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Abstract

When humans have to solve everyday tasks, they simply
pick the objects that are most suitable. While the question
which object should one use for a specific task sounds triv-
ial for humans, it is very difficult to answer for robots or
other autonomous systems. This issue, however, is not ad-
dressed by current benchmarks for object detection that fo-
cus on detecting object categories. We therefore introduce
the COCO-Tasks dataset which comprises about 40,000 im-
ages where the most suitable objects for 14 tasks have been
annotated. We furthermore propose an approach that de-
tects the most suitable objects for a given task. The ap-
proach builds on a Gated Graph Neural Network to exploit
the appearance of each object as well as the global con-
text of all present objects in the scene. In our experiments,
we show that the proposed approach outperforms other ap-
proaches that are evaluated on the dataset like classification
or ranking approaches.

1. Introduction

The task of object detection in images has been widely
studied and the community achieved impressive progress on
datasets like COCO [24] or Pascal VOC [ 1 1]. For many ap-
plications like assistive or autonomous systems, however, it
is insufficient to detect all instances of a set of object cat-
egories. Similar to humans, the systems interact with the
environment to solve certain tasks. For instance, if a service
robot is asked to serve a glass of wine, detecting all glasses
in an image does not answer the question which of them
it should use. Taking a beer glass is definitely the wrong
choice if a wine glass is available, but if no other glasses are
available it might be the best option for the task. Even if
there are several wine glasses, not all of them are necessary
suitable since some of the glasses might be already used by
someone else or need to be cleaned. If no glasses are avail-
able, some alternatives have to be considered. For instance,
wine can be drunk from a cup or jug as well. This shows that
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Figure 1. What object in the scene would a human choose to serve
wine? In the left image, the wine glass is preferred to other drink-
ing glasses. In the right image, neither a wine glass nor other
drinking glasses are present. The cup is therefore chosen by the
human.

answering the question, which object should be used for a
task is very difficult since it depends on the present object
categories in an image and the properties of the objects.

In this work, we address the problem of task driven ob-
Jject detection. It requires to detect all objects in an image
which serve a given task best. To this end, we propose the
task driven object detection (COCO-Tasks) dataset, which
is based on the images and annotated objects of the COCO
dataset [24]. For evaluation, we define 14 tasks and asked
humans to mark all objects in an image which they favor
to solve a given task. If none of the objects in an image
is suitable, the annotators were allowed to select none of
the objects. The dataset comprises about 40,000 annotated
images and for each task between 1,100 and 9,900 objects
have been marked by the annotators, where the number of
different object categories varies between 6 and 30 for the
different tasks. Figures 1 and 2 show a few examples.

In our experimental evaluation, we show that task driven
object detection cannot be treated as a standard object de-
tection task. If a standard object detector is trained for
each task using the human annotations as ground-truth, the
predictions are not very accurate since the favored objects
strongly depend on the presence of other objects and their
properties. We therefore propose a method based on Gated
Graph Neural Networks (GGNN) [22] that explicitly incor-
porates all detection hypotheses in an image to infer which
objects are preferred for a task. Our experimental results
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show that our proposed method outperforms various rank-
ing and classification based baselines and a thorough abla-
tion study analyzes the design choices of our proposed ap-
proach. COCO-Tasks dataset and the code for reproducing
our experiments are available online'.

2. Related Work

Due to public benchmarks like Pascal VOC [11] and

COCO [24], there was a tremendous advancement in the
area of object detection. State-of-the-art object detec-
tors [8, 3, 8, 5, 45, 28, 33, 53] rely exclusively on convo-

lutional neural networks where in particular Faster R-CNN
[38] has been widely used. For applications where runtime
is critical, other detectors like [36, 25] provide a very good
trade-off between efficiency and accuracy.

In contrast to standard object detection, task driven ob-
ject detection requires an understanding of the entire scene.
This relates it to the task of visual question answering which
takes as input a question regarding the content of an image
and returns an answer in text form, whereas for task driven
object detection the input is a task and the output are bound-
ing boxes around objects that are best suitable for solving
the task. While [2, 13, 48, 37, 27] pioneered in visual ques-
tion answering, [42, 43, 1, 32, 52] are examples of current
state-of-the-art methods.

Choosing the best object among the available requires
not only recognizing its class but judging its functional at-
tributes, i.e. its affordances. Detecting and segmenting af-
fordances in images has therefore received an increased in-
terest [30, 31, 18, 39, 9]. In the work [54], learning func-
tional and physical properties together with the handling of
objects as tools is investigated. The model is learned from
human demonstration and relies on 3d models of objects.
The model is then used to recognize tools and affordance
regions for 3D objects. Fang et al. [12] propose to learn to
detect affordances from demo videos.

Applying deep neural network on graph structured data
has seen a lot of attention from the community recently
[15, 10, 17, 22]. Many computer vision problems includ-
ing scene context can naturally be represented as a graph.
Wang and Gupta [44] use a Graph Convolutional Network
[17] to represent a video and achieve very good results on
video classification. Qi et al. [35] have used graph neural
networks for semantic segmentation. Chuang et al. [6] used
Gated Graph Neural Networks [22] to model affordances in
context. While our work compares the objects to each other,
[6] focuses on the interaction of objects with their environ-
ment.

The task of scene graph generation proposed by John-
son et al. [16] requires the detection of objects and rela-
tionships between pairs of them. These relationships are

Leoco-tasks.github.io
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Figure 3. Distribution of chosen objects for task 4 and task 10
across COCO categories. These are the tasks with the highest and
lowest number of selected categories, respectively.

typically prepositions indicating relative geometric posi-
tion and physical interactions. While earlier approaches
[26, 55, 34, 51, 50, 46, 19, 23, 7, 21, 29, 49] avoid the
search over the exhaustive number of relations by heuris-
tics, more recently [47] propose a method which learns to
prune unlikely object relationships. While Li et al. [20] rely
on modeling subgraphs for scene graph generation, Zellers
et al. [49] focus on correlations between objects and higher
order graph structure statistics.

3. COCO-Tasks Dataset

Detecting the objects, which are favored for a given task,
is very difficult. It requires localizing objects as for a stan-
dard object detection task, but the preferred objects in an
image vary among image and task. Figure 2 shows a few
examples for the first task (step on something to
reach top of a shelf) thatrequires to move an ob-
ject to a shelf in order to step on it and take something from
the top of the shelf, which cannot be reached otherwise. The
first image shows a table which is selected by the annotator
since it serves the task. In the second image, however, the
table is not selected, since a chair which is much handier
is also present. This constitutes the additional difficulty of
task driven object detection compared to object detection:
the validity of a detection also depends on the presence of
better options which need to be detected and assessed. One
needs to understand the scene in order to judge a particular
object. The third image shows a task specific preference of
instances within an object category: The neglected bed on
the left hand side looks heavier than the bed on the right
hand side. The height of the bed on the right hand side is
also sufficient to reach the top of the shelf. In this case, the
choice is not anymore at the object category level, but on a
finer level where attributes of the instances need to be com-
pared. In summary, task driven object detection requires
a detailed understanding of an image, i.e., it needs to be
known what objects are in the image and what are the at-
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‘ ‘ Task Selected object Objects of all Objects chosen Intra class Annotation

categories selected categories by humans differentiations consistency
1 step on something 12 30214 5783 964 0.927
2 sit comfortably 12 31392 9870 1004 0.938
3 place flowers 10 14732 3737 734 0.925
4 get potatoes out of fire 30 32775 6889 525 0.921
5 water plant 13 19050 4043 760 0.918
6 get lemon out of tea 15 22386 4707 661 0.873
7 dig hole 29 34015 6857 402 0.922
8 open bottle of beer 12 18177 1105 373 0.921
9 open parcel 7 7172 1759 160 0.921
10 serve wine 6 19209 3778 566 0.963
11 pour sugar 11 20596 5739 944 0.863
12 smear butter 9 17489 1819 270 0.896
13 extinguish fire 8 14821 2535 272 0.940
14 pound carpet 14 34160 7176 432 0.941

Table 1. List of the 14 tasks in the COCO-Tasks dataset and some statistics. Selected object categories (column 3) are COCO object
categories for which there exists at least one instance chosen by the majority of the annotators for a given task. Column 4 reports how
many instances of each of the selected categories are in the images. Column 5 provides the numbers of object instances that are chosen for
each task. Column 6 counts the number of instances of categories in an image where at least one instance but not all instances of the same
category are selected. Examples of such cases are shown in the last column of Figure 2. The last column reports the probability that two
annotators agree if an object is preferred or not. Overall, we have a very high annotation consistency.

Figure 2. Whether an object should be chosen for a task depends on the object properties as well as the presence of better alternatives.
The image in the first row shows the objects (green bounding boxes) that have been chosen by the majority of the annotators for the task
step on something to reach top of a shelf. While in the first image the table is chosen, the chair is preferred instead
of the table in the second image. In the last image, one of the two beds is chosen. The second row shows examples for the task sit
comfortably. In the first image, both beds are selected. In the second image, the comfortable chair is preferred over the bed and and
the stool. In the third image, the real toilet is selected. Note that the reflection of the toilet in the mirror is annotated as object in COCO as
object, but it is not selected since one cannot sit on it.

tributes or properties of an instance relative to other objects Tasks dataset is based on the COCO dataset [24], which
in an image. is the standard benchmark for object detection. We have
defined 14 tasks which are listed in Table 1 together
with some statistics. The tasks are quite diverse and in-
clude tasks that prefer a specific object shape and mate-
rial like serve wine or place flowers and tasks

In order to address the problem of task driven ob-
ject detection, we introduce the COCO-Tasks dataset and
we propose a first approach for task driven object detec-
tion which will be described in Section 4. The COCO-
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Figure 4. Distribution of the number of preferred objects per im-
age for tasks 2 and 8, which are the tasks with highest and lowest
number of selected instances per image, respectively.

that are related but require different attributes of the ob-
jects like step on something to reach top of
the shelf or sit comfortably. For each of these
tasks, we sample 3600 train images from the COCO
train2014 split and 900 test images from the COCO val2014
split. To focus on more complex scenes with multiple ob-
jects to choose from, we bias the sampling procedure. For
each task, we define which COCO supercategories are most
useful. The list of supercategories per task is provided in the
supplementary materials. Then we make sure that 40% of
the images contain multiple categories from these supercat-
egories, 40% contain exactly one category from these super-
categories but multiple instances of it, and 10% of the im-
ages contain exactly one instance from one category. The
remaining 10% are randomly sampled. In total, our train
set contains 30,229 images and our test set contains 9,495
images.

In order to annotate the preferred objects in each of the
4,500 images for each task, we use the available COCO seg-
mentation masks. We highlight the segmentation masks of
all objects annotated in the COCO dataset for the annotator.
To specify the requirements for the task on a more intuitive
level, we visualize all tasks besides of providing a textual
description of the task. For instance, we show an image of
a shelf for the task step on something to reach
top of the shelf. The annotators could choose any
object, multiple objects or none of them if none of the ob-
jects is considered as suitable for this task. The annotators
neither knew the procedure of sampling the images nor the
supercategories, i.e., they could choose from all 80 COCO
categories for each task. Each task was annotated by 5
trained annotators. An object is considered to be preferred
if it was chosen by the majority of the annotators. Some ex-
ample annotations are shown in Figure 2. More information
about the annotation tool is provided in the supplementary
material.

Table 1 provides some statistics of our dataset. We

measured how diverse the selected objects with respect to
COCO categories are by counting all categories where at
least one instance was selected by the majority of the an-
notators. The datasets shows a high variation in terms of
categories per tasks and the number of selected object cate-
gories varies between 6 and 30 depending on the task. From
the 80 COCO object class categories of the object detec-
tion challenge 2014, instances of 49 classes have been se-
lected for at least one of the 14 tasks. Note that COCO
classes also include animals, which are not relevant for
the tasks in our dataset. We then measured how many in-
stances of all selected categories for each task are present
in our datasets, which also largely varies between 7,172
and 34,160 instances. This shows that just reducing the
number of categories to a small set that could be relevant
for a task would still leave many instances to choose from.
The number of instances that have been selected for each
task varies between 1,105 and 9,870. We finally provide
the number of instances where the annotators differentiate
between instances of the same category as it is shown in
the last column of Figure 2. In such cases, the properties
or attributes of the instances are relevant to make the deci-
sion which object should be used. In Figure 3, we show the
distribution of selected object categories for the tasks with
the lowest and highest number of selected object categories.
While for serving wine instances from the categories
wine glass and cup are mostly selected, there is a large di-
versity of categories that have been selected for getting
potatoes out of the fire. Additionally, we re-
port the distribution of the number of selected instances per
image in Figure 4. While for open bottle of beer
the number of suitable objects is low, there is large diversity
in the number of selected instances per image for sitting
comfortable. The examples show the large variety of
category and instance distributions among the tasks. Ad-
ditional plots are provided in the supplementary material.
Furthermore, we evaluated the consistency of the annota-
tions. For each task and each object, we calculated the prob-
ability that two annotators agree if this object is preferred or
not. As can be seen from Table 1, the consistency between
annotators is very high.

As evaluation metric, we use the AP@0.5 object detec-
tion evaluation metric of the COCO detection challenge
[24] where the preferred objects for a particular task are
the ground truth instances to calculate average precision on.
Taking the mean over the tasks yields mAP@0.5.

4. Task Driven Object Detection

In order to identify the most suitable objects in an im-
age for a task, it is required to understand what objects are
in the scene and why is an object preferred to other present
objects. While the objects in an image can be detected by an
off-the-shelf object detector, we have to model the relations
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ResNet

Figure 5. Overview of the proposed method. Given an image containing a number of objects (3 in this example shown with colors green,
blue and red), our method first extracts ResNet features from each bounding box containing the object. (a) Using the extracted features and
one-hot encoding of the detected class of the object (¢;), we compute the initial hidden state of the graph node corresponding to that object
using (1). (b) Using the hidden states of all of the other graph nodes, we aggregate the scene information using (2) and update the node’s
hidden state as in (3). (c) After 7T iterations of the GGNN, we combine each node’s initial and final hidden states using (4) to compute the
probability of that object being favored for the task. (d) Finally to make the features learned by the ResNet discriminative we also force the
network to estimate suitability scores only from visual features of a single object. At test time, we average the two estimated probabilities.

of all present objects in an image to select the preferred ob-
jects among all detected objects. To this end, we will use
a Gated Graph Neural Network (GGNN) [22] to model the
global information of all objects in an image.

4.1. Proposed Method

Our model consists of a ResNet101 [ 14] network without
the final fully connected layer with the weights initialized
from ILSVRC. On top of the ResNet features, we construct
a Gated Graph Neural Network [22] where each node is an
object in the image and each node is connected to all of the
other nodes to gather the information from all of the ob-
jects present in the scene. On top of the GGNN, we have a
fully connected layer which predicts the probability of each
object being suitable for each task. We train the whole net-
work end-to-end using binary cross entropy loss. Below we
will describe the model in more detail.

An overview of our method is shown in Figure 5. Given
an input image I and a collection of NV detected objects in
that image o;,7 = 1, ..., N specified with their correspond-
ing bounding boxes b;, detection scores d; and predicted
category c;, our method predicts p; the probability of the
object o; being selected for a task.

We first preprocess the bounding boxes by making them
square and 10% larger in each dimension, and then crop the
image with the preprocessed bounding boxes. We then ex-
tract the features from each cropped bounding box arriving
at (0;).

We create a GGNN with one node for each object in the
image. We set the initial hidden value of each node based
on the one-hot encoding of the category of that object ¢; and
the ResNet features ¢(o;) such that

h = g(Weei) © g(Wyd(0;)) (1)

where ¢(.) is the ReLU activation, ® is the element-wise
multiplication and W, and Wy, are parameters of the model.

At each step of the GGNN, we first aggregate the infor-
mation from all other nodes in the graph:

o= Wyd;ht ' 4 b, 2)
JJF

where W, and b,, are the parameters of the learned linear
mapping in the aggregation step. This corresponds to a
graph where each node is connected to all other nodes. We
call the multiplication of d; in (2) weighted aggregation. It
gives the possibility to our method to account for misinfor-
mation in bad detections with low detection scores. Using
the aggregated z! and the previous hidden state of the node
h?l we arrive at the new hidden state of each node in the
graph using the GRU [4] update rule

{=o(W.al + U.hi™" +b.)
rt =o(Weal + UhE™ +b,)
ht =tanh(Wyat + Uy (rt © hi7) + by)
ht=(1 -2 o ht™ + 2t o Rt 3)

zZ

3

where o is the sigmoid activation and the GRU weights
w,, W,, Wy, U,, U,, Uy, b, b, byp) are learned end-
to-end and are shared between all tasks just like the ResNet
backbone network. This update rule is applied 7" times. In
our experiments 7" is set to 3. We observed that increasing
T does not improve our results.

At the end of the T iterations the model calculates the
probability estimate from the concatenation of the initial
and final hidden state of each node

pi = o(f([h; 0] 1))) @)

7609



while learning the weights. f(.) corresponds to a 2 layer
fully connected MLP with ReLU activations for the hidden
layer where the final layer has a single output. We can mod-
ify this output model to generate one probability value for
each task using a final layer with M outputs where M is the
number of tasks and train a single model for all tasks jointly.
In order to make the features learned by the ResNet discrim-
inative, we also directly compute suitability estimates

pi = a(f(¢(0i))) 5

from only ResNet features ¢(o;) as shown in Figure 5 (d).
We use two binary cross entropy losses during training for
p; and p;. At test time, we use average fusion of p; and p;
to estimate the final probability.

To train our model, we construct each minibatch from
objects inside a single image from our training set. All
COCO annotated objects are included in the batch, the ones
which are specified by our dataset as being preferred for a
task are considered as positive examples for that task and
the others are considered as negative. Since we use the
COCO annotated bounding boxes during training, we set
all d;s to 1. During testing, we first perform standard object
detection on the test image and get a set of object bound-
ing boxes and their corresponding detection scores and cat-
egories. We then perform testing by constructing a batch
from all of the detected objects and estimate the probabil-
ity of each object being preferred for each task as described
above. The final confidence for mAP evaluation is obtained
by multiplying the detection score with the estimated prob-
ability. Implementation details are provided in the supple-
mentary material.

5. Experiments

In this section, we first evaluate the performance of sev-
eral baselines as well as our proposed method on COCO-
Tasks. After that, we demonstrate both qualitatively and
quantitatively that our proposed method learns useful infor-
mation about the scene context. Furthermore with ablation
experiments, we show the benefits of each component of
our proposed method. For all of our experiments except the
object detection baseline we train and test the models three
times and report the average performance numbers.

5.1. Comparison to Baselines

For the object detection baseline, we train a separate ob-
ject detector for each task on our train set and infer on the
test set. For all other baselines as well as the proposed
method, we train the respective method on ground truth
bounding boxes of all COCO objects in the train set. We
then evaluate all algorithms on (a) ground truth bounding
boxes of COCO objects and (b) COCO object detections
of a Faster-RCNN object detector [38]. While the latter

Comparison to Baselines mAP@0.5
gt bbox Faster-RCNN detections Yolo detections
object detector - 0.206 -
pick best class 0.386 0.141 -
ranker 0.564 0.091 -
classification 0.616 0.288 0.291
proposed + fusion 0.742 0.326 0.332

Table 2. Comparison of the proposed method to several baselines
on ground truth bounding boxes as well as Faster-RCNN [38]
detections. The classification baseline is the strongest one but
achieves 12.6% lower mAP on ground truth bounding boxes and
3.8% lower mAP on detections compared for our proposed ap-
proach.

evaluates the performance in a realistic scenario, the for-
mer demonstrates the potential of our method that can be
reached with a perfect object detector. As metric, we use
mAP@0.5 for all experiments and report the numbers in
Table 2.

Object Detector Baseline. The most straightforward
approach for task driven object detection is to treat it as a
standard object detection task. To this end, for each of the
14 tasks, we train a 1-class object detector. All objects pre-
ferred for the respective task constitute the object class to
detect. As detector, we use the same Faster-RCNN imple-
mentation. Apart from changing the number of classes from
80 to 1, we reduce the learning rate from 0.005 to 0.0001,
all other hyperparameters stay identical. As reported in Ta-
ble 2, this yields an mAP@0.5 of 20.6%, which is more
than 10% lower than the proposed approach. This verifies
that task driven object detection can not be treated as a stan-
dard object detection task because of the necessity to look
for scene context and all present objects.

Pick Best Class Baseline. COCO classes differ signif-
icantly in their suitability for household tasks. To analyse
this effect, we first rank the classes for each task by the frac-
tion of all instances of this class to be preferred on the train
set. Then for each task and each image of the test set, we
omit all detections with detection confidence lower than 0.1.
Among the remaining detections, we determine the highest
ranked class and only keep the detections belonging to this
class with their detection confidence as final confidence.
The result is 14.1% on detections which is significantly
worse than the object detector baseline. On ground truth
bounding boxes, this baseline yields only 38.6% mAP@0.5.
This shows that the task driven object detection problem
is not solvable by the category information alone, but vi-
sual information from the objects and image context are re-
quired.

Ranker Baseline. For the ranker baseline, we train
a model similar to Deep Relative Attributes [41] to rank
COCO objects in terms of their suitability for a task. We
exchange the original VGG16 backbone [40] of the ranker
for a ResNet101 [14] backbone to make the method compa-
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Ablation experiment results, nAP@0.5
gt bbox Faster-RCNN detections
classifier 0.616 0.288
(a) joint classifier 0.647 0.302
(b) joint classifier + class 0.719 0.301
(c) joint GGNN + class 0.763 0.293
(d) joint GGNN + class + w. aggreg. - 0.303
(e) proposed 0.771 0.318
(f) proposed + fusion 0.742 0.326
(g) no visual input 0.589 0.237
(h) no visual input + bounding box 0.412 0.152

Table 3. Evaluation of the components of our proposed method.
We start with a task wise classifier, (a) then add joint training,
(b) add COCO classes as input, (c) introduce the GGNN, (d) add
weighted aggregation, (e) add the discriminatory loss and (f) per-
form fusion. Further ablation experiments (g) and (h) reveal the
impact of the visual information.

rable to other baselines. We train a model for each task sep-
arately using the Adam optimizer with 10~ learning rate
for 3 epochs to remain as close as possible to [41]. As for
the pick best class baseline, we prefilter the detections by
a detection confidence threshold of 0.1. Then for each im-
age and each task, we rank all n detections and assign each
detection 7 of rank r; the confidence ¢; = 1 — % Al-
though on ground truth bounding boxes this method per-
forms better than pick best class, it is the worst baseline on
detections giving only 9.1% mAP@0.5 as can be seen from
Table 2. The reason is that a single detection ranked erro-
neously highly affects all other detections.

Classification Baseline. To investigate if a global anal-
ysis of all objects present in the scene is necessary, we train
a binary classifier on top of the ResNet features for each
task and apply it on detections and ground truth bound-
ing boxes. As for the proposed method, we obtained the
final confidence by multiplying the classifier output and the
detector confidence. This baseline model is equivalent to
our method, without the class information input, the context
modeling using a graph and joint training for all tasks simul-
taneously. This is the strongest baseline as can be seen from
Table 2. It gives 61.6% on ground truth bounding boxes and
28.8% on detections. However, this is still substantially be-
low our proposed method which takes the scene context into
account.

Proposed Method. The proposed method with fusion
where we average p; and p; for final estimate, yields 32.6%
on Faster-RCNN [38] detections and 74.2% on ground truth
bounding boxes outperforming our baselines by a large mar-
gin. Various ablation experiments showing the effect of dif-
ferent components of our method will follow.

Other Detector Our method outperforms the strongest
classifier baseline even if we use the Yolov2 detector [36]
as can be seen from Table 2.

5.2. Ablation Experiments

We observed that the classification baseline was lacking
in performance compared to our proposed method. This
is due to the differences between the classification baseline
and our proposed method. These differences are: (a) joint
training of all tasks together, (b) direct class information in-
put, and (c) GGNN for scene context modeling. We will add
these 3 components one by one to the classification baseline
and show the effect of each of them. Furthermore, in our
GGNN we show the effect of (d) weighted aggregation, (e)
the direct discriminatory loss on top of the ResNet features
and (f) fusion of p; and p; for the final probability estimate.
The results for these ablation experiments are reported in
Table 3.

a) Joint Training. While for the classification baseline
we train a separate classifier for each of the tasks, a first
improvement can be easily obtained by training a classi-
fier jointly for all tasks, i.e. using shared features. This is
done by replacing the final single output fully connected
layer that estimates p; into a layer with M outputs, where
M is the number of tasks. If a task is annotated for an im-
age during training, we calculate the binary cross entropy
loss and skip that task otherwise. Training the classifier
jointly increases the performance on ground truth bounding
boxes from 61.6% to 64.7% and on detections from 28.8%
to 30.2%. We think this is due to the higher number of train-
ing images and better features that are learned by ResNet.

b) Direct Class Information Input. The object’s class
as a direct input provides additional valuable information
that might be harder for the network to learn from ResNet
features. Given this insight we use (1) to combine the
ResNet features (¢(0;)) and the one-hot encoding of the
classes (¢;) as it is done in our proposed method. We then
use the hidden representations A as input to the final clas-
sification layer. During training we use the ground truth
class, during inference we use the detected classes which
might be noisy. On ground truth, the results get boosted
from 64.7% to 71.9%. However, on detections, the perfor-
mance stays almost the same. We reckon that this is due to
the difference between reliable ground truth classes during
training and erroneous classes as predicted by the detector
during inference. In our proposed method, this problem is
addressed by our weighted aggregation mechanism.

¢) GGNN for Scene Context Modeling. We now add
the GGNNSs as described in Section 4.1 to see the effect
of scene context modeling. For this ablation experiment,
the weighted aggregation (by setting all d;s in (2) to 1) and
the discriminator loss are not used. This is equivalent to a
simplified GGNN. On ground truth bounding boxes we get
an improvement of 4.4% arriving at 76.3% as a result of
scene context modeling, but on detections the performance
slightly drops to 29.3%. The detection confidence problems
encountered by the classifier are amplified, since the GGNN
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takes all detections into account when judging a single one.
Thus the final result for each detection is affected by low
confidence detections during inference. Typically these are
wrong detections, thus the GGNN is confronted with visual
input not seen during training. To solve this issue, we have
incorporated the weighted aggregation.

d) Weighted Aggregation. By the weighted aggrega-
tion, we take the confidences of the detections d;s into ac-
count (2). We observe that addition of such weighting im-
proves our results considerably on detections. This thwarts
the propagation of visual features of low confidence detec-
tions through the GGNN resulting in an improvement from
29.3% to 30.3%. Note that the weighted aggregation does
not change the result on ground truth bounding boxes since
the d;s are equal to 1 in this case.

e) Direct Discriminator Loss. We also impose interme-
diate supervision on the visual features fed into the initial-
izer. We add a fully connected layer mapping these features
onto probabilities for each task and apply a task wise binary
cross entropy loss to these probabilities. This loss makes the
visual features more discriminative for the final goal. The
features give a better backup in case the class information
is not correct. In general such a loss improves the perfor-
mance of our model to 77.1% and 31.8% on ground truth
bounding boxes and detections, respectively.

f) Probability Fusion. Average fusion of the probabili-
ties p; from (4) and p; from (5) further improves the results
on detections. We observe that this does cause some per-
formance decrease for the case of a perfect detector. The
fusion is therefore only relevant if the detections are noisy.

g) Removing Visual Input ¢(0;). Since class informa-
tion improves the results on ground truth bounding boxes
significantly, the question comes to mind if visual informa-
tion inside the bounding boxes is necessary at all. To test
this, we do not use the visual features ¢(o;) for GGNN and
only keep the class information as input. As a result, the
mAP significantly drops, showing that the appearance of
the objects is very important for the task and that GGNN
takes it into account.

h) Removing Visual Input ¢(0;) and Adding Bound-
ing Box Geometry. We then used the coordinates of the
bounding boxes normalized by image width and height
b(0;) instead of the visual features ¢(o;) for GGNN (pro-
posed no vis. input + bbox). This leads to even worse results
since the model overfits to the coordinates of the bounding
boxes of the objects inside the training images.

In the supplementary material we provide the results for
each task.

5.3. Scene Context Learned by GGNN

The aim of introducing the GGNN was to consider scene
context in our model. Intuitively, the GGNN aggregates the
information about all objects relevant for the task which are

Average category presence prediction accuracy (higher is better)

ho

[ T
1.00 h

0.95 1

Accuracy

Figure 6. Accuracy of the predicted categories when retrieving
nearest neighbors based on h? vs. retrieving based on k7.

present in the image and stores them in the final hidden node
representation h!. To prove this intuition quantitatively, we
retrieve the 5 most similar objects for each task and each ob-
ject of the test set. Then we use the categories present in the
scene of the query object as a prediction for the categories
present in the scene of the retrieved objects and measure the
prediction accuracy. We compute the similarity based on
hY', which should contain scene information and compare it
to the similarity computed based on h).

The prediction accuracies are high in both cases, which
is primarily due to the fact that most COCO categories are
absent in any image. However as can be seen from Figure 6,
when retrieving based on similarity of 2? instead of A7,
the accuracy of this prediction is significantly lower for all
tasks. This verifies our intuition. More analysis and quali-
tative examples are provided in the supplementary material.

6. Conclusion

In this work, we have addressed the problem of task
driven object detection. In contrast to standard object detec-
tion, it requires to detect and select the best objects for solv-
ing a given task. To study this problem, we created a dataset
based on the COCO dataset [24]. It comprises about 40k
images with annotations for 14 tasks. We evaluated several
baselines based on ranking or classification approaches on
this dataset. We furthermore introduced a novel approach
for this task that takes as input all detected objects in an
image and uses a Gated Graph Neural Network to model
the relations of the object hypotheses in order to infer the
objects that are preferred for a given task.
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