.94% 49.90%

SR U-Net 84.72% 57.72% 80.91% 40.45%

SR + Color U-Net 85.11% 59.16% 86.50% 45.03%

SR + LR + Color U-Net 88.45% 70.90% 90.95% 62.17%

SR + LR + Color + LO U-Net 89.52% 74.11% 92.36% 68.91%

SR + LR + Color + LO FC-DenseNet 89.74% 74.30% 91.81% 68.81%

SR + LR + Color + LO U-Net Large 90.31% 75.41% 92.93% 70.66%

South

Chesapeake

LR + Color RF 67.15% 49.08% 88.90% 54.60%

LR + Color + LO RF 77.57% 53.86% 83.86% 52.89%

SR U-Net 86.85% 62.49% 77.83% 42.03%

SR + Color U-Net 87.11% 63.34% 79.71% 42.68%

SR + LR + Color U-Net 89.13% 72.83% 93.07% 67.66%

SR + LR + Color + LO U-Net 90.61% 76.29% 93.06% 71.12%

SR + LR + Color + LO FC-DenseNet 90.52% 76.16% 93.28% 71.17%

SR + LR + Color + LO U-Net Large 90.68% 76.60% 93.35% 71.32%

Table 2: We show the effect of our data fusion methods. (1). Regardless of the choice of models (RF, U-net), the training set

(Maryland, South Chesapeake), and the testing set (North Chesapeake, Iowa), adding data fusion methods significantly improved

the results. (2). Increasing model capacity, only provides diminishing accuracy and Jaccard returns. The U-Net Large model only

performs slightly better than the U-Net model. (3). Our best performing models are able to generalize excellently to Iowa, with

an accuracy of 93.35% and Jaccard score of 71.32%.

4.2. Baseline Methods

Random forests (RF) have been used extensively in previ-

ous literature for low-resolution land cover classification [9, 3],

usually with Landsat imagery, and recently for high-resolution

land cover classification [11, 15]. The RF results in the high-

resolution setting are promising in areas for which there are high-

resolution labels, however show problems generalizing to new

geographies [11]. We therefore train a baseline Random Forest

model (RF) to predict the land cover class of a single pixel from

raw pixel values of that pixel and the surrounding pixels within a

given radius (in the L∞ metric). Our offline experiments show

that increasing this feature radius hyperparameter improves

model performance slightly when no augmentation techniques

are used, but does not increase performance with Low Resolu-

tion data augmentation is used. The RF model we use has a
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feature radius of 1, is created with 100 trees, and uses the default

parameters from the Python scikit-learn library [22] otherwise.

To improve the generalization ability of supervised models

in an unsupervised fashion, domain adaptation methods [8, 18,

29, 32, 27] learn to map inputs from different domains into a

unified space, such that the classification/segmentation network

is able to generalize better across domains. We use an existing

domain-adversarial training method [8] for the land cover

mapping task (Adapt). In particular, we attach a 3-layer domain

classification sub-network to our proposed U-Net architecture.

This subnetwork takes the output of the final up-sampling layer

in our U-Net model and classifies the source state (New York,

Maryland, etc.) of the input image as its “domain”. In addition

to minimizing segmentation errors on limited image domains,

we also train the segmentation network to maximize the error

of the classification sub-network. In this way, the segmentation

network learns to generate more domain-invariant features.

4.3. Model Training and Evaluation

We train all models on two sets: the state of Maryland

and its superset, the lower half the Chesapeake Bay region

(South Chesapeake). We test on a set consisting of the upper

half of the Chesapeake Bay region (North Chesapeake) as

well as held out land cover data from Iowa (Iowa). In training,

we uniformly sample ∼100,000 240×240 pixel patches with

high-resolution land cover labels from the training set. If Adapt

or Super Resolution is used, we sample an additional ∼150,000
240×240 patches from across the US. In the Adapt case,

these additional samples are without labels, while in the Super

Resolution case, we include their low-resolution NLCD labels.

For a given set of tile predictions, we compute the accuracy and

average Jaccard index (i.e. intersection-over-union) over the

four high-resolution classes.

The relationship between training on data from a single state

and testing on the held out North Chesapeake set mimics the

relationship between the entire Chesapeake Bay region and the

rest of the US. Maryland data is restricted both geographically

(i.e., models trained there will not be able to observe features

found in other parts of the Chesapeake Bay) and in observed

NAIP sensor variance (i.e., all the imagery in Maryland from

a given year will be collected in the same manner). A similar

relationship will hold between the Chesapeake Bay region

and the remainder of the US, e.g., it is impossible to observe

deserts in the Chesapeake Bay, and there will be NAIP imagery

conditions that are unobserved in the Chesapeake Bay region,

but present in other parts of the country.

Training on South Chesapeake exposes models to more of

the variation that is likely to be present in North Chesapeake,

thus making the generalization easier than that of Chesapeake to

the whole US. Indeed, the NLCD class composition of South

Chesapeake is similar to that of North Chesapeake, but not

similar to the remainder of the US.

5. Results

5.1. Model Generalization

The results in Table 1 show the performance of our models

when trained solely on high-resolution labeled data, i.e., without

our multi-resolution data fusion methods. These results show

that the models are not generalizing well: adding more train-

ing data (South Chesapeake vs. Maryland training sets) results

in poorer performance on the Iowa test set. The models that

are trained in Maryland have Jaccard scores of less than 50%

on the Iowa test set, but relatively high accuracies, which sug-

gests that they are biased towards predicting the majority class

(overwhelmingly “field” in Iowa). The benefits of using higher-

capacity models, like the U-Net Large, or more complex models,

like the FC-DenseNet, are not expressed in this land cover map-

ping problem. Lastly, of note, the domain-adaptation method we

use does not give a significant increase in model performance.

Table 2, however, shows how the progressive addition

of our data fusion methods improves model performance.

More specifically, for models trained in Maryland, each data

fusion method increases the performance in both the North

Chesapeake set and in the held out Iowa set in terms of accuracy

and Jaccard scores. For models trained on South Chesapeake,

the benefits of LO are not as prevalent as with the restricted

Maryland training subset. In this case, the South Chesapeake

set must contain additional features that are not present in

the Maryland set before Label Overloading is used. Of note,

increasing model capacity provides diminishing accuracy and

Jaccard returns. The U-Net Large model only performs slightly

better than the U-Net model. Our best-performing models

are able to generalize excellently to Iowa, with an accuracy of

93.35% and a Jaccard score of 71.32%.

In addition to the quantitative model results, we visualize

the land cover output from several of our models over a set of

hand-picked scenes from locations outside of the Chesapeake

Bay in Figure 3. We choose these locations to capture potential

failure cases and to display model behaviour in interesting

settings. In most locations, our best model (last row) correctly

identifies features mislabeled by the RF baseline and other

versions of the model trained without data fusion methods. In

the last column, an image from Tucson, Arizona, we observe

that the two baseline models, without data augmentation, are

not able to identify a collection of houses in an ambient desert.

Our best-performing model in the last row is able to correctly

identify the houses, but does not identify the road.

5.2. Middle Cedar Watershed Case Study

Our partners at the Chesapeake Conservancy are working

with the Iowa Agricultural Water Alliance (IAWA) to pilot

new techniques to facilitate watershed management planning

throughout the state of Iowa. High-resolution land cover

data is important in this setting to rapidly identify specific

recommendations for how to improve land management and
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Grand River

Grassland, S.D.
Moreno Valley, Cal. Denver, Co. Dallas, Tex. New Bedford, Mass. Tucson, Ariz.

NAIP image

RF

U-Net

U-Net + SR +

LR + Color

Figure 3: High-resolution land cover predictions, and accompanying NAIP imagery, for different models in choice locations where

ground truth labels are not available. Here, the color map is the same as in the high-resolution ground truth image from Figure 1.

water quality while minimizing the impact to farm operations.

Thus, we ran an early version of our model over the

entire area of Middle Cedar watershed in Iowa, an area of

6260km2, and gave the results to our partners. The partners

used their quality assurance (QA) methodology to correct

the model’s systematic errors over a geography that was

∼1.1% of the area of the total watershed. This methodology

involves comparing the model output with NAIP imagery, a

Normalized Difference Vegetation Index (NDVI) layer, and

a Normalized Difference Surface Model (nDSM) layer to

identify classification errors. The NDVI and nDSM layers help

to identify misclassifications in vegetation and mistakes that

can be captured with height differences (e.g. low vegetation

misclassified as trees) respectively. The first round of this

process resulted in corrections of three broad classes of errors:

incorrect prediction of the “field” class bordering roads, rounded

building corners, and water values predicted in shadows. The

corrections represented ∼ 2% of the pixels in the evaluated

geography and cost 30 hours to perform. Using this feedback,

we tuned our model’s per-pixel class probabilities with a global

transformation to best fit the corrections and generated a new

map over the entire watershed using this transformation.

Formally, we are given n corrected samples from our set of

model predictions. We sample another n pixels that were not

corrected in the QA process in order to balance the dataset, then

form a matrix X∈R
2n×4, of our model’s probabilistic output,

and vector, y ∈R
2n×4, of the accompanying labels (one-hot

encoded). We find a transformation W∈R
4×4,b∈R

4, such

that XW+b=ŷ minimizes the categorical cross-entropy with

y. The learned transformation, W and b, can now easily be ap-

plied across any number of pixels. This method is able to correct

89.7% of the errors made by the original model, and, under the

assumption that our model is making the same systematic errors

across the whole testing region, is able to save the ∼2700 hours

of manual labor that would be required to correct the entire area.

In Figure 5 of the SI we display the progression of this feed-

back process for a small patch of land in a corrected area. This

method is a cheap way to incorporate domain expert feedback to
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Figure 4: Maps showing the high-resolution consistency with NLCD over the entire US. Lower values represent an ‘inconsistency’

between our model estimates and the expected high resolution labels (using high-resolution label distributions per NLCD class from

the Chesapeake Bay area). Areas for which there is no input data, or data errors prevented our model from running are shown in red.

a model’s existing predictions, and can further be embedded in a

model generation loop, where new versions of the original model

are fine-tuned with samples from the broader corrected area,

and updated predictions are looped back into the QA process.

5.3. US­Wide Land Cover Map

We used the approach of our best model – including all

data fusion methods – to generate a full-US land cover map.

For training data, we used high-resolution labels from the

entire Chesapeake Bay region and low-resolution NLCD labels

sampled over the entire US. The correlations between NLCD

and high-resolution labels, µn,c, for the Super Resolution loss

were manually tuned for this model, rather than estimated from

data in the state of Maryland (as in our experiments)1.

Cost: The size and complexity of the network used to create the

full-US land cover map will largely determine the cost of the op-

eration. For example, the Dense Fusion Classmate network that

won the DeepGlobe land cover mapping competition requires 8

GPUs to train and would be prohibitively costly for full-US in-

ference [28]. The FC-DenseNet103 architecture [14], on which

the Dense Fusion Classmate network is based, can fit on a single

GPU but will incur an ∼270% increase in cost over our U-Net

Large model when run over the entire US. Our full-US map was

generated with the U-Net Large architecture, which only has

a 19% cost increase over the U-Net and FC-DenseNet models.

Evaluation: In Section 5 we discuss a “benchmark” visualiza-

tion set of patches that we use to inspect a model’s performance

on important terrain features, and in the SI we show a web

application to interactively explore our models’ predictions.

However, these are not sufficient for discovering all cases

1The input to the model we trained for this purpose has a small difference

compared to the best model reported in Table 2: we used an median of all

available Landsat 8 imagery, not separating leaf-on and leaf-off months.

where our model is performing poorly. It is prohibitively

time-consuming to qualitatively evaluate the performance of our

model by simply sampling patches of model input vs. predicted

output. Considering this, we use the low-resolution labels to

approximate the performance of our model across the entire US

by computing a metric we call consistency (of high-res labels)

with NLCD. First, we compute the high-resolution class distri-

bution for each NLCD label, pmean(y|n)=µn,y, as described

in the SR data fusion method. We let ρn,y=µn,y/maxy′µn,y′ ,

normalizing the high-resolution class means for each NLCD

label by the maximum value in that distribution. Now, given

a set of N high-resolution predictions, {y1, ... , yN}, and

the associated NLCD labels, {c1, ... , cN}, we compute the

consistency with NLCD value, λ = 1
N

∑N

i=1 ρci,yi . This

definition can be thought of as a charitable “accuracy” score

for a given set of predictions2. In general, the aim of this

metric is to identify potential problem areas in our US-wide

evaluation – areas in which the high-resolution labels do not

have consistency with NLCD. Finally, we show the approximate

accuracy map for this model run in Figure 4, with an average

consistency with NLCD of 87.03%.
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