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Abstract

A classifier trained on a dataset seldom works on other

datasets obtained under different conditions due to domain

shift. This problem is commonly addressed by domain adap-

tation methods. In this work we introduce a novel deep

learning framework which unifies different paradigms in

unsupervised domain adaptation. Specifically, we propose

domain alignment layers which implement feature whiten-

ing for the purpose of matching source and target feature

distributions. Additionally, we leverage the unlabeled target

data by proposing the Min-Entropy Consensus loss, which

regularizes training while avoiding the adoption of many

user-defined hyper-parameters. We report results on pub-

licly available datasets, considering both digit classifica-

tion and object recognition tasks. We show that, in most

of our experiments, our approach improves upon previous

methods, setting new state-of-the-art performances.

1. Introduction

Deep learning methods have been successfully applied to

different visual recognition tasks, demonstrating an excel-

lent generalization ability. However, analogously to other

statistical machine learning techniques, deep neural net-

works also suffer from the problem of domain shift [47],

which is observed when predictors trained on a dataset do

not perform well when applied to novel domains.

Since collecting annotated training data from every pos-

sible domain is expensive and sometimes even impossible,

over the years several Domain Adaptation (DA) methods

[34, 5] have been proposed. DA approaches leverage la-

beled data in a source domain in order to learn an accurate

prediction model for a target domain. Specifically, in the

special case of Unsupervised Domain Adaptation (UDA),

no annotated target data are available at training time. Note

that, even if target-sample labels are not available, unlabeled

data can and usually are exploited at training time.

Most UDA methods attempt to reduce the domain shift

by directly aligning the source and target marginal distribu-

tions. Notably, approaches based on the Correlation Align-

ment paradigm model domain data distributions in terms

of their second-order statistics. Specifically, they match

distributions by minimizing a loss function which corre-

sponds to the difference between the source and the tar-

get covariance matrices obtained using the network’s last-

layer activations [43, 44, 32]. Another recent and success-

ful UDA paradigm exploits domain-specific alignment lay-

ers, derived from Batch Normalization (BN) [18], which

are directly embedded within the deep network [3, 24, 31].

Other prominent research directions in UDA correspond

to those methods which also exploit the target data pos-

terior distribution. For instance, the entropy minimization

paradigm adopted in [3, 37, 13], enforces the network’s pre-

diction probability distribution on each target sample to be

peaked with respect to some (unknown) class, thus penaliz-

ing high-entropy target predictions. On the other hand, the

consistency-enforcing paradigm [38, 7, 46] is based on spe-

cific loss functions which penalize inconsistent predictions

over perturbed copies of the same target samples.

In this paper we propose to unify the above paradigms

by introducing two main novelties. First, we align the

source and the target data distributions using covariance

matrices similarly to [43, 44, 32]. However, instead of

using a loss function computed on the last-layer activa-

tions, we use domain-specific alignment layers which com-

pute domain-specific covariance matrices of intermediate

features. These layers “whiten” the source and the target

features and project them into a common spherical distri-

bution (see Fig. 1 (a), blue box). We call this alignment

strategy Domain-specific Whitening Transform (DWT). No-

tably, our approach generalizes previous BN-based DA

methods [3, 24, 30] which do not consider inter-feature cor-

relations and rely only on feature standardization.

The second novelty we introduce is a novel loss function,

the Min-Entropy Consensus (MEC) loss, which merges

both the entropy [3, 37, 13] and the consistency [7] loss

function. The motivation behind our proposal is to avoid the
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Figure 1. Overview of the proposed deep architecture embedding our DWT layers and trained with the proposed MEC loss. (a) Due to

domain shift the source and the target data have different marginal feature distributions. Our DWT estimates these distributions using

dedicated sample batches and then “whitens” them projecting them into a common, spherical distribution. (b) The proposed MEC loss

univocally selects a pseudo-label z that maximizes the agreement between two perturbed versions x
t1

i
and x

t2

i
of the same target sample.

tuning of the many hyper-parameters which are typically

required when considering several loss terms and, specif-

ically, the confidence-threshold hyper-parameters [7]. In-

deed, due to the mismatch between the source and the target

domain, and because of the unlabeled target-data assump-

tion, hyper-parameters are hard to be tuned in UDA [32].

The proposed MEC loss simultaneously encourages coher-

ent predictions between two perturbed versions of the same

target sample and exploits these predictions as pseudo-

labels for training. (Fig. 1 (b), purple box).

We plug our proposed DWT and the MEC loss into

different network architectures and we empirically show

a significant boost in performance. In particular, we

achieve state-of-the-art results in different UDA bench-

marks: MNIST [22], USPS [8], SVHN [33], CIFAR-10,

STL10 [4] and Office-Home [50]. Our code1 is publicly

available.

2. Related Work

Unsupervised Domain Adaptation. Several previous

works have addressed the problem of DA, considering both

shallow models and deep architectures. In this section we

focus on only deep learning methods for UDA, as these are

the closest to our proposal.

UDA methods mostly differ in the strategy used to re-

duce the discrepancy between the source and the target fea-

ture distributions and can be grouped in different categories.

The first category includes methods modeling the domain

distributions in terms of their first and second order statis-

tics. For instance, some works aim at reducing the do-

main shift by minimizing the Maximum Mean Discrepancy

1Code available at https://github.com/roysubhankar/

dwt-domain-adaptation

[27, 28, 50] and describe distributions in terms of their first

order statistics. Other works consider also second-order

statistics using the correlation alignment paradigm (Sec. 1)

[44, 32]. Instead of introducing additional loss functions,

more recent works deal with the domain-shift problem by

directly embedding into a deep network domain alignment

layers which exploit BN [24, 3, 31, 29].

A second category of methods include approaches which

learn domain-invariant deep representations. For instance,

in [9] a gradient reversal layer learns discriminative domain-

agnostic representations. Similarly, in [48] a domain-

confusion loss is introduced, encouraging the network to

learn features robust to the domain shift. Haeusser et al.

[14] present Associative Domain Adaptation, an approach

which also learns domain-invariant embeddings.

A third category includes methods based on Generative

Adversarial Networks (GANs) [35, 1, 45, 40, 39]. The main

idea behind these approaches is to directly transform im-

ages from the target domain to the source domain. While

GAN-based methods are especially successful in adaptation

from synthetic to real images and in case of non-complex

datasets, they have limited capabilities for complex images.

Entropy minimization, first introduced in [12], is a com-

mon strategy in semi-supervised learning [51]. In a nutshell,

it consists in exploiting the high-confidence predictions of

unlabeled samples as pseudo-labels. Due to its effective-

ness, several popular UDA methods [35, 3, 37, 28] have

adopted the entropy-loss for training deep networks.

Another popular paradigm in UDA, which we refer to

as the consistency-enforcing paradigm, is realized by per-

turbing the target samples and then imposing some consis-

tency between the predictions of two perturbed versions of

the same target input. Consistency is imposed by defining
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appropriate loss functions, as shown in [37, 7, 38]. The

consistency loss paradigm is effective but it becomes unin-

formative if the network produces uniform probability dis-

tributions for corresponding target samples. Thus, previ-

ous methods also integrate a Confidence Thresholding (CT)

technique [7], in order to discard unreliable predictions.

Unfortunately, CT introduces additional user-defined and

dataset-specific hyper-parameters which are difficult to tune

in an UDA scenario [32]. Differently, as demonstrated in

our experiments, our MEC loss eliminates the need of CT

and the corresponding hyper-parameters.

Feature Decorrelation. Recently, Huang et al. [17] and

Siarohin et al. [42] proposed to replace BN with feature

whitening in a discriminative and generative setting, respec-

tively. However, none of these works consider a DA prob-

lem. We show in this paper that feature whitening can be

used to align the source and the target marginal distribu-

tions using layer-specific covariance matrices without the

need of a dedicated loss function as in previous correlation

alignment methods.

3. Method

In this section we present the proposed UDA approach.

Specifically, after introducing some preliminaries, we de-

scribe our Domain-Specific Whitening Transform and, fi-

nally, the proposed Min-Entropy Consensus loss.

3.1. Preliminaries

Let S = {(Isj , y
s
j )}

ns

j=1
be the labeled source dataset,

where Isj is an image and ysj ∈ Y = {1, 2 . . . , C} its as-

sociated label, and T = {Iti}
nt

i=1
be the unlabeled target

dataset. The goal of UDA is to learn a predictor for the tar-

get domain by using samples from both S and T . Learning

a predictor for the target domain is not trivial because of the

issues discussed in Sec. 1.

A common technique to reduce domain shift is to use

BN-based layers inside a network, such as to project the

source and target feature distributions to a reference dis-

tribution through feature standarization. As mentioned in

Sec. 1, in this work we propose to replace feature stan-

dardization with whitening, where the whitening opera-

tion is domain-specific. Before introducing the proposed

whitening-based distribution alignment, we recap below

BN. Let B = {x1, ...,xm} be a mini-batch of m input sam-

ples to a given network layer, where each element xi ∈ B

is a d-dimensional feature vector, i.e. xi ∈ R
d. Given B, in

BN each xi ∈ B is transformed as follows:

BN(xi,k) = γk
xi,k − µB,k
√

σ2

B,k + ǫ
+ βk, (1)

where k (1 ≤ k ≤ d) indicates the k-th dimension of the

data, µB,k and σB,k are, respectively, the mean and the stan-

dard deviation computed with respect to the k-th dimension

of the samples in B and ǫ is a constant used to prevent nu-

merical instability. Finally, γk and βk are scaling and shift-

ing learnable parameters.

In the next section we present our DWT, while in Sec. 3.3

we present the proposed MEC loss. It is worth noting that

each proposed component can be plugged independently in

a network without having to rely on each other.

3.2. Domainspecific Whitening Transform

As stated above, BN is based on a per-dimension stan-

dardization of each sample xi ∈ B. Hence, once normal-

ized, the batch samples may still have correlated feature val-

ues. Since our goal is to use feature normalization in order

to alleviate the domain-shift problem (see below), we argue

that plain standardization is not enough to align the source

and the target marginal distributions. For this reason we

propose to use Batch Whitening (BW) instead of BN, which

is defined as:

BW(xi,k; Ω) = γkx̂i,k + βk, (2)

x̂i = WB(xi − µB). (3)

In Eq. (3), the vector µB is the mean of the elements in

B (being µB,k its k-th component) while the matrix WB

is such that: W⊤
BWB = Σ−1

B , where ΣB is the covari-

ance matrix computed using B. Ω = (µB ,ΣB) are the

batch-dependent first and second-order statistics. Eq. (3)

performs the whitening of xi and the resulting set of vec-

tors B̂ = {x̂1, ..., x̂m} lie in a spherical distribution (i.e.,

with a covariance matrix equal to the identity matrix).

Our network takes as input two different batches of data,

randomly extracted from S and T , respectively. Specifi-

cally, given any arbitrary layer l in the network, let Bs =
{xs

1
, ...,xs

m} and Bt = {xt
1
, ...,xt

m} denote the batch of

intermediate output activations, from layer l, for the source

and target domain, respectively. Using Eq. (2)-(3) we

can now define our Domain-specific Whitening Transform

(DWT). Let xs and xt denote the inputs to the DWT layer

from the source and the target domain, respectively. Our

DWT is defined as follows (we drop the sample index i and

dimension index k for the sake of clarity):

DWT(xs; Ωs) = BW (xs,Ωs), (4)

DWT(xt; Ωt) = BW (xt,Ωt). (5)

We estimate separate statistics (Ωs = (µs
B ,Σ

s
B) and

Ωt = (µt
B ,Σ

t
B)) for Bs and Bt and use them for whitening

the corresponding activations, projecting the two batches

into a common spherical distribution (Fig. 1 (a)).

W s
B and W t

B are computed following the approach de-

scribed in [42], which is based on the Cholesky decom-

position [6]. The latter is faster [42] than the ZCA-based

whitening [19] adopted in [17]. In the Supplementary Ma-

terial we provide more details on how W s
B and W t

B are
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computed. Differently from [42] we replace the “color-

ing” step after whitening with simple scale and shift op-

erations, thereby preventing the introduction of extra pa-

rameters in the network. Also, differently from [42] we

use feature grouping [17] (Sec. 3.2.1) in order to make the

batch-statistics estimate more robust when m is small and

d is large. During training, the DWT layers accumulate the

statistics for the target domain using a moving average of

the batch statistics (Ωt
avg).

In summary, the proposed DWT layers replace the corre-

lation alignment of the last-layer feature activations with the

intermediate-layer feature whitening, performed at different

levels of abstraction. In Sec. 3.2.1 we show that BN-based

domain alignment layers [24, 3] can be seen as a special

case of DWT layers.

3.2.1 Implementation Details

Given a typical block (Conv layer → BN → ReLU) of a

CNN, we replace the BN layer with our proposed DWT

layer (see in Fig. 1), obtaining: (Conv layer → DWT →
ReLU). Ideally, in order to project the source and target

feature distributions to a reference one, the DWT layers

should perform full-feature whitening using a d× d whiten-

ing matrix, where d is the number of features. However, the

computed covariance matrix ΣB can be ill-conditioned if d

is large and m is small. For this reason, unlike [42] and

similar to [17] we use feature grouping, where the features

are grouped into subsets of size g. This results in better-

conditioned covariance matrices but into partially whitened

features. In this way we reach a compromise between full-

feature whitening and numerical stability. Interestingly,

when g = 1, the whitening matrices reduce to diagonal ma-

trices, thus realizing feature standardization as in [3, 24].

3.3. MinEntropy Consensus Loss

The impossibility of using the cross-entropy loss on the

unlabeled target samples is commonly circumvented us-

ing some common unsupervised loss, such as the entropy

[3, 37] or the consistency loss [7, 38]. While minimizing the

entropy loss ensures that the predictor maximally separates

the target data, minimization of the consistency loss forces

the predictor to deliver consistent predictions for target sam-

ples coming from identical (yet unknown) category. There-

fore, given the importance of exploiting better the unlabeled

target data and the limitations of the above two losses (see

Sec. 1), we propose a novel Min-Entropy Consensus (MEC)

loss within the framework of UDA. We explain below how

MEC loss merges both the entropy and the consistency loss

into a single unified function.

Similar to the consistency loss, the proposed MEC loss

requires input data perturbations. Unless otherwise explic-

itly specified, we apply common data-perturbation tech-

niques on both S and T using affine transformations and

Gaussian blurring operations. When we use the MEC loss,

the network is fed with three batches instead of two. Specif-

ically, apart from Bs, we use two different target batches

(Bt
1

and Bt
2
), which contain duplicate pairs of images dif-

fering only with respect to the adopted image perturbation.

Conceptually, we can think of this pipeline as three dif-

ferent networks with three separate domain-specific statis-

tics Ωs, Ωt
1

and Ωt
2

but with shared network weights. How-

ever, since both Bt
1

and Bt
2

are drawn from the same distri-

bution, we estimate a single Ωt using both the target batches

(Bt
1

⋃

Bt
2
). As an additional advantage, this makes it possi-

ble to use 2m samples for computing Σt
B .

Let Bs = {xs
1
, ...,xs

m}, Bt
1
= {xt1

1
, ...,xt1

m} and Bt
2
=

{xt2
1
, ...,xt2

m} be three batches of the last-layer activations.

Since the source samples are labeled, the cross-entropy loss

(Ls) can be used in case of Bs:

Ls(Bs) = −
1

m

m
∑

i=1

log p(ysi |x
s
i ), (6)

where p(ysi |x
s
i ) is the (soft-max-based) probability predic-

tion assigned by the network to a sample x
s
i ∈ Bs with

respect to its ground-truth label ysi . However, ground-truth

labels are not available for target samples. For this reason,

we propose the following MEC loss (Lt):

Lt(Bt
1
, Bt

2
) =

1

m

m
∑

i=1

ℓt(xt1
i ,xt2

i ), (7)

ℓt(xt1
i ,xt2

i ) = −
1

2
max
y∈Y

(

log p(y|xt1
i ) + log p(y|xt2

i )
)

.

(8)

In Eq. (8), xt1
i ∈ Bt

1
and x

t2
i ∈ Bt

2
are activations of two

corresponding perturbed target samples.

The intuitive idea behind our proposal is that, similarly

to consistency-based losses [7, 38], since x
t1
i and x

t2
i cor-

respond to the same image, the network should provide

similar predictions. However, unlike the aforementioned

methods which compute the L2-norm or the binary cross-

entropy between these predictions, the proposed MEC loss

finds the class z such that z = argminy∈Y

(

log p(y|xt1
i ) +

log p(y|xt2
i )

)

. z is the class in which the posteriors cor-

responding to x
t1
i and x

t2
i maximally agree. We then use

z as the pseudo-label, which can be selected without ad-

hoc confidence thresholds. In other words, instead of using

high-confidence thresholds to discard unreliable target sam-

ples [7], we use all the samples but we backpropagate the

error with respect to only z.

The dynamics of MEC loss is the following. First, simi-

larly to the consistency losses, it forces the network to pro-

vide coherent predictions. Second, differently from consis-

tency losses, which are prone to attain a near zero value

with uniform posterior distributions, it enforces peaked pre-

dictions. See the Supplementary Material for a more formal
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relation between the MEC loss and both entropy and con-

sistency loss.

The final loss L is a weighted sum of Ls and Lt:

L(Bs, Bt
1
, Bt

2
) = Ls(Bs) + λLt(Bt

1
, Bt

2
).

3.4. Discussion

The proposed DWT generalizes the BN-based DA ap-

proaches by decorrelating the batch features. Besides the

analogy with the correlation-alignment methods mentioned

in Sec. 1, in which covariance matrices are used to estimate

and align the source and the target distributions, a second

reason for which we believe that full-whitening is impor-

tant is due to the relation between feature normalization

and the smoothness of the loss [41, 21, 17, 23, 36]. For

instance, previous works [23, 36] showed that better condi-

tioning of the input-feature covariance matrix leads to bet-

ter conditioning of the Hessian of the loss function, making

the gradient descent weight updates closer to Newton up-

dates. However, BN only performs standardization, which

barely improves the conditioning of the covariance matrix

when the features are correlated [17]. Conversely, feature

whitening completely decorrelates the batch samples, thus

potentially improving the smoothness of the landscape of

the loss function.

The importance of a smoothed loss function is even

higher when entropy-like losses on unlabeled data are used.

For instance, Shu et al. [41] showed that minimizing the en-

tropy forces the classifier to be confident on the unlabeled

target data, thus potentially driving the classifiers decision

boundaries away from the target data. However, without a

locally-Lipschitz constraint on the loss function (i.e. with a

non smoothed loss landscape), the decision boundaries can

be placed close to the training samples even when the en-

tropy is minimized [41]. Since our MEC loss is related with

both the entropy and the consistency loss, we employ DWT

also to improve the smoothness of our loss function in or-

der to alleviate overfitting phenomena related to the use of

unlabeled data.

4. Experiments

In this section we provide details about our implemen-

tation and training protocols and we report our experimen-

tal evaluation. We conduct experiments on both small and

large-scale datasets and we compare our method with state-

of-the-art approaches. We also present an ablation study to

analyze the impact of each of our contributions on the clas-

sification accuracy.

4.1. Datasets

We conduct experiments on the following datasets:

MNIST ↔ USPS. The MNIST dataset [22] contains

grayscale images (28 × 28 pixels) depicting handwritten

(a) MNIST ↔ USPS

(b) SVHN ↔ MNIST

(c) CIFAR-10 ↔ STL
Figure 2. Small image datasets used in our experiments.

Figure 3. Sample images from the Office-Home dataset.

digits ranging from 0 to 9. The USPS [8] dataset is simi-

lar to MNIST, but images have smaller resolution (16 × 16

pixels). See Fig. 2(a) for sample images.

MNIST ↔ SVHN. Street View House Number (SVHN)

[33] images are 32 × 32 pixels RGB images. Similarly to

the MNIST dataset digits range from 0 to 9. However, in

SVHN images have variable colour intensities and depict

non-centered digits. Thus, there is a significant domain shift

with respect to MNIST (Fig. 2(b))

CIFAR-10 ↔ STL: CIFAR-10 is a 10 class dataset of

RGB images depicting generic objects and with resolution

32 × 32 pixels. STL [4] is similar to the CIFAR-10, ex-

cept it has fewer labelled training images per class and has

images of resolution 96 × 96 pixels. The non-overlapping

classes - “frog” and “monkey” are removed from CIFAR-10

and STL, respectively. Samples are shown in Fig. 2.(c).

Office-Home: The Office-Home [50] dataset comprises

4 distinct domains, each corresponding to 65 different cate-

gories (Fig. 3). There are 15,500 images in the dataset, thus

this represents large-scale benchmark for testing domain

adaptation methods. The domains are: Art(Ar), Clipart

(Cl), Product (Pr) and Real World (Rw).

4.2. Experimental Setup

To fairly compare our method with other UDA ap-

proaches, in the digits experiments we adopt the same base

networks proposed in [10]. For the CIFAR-10↔STL ex-

periments we use the network described in [7]. We train

the networks using the Adam optimizer [20] with a mini-

batch of cardinality m = 64 samples, an initial learning rate

of 0.001 and weight decay of 5 × 10−4. The networks are

trained for a total of 120 epochs with learning rate being de-

creased by a factor of 10 after 50 and 90 epochs. We use the

SVHN → MNIST setting to fix the value of the hyperpa-

rameter λ to 0.1 and to set group size (g) equal to 4. These

hyperparameters values are used for all the datasets.
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