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Abstract

People enjoy food photography because they appreciate

food. Behind each meal there is a story described in a com-

plex recipe and, unfortunately, by simply looking at a food

image we do not have access to its preparation process.

Therefore, in this paper we introduce an inverse cooking

system that recreates cooking recipes given food images.

Our system predicts ingredients as sets by means of a novel

architecture, modeling their dependencies without impos-

ing any order, and then generates cooking instructions by

attending to both image and its inferred ingredients simul-

taneously. We extensively evaluate the whole system on the

large-scale Recipe1M dataset and show that (1) we improve

performance w.r.t. previous baselines for ingredient predic-

tion; (2) we are able to obtain high quality recipes by lever-

aging both image and ingredients; (3) our system is able to

produce more compelling recipes than retrieval-based ap-

proaches according to human judgment. We make code and

models publicly available1.

1. Introduction

Food is fundamental to human existence. Not only does

it provide us with energy—it also defines our identity and

culture [10, 34]. As the old saying goes, we are what we eat,

and food related activities such as cooking, eating and talk-

ing about it take a significant portion of our daily life. Food

culture has been spreading more than ever in the current

digital era, with many people sharing pictures of food they

are eating across social media [31]. Querying Instagram for

#food leads to at least 300M posts; similarly, searching for

#foodie results in at least 100M posts, highlighting the un-

questionable value that food has in our society. Moreover,

eating patterns and cooking culture have been evolving over

time. In the past, food was mostly prepared at home, but

nowadays we frequently consume food prepared by third-

parties (e.g. takeaways, catering and restaurants). Thus,

the access to detailed information about prepared food is

∗Work done during internship at Facebook AI Research
1https://github.com/facebookresearch/inversecooking

Ingredients:
Flour, butter, sugar, egg, milk, salt.
Instructions:
- Preheat oven to 450 degrees.
- Cream butter and sugar.
- Add egg and milk.
- Sift flour and salt together.
- Add to creamed mixture.
- Roll out on floured board to 1/4 

inch thickness.
- Cut with biscuit cutter.
- Place on ungreased cookie sheet.
- Bake for 10 minutes.

Title: Biscuits

Figure 1: Example of a generated recipe, composed of a

title, ingredients and cooking instructions.

limited and, as a consequence, it is hard to know precisely

what we eat. Therefore, we argue that there is a need for

inverse cooking systems, which are able to infer ingredients

and cooking instructions from a prepared meal.

The last few years have witnessed outstanding improve-

ments in visual recognition tasks such as natural image clas-

sification [47, 14], object detection [42, 41] and semantic

segmentation [27, 19]. However, when comparing to natu-

ral image understanding, food recognition poses additional

challenges, since food and its components have high intra-

class variability and present heavy deformations that occur

during the cooking process. Ingredients are frequently oc-

cluded in a cooked dish and come in a variety of colors,

forms and textures. Further, visual ingredient detection re-

quires high level reasoning and prior knowledge (e.g. cake

will likely contain sugar and not salt, while croissant will

presumably include butter). Hence, food recognition chal-

lenges current computer vision systems to go beyond the

merely visible, and to incorporate prior knowledge to en-

able high-quality structured food preparation descriptions.

Previous efforts on food understanding have mainly fo-

cused on food and ingredient categorization [1, 39, 24].

However, a system for comprehensive visual food recog-

nition should not only be able to recognize the type of meal

or its ingredients, but also understand its preparation pro-
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cess. Traditionally, the image-to-recipe problem has been

formulated as a retrieval task [54, 3, 4, 45], where a recipe

is retrieved from a fixed dataset based on the image similar-

ity score in an embedding space. The performance of such

systems highly depends on the dataset size and diversity, as

well as on the quality of the learned embedding. Not sur-

prisingly, these systems fail when a matching recipe for the

image query does not exist in the static dataset.

An alternative to overcome the dataset constraints of re-

trieval systems is to formulate the image-to-recipe problem

as a conditional generation one. Therefore, in this paper, we

present a system that generates a cooking recipe containing

a title, ingredients and cooking instructions directly from

an image. Figure 1 shows an example of a generated recipe

obtained with our method, which first predicts ingredients

from an image and then conditions on both the image and

the ingredients to generate the cooking instructions. To the

best of our knowledge, our system is the first to generate

cooking recipes directly from food images. We pose the in-

struction generation problem as a sequence generation one

conditioned on two modalities simultaneously, namely an

image and its predicted ingredients. We formulate the in-

gredient prediction problem as a set prediction, exploiting

their underlying structure. We model ingredient dependen-

cies while not penalizing for prediction order, thus revising

the question of whether order matters [51]. We extensively

evaluate our system on the large-scale Recipe1M dataset

[45] that contains images, ingredients and cooking instruc-

tions, showing satisfactory results. More precisely, in a hu-

man evaluation study, we show that our inverse cooking sys-

tem outperforms previously introduced image-to-recipe re-

trieval approaches by a large margin. Moreover, using a

small set of images, we show that food image-to-ingredient

prediction is a hard task for humans and that our approach

is able to surpass them.

The contributions of this paper can be summarized as:

– We present an inverse cooking system, which gener-

ates cooking instructions conditioned on an image and

its ingredients, exploring different attention strategies

to reason about both modalities simultaneously.

– We exhaustively study ingredients as both a list and a

set, and propose a new architecture for ingredient pre-

diction that exploits co-dependencies among ingredi-

ents without imposing order.

– By means of a user study we show that ingredient pre-

diction is indeed a difficult task and demonstrate the

superiority of our proposed system against image-to-

recipe retrieval approaches.

2. Related Work

Food Understanding. The introduction of large scale

food datasets, such as Food-101 [1] and Recipe1M [45], to-

gether with a recently held iFood challenge2 has enabled

significant advancements in visual food recognition, by

providing reference benchmarks to train and compare ma-

chine learning approaches. As a result, there is currently

a vast literature in computer vision dealing with a variety

of food related tasks, with special focus in image classifi-

cation [26, 39, 38, 33, 6, 24, 30, 60, 16, 17]. Subsequent

works tackle more challenging tasks such as estimating the

number of calories given a food image [32], estimating food

quantities [5], predicting the list of present ingredients [3, 4]

and finding the recipe for a given image [54, 3, 4, 45, 2].

Additionally, [34] provides a detailed cross-region anal-

ysis of food recipes, considering images, attributes (e.g.

style and course) and recipe ingredients. Food related tasks

have also been considered in the natural language process-

ing literature, where recipe generation has been studied in

the context of generating procedural text from either flow

graphs [13, 36, 35] or ingredients’ checklists [21].

Multi-label classification. Significant effort has been

devoted in the literature to leverage deep neural networks

for multi-label classification, by designing models [49, 8,

56, 37, 53] and studying loss functions [12] well suited for

this task. Early attempts exploit single-label classification

models coupled with binary logistic loss [3], assuming the

independence among labels and dropping potentially rele-

vant information. One way of capturing label dependen-

cies is by relying on label powersets [49]. Powersets con-

sider all possible label combinations, which makes them in-

tractable for large scale problems. Another expensive alter-

native consists in learning the joint probability of the labels.

To overcome this issue, probabilistic classifier chains [8]

and their recurrent neural network-based [53, 37] counter-

parts propose to decompose the joint distribution into con-

ditionals, at the expense of introducing intrinsic ordering.

Note that most of these models require to make a predic-

tion for each of the potential labels. Moreover, joint input

and label embeddings [57, 25, 61] have been introduced to

preserve correlations and predict label sets. As an alterna-

tive, researchers have attempted to predict the cardinality of

the set of labels [43, 44]; however, assuming the indepen-

dence of labels. When it comes to multi-label classification

objectives, binary logistic loss [3], target distribution cross-

entropy [12, 29], target distribution mean squared error [56]

and ranking-based losses [12] have been investigated and

compared. Recent results on large scale datasets outline the

potential of the target distribution loss [29].

Conditional text generation. Conditional text genera-

tion with auto-regressive models has been widely studied in

the literature using both text-based [48, 11, 50, 9] as well

as image-based conditionings [52, 59, 28, 20, 23, 7, 46]. In

neural machine translation, where the goal is to predict the

translation for a given source text into another language, dif-

2https://www.kaggle.com/c/ifood2018
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Figure 2: Recipe generation model. We extract image features eI with the image encoder, parametrized by θI . Ingredients

are predicted by θL, and encoded into ingredient embeddings eL with θe. The cooking instruction decoder, parametrized by

θR generates a recipe title and a sequence of cooking steps by attending to image embeddings eI , ingredient embeddings eL,

and previously predicted words (r0, ..., rt−1).

ferent architecture designs have been studied, including re-

current neural networks [48], convolutional models [11] and

attention based approaches [50]. More recently, sequence-

to-sequence models have been applied to more open-ended

generation tasks, such as poetry [55] and story generation

[23, 9]. Following neural machine translation trends, auto-

regressive models have exhibited promising performance in

image captioning [52, 59, 28, 20, 7, 46], where the goal is to

provide a short description of the image contents, opening

the doors to less constrained problems such as generating

descriptive paragraphs [23] or visual storytelling [18].

3. Generating recipes from images

Generating a recipe (title, ingredients and instructions)

from an image is a challenging task, which requires a si-

multaneous understanding of the ingredients composing the

dish as well as the transformations they went through, e.g.

slicing, blending or mixing with other ingredients. Instead

of obtaining the recipe from an image directly, we argue that

a recipe generation pipeline would benefit from an interme-

diate step predicting the ingredients list. The sequence of

instructions would then be generated conditioned on both

the image and its corresponding list of ingredients, where

the interplay between image and ingredients could provide

additional insights on how the latter were processed to pro-

duce the resulting dish.

Figure 2 illustrates our approach. Our recipe genera-

tion system takes a food image as an input and outputs a

sequence of cooking instructions, which are generated by

means of an instruction decoder that takes as input two em-

beddings. The first one represents visual features extracted

from an image, while the second one encodes the ingre-

dients extracted from the image. We start by introducing

our transfomer-based instruction decoder in Subsection 3.1.

This allows us to formally review the transformer, which we

then study and modify to predict ingredients in an orderless

manner in Subsection 3.2. Finally, we review the optimiza-

tion details in Subsection 3.3.

3.1. Cooking Instruction Transformer

Given an input image with associated ingredients, we

aim to produce a sequence of instructions R = (r1, ..., rT )
(where rt denotes a word in the sequence) by means of

an instruction transformer [50]. Note that the title is pre-

dicted as the first instruction. This transformer is condi-

tioned jointly on two inputs: the image representation eI

and the ingredient embedding eL. We extract the image

representation with a ResNet-50 [15] encoder and obtain the

ingredient embedding eL by means of a decoder architec-

ture to predict ingredients, followed by a single embedding

layer mapping each ingredient into a fixed-size vector.

The instruction decoder is composed of transformer

blocks, each of them containing two attention layers fol-

lowed by a linear layer [50]. The first attention layer applies

self-attention over previously generated outputs, whereas

the second one attends to the model conditioning in order

to refine the self-attention output. The transformer model

is composed of multiple transformer blocks followed by a

linear layer and a softmax nonlinearity that provides a dis-

tribution over recipe words for each time step t. Figure 3a

illustrates the transformer model, which traditionally is con-

ditioned on a single modality. However, our recipe gen-

erator is conditioned on two sources: the image features

eI ∈ R
P×de and ingredients embeddings eL ∈ R

K×de

(P and K denote the number of image and ingredient fea-

tures, respectively, and de is the embedding dimensional-

ity). Thus, we want our attention to reason about both

modalities simultaneously, guiding the instruction genera-

tion process. To that end, we explore three different fusion

strategies (depicted in Figure 3):

– Concatenated attention. This strategy first concate-

nates both image eI and ingredients eL embeddings

over the first dimension econcat ∈ R
(K+P )×de . Then,

attention is applied over the combined embeddings.

– Independent attention. This strategy incorporates

two attention layers to deal with the bi-modal condi-

tioning. In this case, one layer attends over the image

embedding eI , whereas the other attends over the in-
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Figure 3: Attention strategies for the instruction decoder. In our experiments, we replace the attention module in the

transformer (a), with three different attention modules (b-d) for cooking instruction generation using multiple conditions.

gredient embeddings eL. The output of both attention

layers is combined via summation operation.

– Sequential attention. This strategy sequentially at-

tends over the two conditioning modalities. In our de-

sign, we consider two orderings: (1) image first where

the attention is first computed over image embeddings

eI and then over ingredient embeddings eL; and (2)

ingredients first where the order is flipped and we first

attend over ingredient embeddings eL followed by im-

age embeddings eI .

3.2. Ingredient Decoder

Which is the best structure to represent ingredients? On

the one hand, it seems clear that ingredients are a set, since

permuting them does not alter the outcome of the cooking

recipe. On the other hand, we colloquially refer to ingredi-

ents as a list (e.g. list of ingredients), implying some order.

Moreover, it would be reasonable to think that there is some

information in the order in which humans write down the

ingredients in a recipe. Therefore, in this subsection we

consider both scenarios and introduce models that work ei-

ther with a list of ingredients or with a set of ingredients.

A list of ingredients is a variable sized, ordered collec-

tion of unique meal constituents. More precisely, let us de-

fine a dictionary of ingredients of size N as D = {di}
N
i=0,

from which we can obtain a list of ingredients L by select-

ing K elements from D: L = [li]
K
i=0. We encode L as a

binary matrix L of dimensions K × N , with Li,j = 1 if

dj ∈ D is selected and 0 otherwise (one-hot-code represen-

tation). Thus, our training data consists of M image and

ingredient list pairs {(x(i),L(i))}Mi=0. In this scenario, the

goal is to predict L̂ from an image x by maximizing the

following objective:

argmax
θI ,θL

M∑

i=0

log p(L̂(i) = L
(i)|x(i); θI , θL), (1)

where θI and θL represent the learnable parameters of the

image encoder and ingredient decoder, respectively. Since

L denotes a list, we can factorize p(L̂(i) = L
(i)|x(i))

into K conditionals:
∑K

k=0 log p(L̂
(i)
k = L

(i)
k |x(i),L

(i)
<k)

3

and parametrize p(L̂
(i)
k |x(i),L

(i)
<k) as a categorical distribu-

tion. In the literature, these conditionals are usually mod-

eled with auto-regressive (recurrent) models. In our experi-

ments, we choose the transformer model as well. It is worth

mentioning that a potential drawback of this formulation is

that it inherently penalizes for order, which might not nec-

essarily be relevant for ingredients.

A set of ingredients is a variable sized, unordered col-

lection of unique meal constituents. We can obtain a set of

ingredients S by selecting K ingredients from the dictio-

nary D: S = {si}
K
i=0. We represent S as a binary vector s

of dimension N , where si = 1 if si ∈ S and 0 otherwise.

Thus, our training data consists of M image and ingredient

set pairs: {(x(i), s(i))}Mi=0. In this case, the goal is to predict

ŝ from an image x by maximizing the following objective:

argmax
θI ,θL

M∑

i=0

log p(̂s(i) = s
(i)|x(i); θI , θL). (2)

Assuming independence among elements, we can fac-

torize p(̂s(i) = s
(i)|x(i)) as

∑N

j=0 log p(̂s
(i)
j = s

(i)
j |x(i)).

However, the ingredients in the set are not necessarily inde-

pendent, e.g. salt and pepper frequently appear together.

To account for element dependencies in the set, we

model the set as a list, i.e. as a product of conditional prob-

abilities, by means of an auto-regressive model such as the

transformer. The transformer predicts ingredients in a list-

like fashion p(L̂
(i)
k |x(i),L

(i)
<k), until the end of sequence eos

token is encountered. As mentioned previously, the draw-

back of this approach is that such model design penalizes

3
L
(i)
k

denotes the k-th row of L(i) and L
(i)
<k

represents all rows of

L
(i) up to, but not including, the k-th one.
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are pooled across time to avoid penalizing for order.

for order. In order to remove the order in which ingre-

dients are predicted, we propose to aggregate the outputs

across different time-steps by means of a max pooling op-

eration (see Figure 4). Moreover, to ensure that the ingre-

dients in L̂
(i) are selected without repetition, we force the

pre-activation of p(L̂
(i)
k |x(i),L

(i)
<k) to be −∞ for all previ-

ously selected ingredients at time-steps < k. We train this

model by minimizing the binary cross-entropy between the

predicted ingredients (after pooling) and the ground truth.

Including the eos in the pooling operation would result in

loosing the information of where the token appears. There-

fore, in order to learn the stopping criteria of the ingredient

prediction, we introduce an additional loss accounting for

it. The eos loss is defined as the binary cross-entropy loss

between the predicted eos probability at all time-steps and

the ground truth (represented as a unit step function, whose

value is 0 for the time-steps corresponding to ingredients

and 1 otherwise). In addition to that, we incorporate a car-

dinality ℓ1 penalty, which we found empirically useful. At

inference time, we directly sample from the transformer’s

output. We refer to this model as set transformer.

Alternatively, we could use target distribution

p(s(i)|x(i)) = s
(i)/

∑
j s

(i)
j [12, 29] to model the

joint distribution of set elements and train a model by

minimizing the cross-entropy loss between p(s(i)|x(i)) and

the model’s output distribution p(̂s(i)|x(i)). Nonetheless,

it is not clear how to convert the target distribution back to

the corresponding set of elements with variable cardinality.

In this case, we build a feed forward network and train it

with the target distribution cross-entropy loss. To recover

the ingredient set, we propose to greedily sample elements

from a cumulative distribution of sorted output probabil-

ities p(̂s(i)|x(i)) and stop the sampling once the sum of

probabilities of selected elements is above a threshold. We

refer to this model as feed forward (target distribution).

3.3. Optimization

We train our recipe transfomer in two stages. In the first

stage, we pre-train the image encoder and ingredients de-

coder as presented in Subsection 3.2. Then, in the second

stage, we train the ingredient encoder and instruction de-

coder (following Subsection 3.1) by minimizing the neg-

ative log-likelihood and adjusting θR and θE . Note that,

while training, the instruction decoder takes as input the

ground truth ingredients. All transformer models are trained

with teacher forcing [58] except for the set transformer.

4. Experiments

This section is devoted to the dataset and the descrip-

tion of implementation details, followed by an exhaustive

analysis of the proposed attention strategies for the cooking

instruction transformer. Further, we quantitatively compare

the proposed ingredient prediction models to previously in-

troduced baselines. Finally, a comparison of our inverse

cooking system with retrieval-based models as well as a

comprehensive user study is provided.

4.1. Dataset

We train and evaluate our models on the Recipe1M

dataset [45], composed of 1 029 720 recipes scraped from

cooking websites. The dataset contains 720 639 training,

155 036 validation and 154 045 test recipes, containing a ti-

tle, a list of ingredients, a list of cooking instructions and

(optionally) an image. In our experiments, we use only

the recipes containing images, and remove recipes with less

than 2 ingredients or 2 instructions, resulting in 252 547
training, 54 255 validation and 54 506 test samples.

Since the dataset was obtained by scraping cooking web-

sites, the resulting recipes are highly unstructured and con-

tain frequently redundant or very narrowly defined cooking

ingredients (e.g. olive oil, virgin olive oil and spanish olive

oil are separate ingredients). Moreover, the ingredient vo-

cabulary contains more than 400 different types of cheese,

and more than 300 types of pepper. As a result, the original

dataset contains 16 823 unique ingredients, which we pre-

process to reduce its size and complexity. First, we merge

ingredients if they share the first or last two words (e.g. ba-

con cheddar cheese is merged into cheddar cheese); then,

we cluster the ingredients that have same word in the first or

in the last position (e.g. gorgonzola cheese or cheese blend

are clustered together into the cheese category); finally we

remove plurals and discard ingredients that appear less than

10 times in the dataset. Altogether, we reduce the ingredi-

ent vocabulary from over 16k to 1 488 unique ingredients.

For the cooking instructions, we tokenize the raw text and

remove words that appear less than 10 times in the dataset,

and replace them with unknown word token. Moreover, we

add special tokens for the start and the end of recipe as well
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Model ppl

Independent 8.59

Seq. img. first 8.53

Seq. ing. first 8.61

Concatenated 8.50

Model IoU F1

FFBCE 17.85 30.30

FFIOU 26.25 41.58

FFDC 27.22 42.80

FFTD 28.84 44.11

TFlist 29.48 45.55

TFlist + shuf. 27.86 43.58

TFset 31.80 48.26

Table 1: Model selection (val). Left: Recipe perplexity

(ppl). Right: Global ingredient IoU & F1.

as the end of instruction. This process results in a recipe

vocabulary of 23 231 unique words.

4.2. Implementation Details

We resize images to 256 pixels in their shortest side and

take random crops of 224 × 224 for training and we select

central 224 × 224 pixels for evaluation. For the instruc-

tion decoder, we use a transformer with 16 blocks and 8
multi-head attentions, each one with dimensionality 64. For

the ingredient decoder, we use a transformer with 4 blocks

and 2 multi-head attentions, each one with dimensionality

of 256. To obtain image embeddings we use the last convo-

lutional layer of ResNet-50 model. Both image and ingredi-

ents embedings are of dimension 512. We keep a maximum

of 20 ingredients per recipe and truncate instructions to a

maximum of 150 words. The models are trained with Adam

optimizer [22] until early-stopping criteria is met (using pa-

tience of 50 and monitoring validation loss). All models are

implemented with PyTorch4 [40]. Additional implementa-

tion details are provided in the supplementary material.

4.3. Recipe Generation

In this section, we compare the proposed multi-modal

attention architectures described in Section 3.1. Table 1

(left) reports the results in terms of perplexity on the val-

idation set. We observe that independent attention exhibits

the lowest results, followed by both sequential attentions.

While the latter have the capability to refine the output with

either ingredient or image information consecutively, inde-

pendent attention can only do it in one step. This is also

the case of concatenated attention, which achieves the best

performance. However, concatenated attention is flexible

enough to decide whether to give more focus to one modal-

ity, at the expense of the other, whereas independent atten-

tion is forced to include information from both modalities.

Therefore, we use the concatenated attention model to re-

port results on the test set. We compare it to a system go-

ing directly from image-to-sequence of instructions with-

out predicting ingredients (I2R). Moreover, to assess the in-

4https://pytorch.org/

fluence of visual features on recipe quality, we adapt our

model by removing visual features and predicting instruc-

tions directly from ingredients (L2R). Our system achieves

a test set perplexity of 8.51, improving both I2R and L2R

baselines, and highlighting the benefits of using both image

and ingredients when generating recipes. L2R surpasses

I2R with a perplexity of 8.67 vs. 9.66, demonstrating the

usefulness of having access to concepts (ingredients) that

are essential to the cooking instructions. Finally, we greed-

ily sample instructions from our model and analyze the re-

sults. We notice that generated instructions have an average

of 9.21 sentences containing 9 words each, whereas real,

ground truth instructions have an average of 9.08 sentences

of length 12.79. See supplementary material for qualitative

examples of generated recipes.

4.4. Ingredient Prediction

In this section, we compare the proposed ingredient pre-

diction approaches to previously introduced models, with

the goal of assessing whether ingredients should be treated

as lists or sets. We consider models from the multilabel

classification literature as baselines, and tune them for our

purposes. On the one hand, we have models based on feed

forward convolutional networks, which are trained to pre-

dict sets of ingredients. We experiment with several losses

to train these models, namely binary cross-entropy, soft in-

tersection over union as well as target distribution cross-

entropy. Note that binary cross-entropy is the only one not

taking into account dependencies among elements in the set.

On the other hand, we have sequential models that predict

lists, imposing order and exploiting dependencies among

elements. Finally, we consider recently proposed models

which couple set prediction with cardinality prediction to

determine which elements to include in the set [44].

Table 1 (right) reports the results on the validation set

for the state-of-the-art baselines as well as the proposed

approaches. We evaluate the models in terms of Intersec-

tion over Union (IoU) and F1 score, computed for accumu-

lated counts of TP , FN and FP over the entire dataset

split (following Pascal VOC convention). As shown in the

table, the feed forward model trained with binary cross-

entropy [3] (FFBCE) exhibits the lowest performance on

both metrics, which could be explained by the assumed in-

dependence among ingredients. These results are already

notably improved by the method that learns to predict the set

cardinality (FFDC). Similarly, the performance increases

when training the model with structured losses such as soft

IoU (FFIOU ). Our feed forward model trained with tar-

get distribution (FFTD) and sampled by thresholding (th

= 0.5) the sum of probabilities of selected ingredients out-

performs all feed forward baselines, including recently pro-

posed alternatives for set prediction such as [44] (FFDC).

Note that target distribution models dependencies among
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Card. error # pred. ingrs

FFBCE 5.67± 3.10 2.37± 1.58

FFDC 2.68± 2.07 9.18± 2.06

FFIOU 2.46± 1.95 7.86± 1.72

FFTD 3.02± 2.50 8.02± 3.24

TFlist 2.49± 2.11 7.05± 2.77

TFlist + shuffle 3.24± 2.50 5.06± 1.85

TFset 2.56± 1.93 9.43± 2.35

Table 2: Ingredient Cardinality. Figure 5: Ingredient prediction results: P@K and F1 per ingredient.

elements in a set and implicitly captures cardinality infor-

mation. Following recent literature modeling sets as lists

[37], we train a transformer network to predict ingredients

given an image by minimizing the negative log-likelihood

loss (TFlist). Moreover, we train the same transformer

by randomly shuffling the ingredients (thus, removing or-

der from the data). Both models exhibit competitive results

when compared to feed forward models, highlighting the

importance of modeling dependencies among ingredients.

Finally, our proposed set transformer TFset, which models

ingredient co-occurrences exploiting the auto-regressive na-

ture of the model yet satisfying order invariance, achieves

the best results, emphasizing the importance of modeling

dependencies, while not penalizing for any given order.

The average number of ingredients per sample in

Recipe1M is 7.99 ± 3.21 after pre-processing. We report

the cardinality prediction errors as well as the average num-

ber of predicted ingredients for each of the tested models in

Table 2. TFset is the third best method in terms of cardi-

nality error (after FFIOU and TFlist), while being superior

to all methods in terms of F1 and IoU. Further, Figure 5

(left) shows the precision score at different values of K. As

observed, the plot follows similar trends as Table 1 (right),

with FFTD being among the most competitive models and

TFset outperforming all previous baselines for most values

of K. Figure 5 (right) shows the F1 per ingredient, where

the ingredients in the horizontal axes are sorted by score.

Again, we see that models that exploit dependencies con-

sistently improve ingredient’s F1 scores, strengthening the

importance of modeling ingredient co-occurrences.

4.5. Generation vs Retrieval

In this section, we compare our proposed recipe genera-

tion system with retrieval baselines, which we use to search

recipes in the entire test set for fair comparison.

Ingredient prediction evaluation. We use the retrieval

model in [45] as a baseline and compare it with our best

ingredient predictions models, namely FFTD and FFset.

The retrieval model, which we refer to as RI2LR, learns

joint embeddings of images and recipes (title, ingredients

and instructions). Therefore, for the ingredient prediction

IoU F1

RI2L [45] 18.92 31.83

RI2LR [45] 19.85 33.13

FFTD (ours) 29.82 45.94

TFset (ours) 32.11 48.61

Rec. Prec.

RIL2R 31.92 28.94

Ours 75.47 77.13

Table 3: Test performance against retrieval. Left: Global

ingredient IoU and F1 scores. Right: Precision and Recall

of ingredients in cooking instructions.

IoU F1

Human 21.36 35.20

Retrieved 18.03 30.55

Ours 32.52 49.08

Success %

Real 80.33

Retrieved [45] 48.81

Ours 55.47

Table 4: User studies. Left: IoU & F1 scores for ingredi-

ents obtained by retrieval system, our approach and humans.

Right: Recipe success rate according to human judgment.

task, we use the image embeddings to retrieve the closest

recipe and report metrics for the ingredients of the retrieved

recipe. We further consider an alternative retrieval archi-

tecture, which learns joint embeddings between images and

ingredients list (ignoring title and instructions). We refer

to this model as RI2L. Table 3 (left) reports the obtained

results on the Recipe1M test set. The RI2LR model outper-

forms the RI2L one, which indicates that instructions con-

tain complementary information that is useful when learn-

ing effective embeddings. Furthermore, both of our pro-

posed methods outperform the retrieval-baselines by a large

margin (e.g. TFset outperforms the RI2LR retrieval base-

line by 12.26 IoU points and 15.48 F1 score points), which

demonstrates the superiority of our models. Finally, Figure

6 presents some qualitative results for image-to-ingredient

prediction for our model as well as for the retrieval based

system. We use blue to highlight the ingredients that are

present in the ground truth annotation and red otherwise.

Recipe generation evaluation. We compare our pro-

posed instruction decoder (which generates instructions

given an image and ingredients) with a retrieval variant. For
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cheese onion 
pepper soup 

cream salt milk 
butter

potato butter 
soup cheese 

onion 
cream corn

milk water 
butter potato 
corn cheese 

onion

shrimp butter 
garlic zucchini 

pepper soy_sauce 
juice

lemon salt clove 
catfish seasoning 

carrot parsley

lemon zucchini oil 
pepper shrimp 
juice salt garlic 
parsley onion

sugar 
strawberries juice 
water raspberries 

cream

tart_shell sugar 
cornstarch juice 

strawberries

butter vanilla 
strawberries sugar 

wine vinegar 
cream

cheese 
tomato 
cracker 
broccoli 
muffin 

cheese 
cracker 

miracle_whip 
lettuce 
tomato 

muffin 
cheese 

broccoli 
tomato

Ours Retrieved Real

Figure 6: Ingredient prediction examples. We compare

obtained ingredients with our method and the retrieval base-

line. Ingredients are displayed in blue if they are present in

the real sample and red otherwise. Best viewed in color.

a fair comparison, we retrain the retrieval system to find the

cooking instructions given both image and ingredients. In

our evaluation, we consider the ground truth ingredients as

reference and compute recall and precision w.r.t. the ingre-

dients that appear in the obtained instructions. Thus, recall

computes the percentage of ingredients in the reference that

appear in the output instructions, whereas precision mea-

sures the percentage of ingredients appearing in the instruc-

tions that also appear in the reference. Table 3 (right) dis-

plays comparison between our model and the retrieval sys-

tem. Results show that ingredients appearing in generated

instructions have better recall and precision scores than the

ingredients in retrieved instructions.

4.6. User Studies

In this section, we quantify the quality of predicted in-

gredients and generated instructions with user studies. In

the first study, we compare the performance of our model

against human performance in the task of recipe genera-

tion (including ingredients and recipe instructions). We ran-

domly select 15 images from the test set, and ask users to

select up to 20 distinct ingredients as well as write a recipe

that would correspond with the provided image. To re-

duce the complexity of the task for humans, we reduced

the ingredient vocabulary from 1 488 to 323, by increas-

ing the frequency threshold from 10 to 1k. We collected

answers from 31 different users, altogether collecting an

average of 5.5 answers for each image. For fair compar-

ison, we re-train our best ingredient prediction model on

the reduced vocabulary of ingredients. We compute IoU

and F1 ingredient scores obtained by humans, the retrieval

baseline and our method. Results are included in Table 4

(left), underlining the complexity of the task. As shown in

the table, humans outperform the retrieval baseline (F1 of

35.20% vs 30.55%, respectively). Furthermore, our method

outperforms both human baseline and retrieval based sys-

tems obtaining F1 of 49.08%. Qualitative comparisons

between generated and human-written recipes (including

recipes from average and expert users) are provided in the

supplementary material.

The second study aims at quantifying the quality of the

generated recipes (ingredients and instructions) with respect

to (1) the real recipes in the dataset, and (2) the ones ob-

tained with the retrieval baseline [45]. With this purpose,

we randomly select 150 recipes with their associated im-

ages from the test set and, for each image, we collect the

corresponding real recipe, the top-1 retrieved recipe and

our generated recipe. We present the users with 15 image-

recipe pairs (randomly chosen among the real, retrieved and

generated ones) asking them to indicate whether the recipe

matches the image. In the study, we collected answers from

105 different users, resulting in an average of 10 responses

for each image. Table 4 (right) presents the results of this

study, reporting the success rate of each recipe type. As

it can be observed, the success rate of generated recipes is

higher than the success rate of retrieved recipes, stressing

the benefits of our approach w.r.t. retrieval.

5. Conclusion

In this paper, we introduced an image-to-recipe genera-

tion system, which takes a food image and produces a recipe

consisting of a title, ingredients and sequence of cooking

instructions. We first predicted sets of ingredients from

food images, showing that modeling dependencies matters.

Then, we explored instruction generation conditioned on

images and inferred ingredients, highlighting the impor-

tance of reasoning about both modalities at the same time.

Finally, user study results confirm the difficulty of the task,

and demonstrate the superiority of our system against state-

of-the-art image-to-recipe retrieval approaches.
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[8] Krzysztof Dembczyński, Weiwei Cheng, and Eyke
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