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Abstract

When humans have to solve everyday tasks, they simply

pick the objects that are most suitable. While the question

which object should one use for a specific task sounds triv-

ial for humans, it is very difficult to answer for robots or

other autonomous systems. This issue, however, is not ad-

dressed by current benchmarks for object detection that fo-

cus on detecting object categories. We therefore introduce

the COCO-Tasks dataset which comprises about 40,000 im-

ages where the most suitable objects for 14 tasks have been

annotated. We furthermore propose an approach that de-

tects the most suitable objects for a given task. The ap-

proach builds on a Gated Graph Neural Network to exploit

the appearance of each object as well as the global con-

text of all present objects in the scene. In our experiments,

we show that the proposed approach outperforms other ap-

proaches that are evaluated on the dataset like classification

or ranking approaches.

1. Introduction

The task of object detection in images has been widely

studied and the community achieved impressive progress on

datasets like COCO [24] or Pascal VOC [11]. For many ap-

plications like assistive or autonomous systems, however, it

is insufficient to detect all instances of a set of object cat-

egories. Similar to humans, the systems interact with the

environment to solve certain tasks. For instance, if a service

robot is asked to serve a glass of wine, detecting all glasses

in an image does not answer the question which of them

it should use. Taking a beer glass is definitely the wrong

choice if a wine glass is available, but if no other glasses are

available it might be the best option for the task. Even if

there are several wine glasses, not all of them are necessary

suitable since some of the glasses might be already used by

someone else or need to be cleaned. If no glasses are avail-

able, some alternatives have to be considered. For instance,

wine can be drunk from a cup or jug as well. This shows that

∗contributed equally, alphabetically ordered

Figure 1. What object in the scene would a human choose to serve

wine? In the left image, the wine glass is preferred to other drink-

ing glasses. In the right image, neither a wine glass nor other

drinking glasses are present. The cup is therefore chosen by the

human.

answering the question, which object should be used for a

task is very difficult since it depends on the present object

categories in an image and the properties of the objects.

In this work, we address the problem of task driven ob-

ject detection. It requires to detect all objects in an image

which serve a given task best. To this end, we propose the

task driven object detection (COCO-Tasks) dataset, which

is based on the images and annotated objects of the COCO

dataset [24]. For evaluation, we define 14 tasks and asked

humans to mark all objects in an image which they favor

to solve a given task. If none of the objects in an image

is suitable, the annotators were allowed to select none of

the objects. The dataset comprises about 40,000 annotated

images and for each task between 1,100 and 9,900 objects

have been marked by the annotators, where the number of

different object categories varies between 6 and 30 for the

different tasks. Figures 1 and 2 show a few examples.

In our experimental evaluation, we show that task driven

object detection cannot be treated as a standard object de-

tection task. If a standard object detector is trained for

each task using the human annotations as ground-truth, the

predictions are not very accurate since the favored objects

strongly depend on the presence of other objects and their

properties. We therefore propose a method based on Gated

Graph Neural Networks (GGNN) [22] that explicitly incor-

porates all detection hypotheses in an image to infer which

objects are preferred for a task. Our experimental results
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show that our proposed method outperforms various rank-

ing and classification based baselines and a thorough abla-

tion study analyzes the design choices of our proposed ap-

proach. COCO-Tasks dataset and the code for reproducing

our experiments are available online1.

2. Related Work

Due to public benchmarks like Pascal VOC [11] and

COCO [24], there was a tremendous advancement in the

area of object detection. State-of-the-art object detec-

tors [8, 3, 8, 5, 45, 28, 33, 53] rely exclusively on convo-

lutional neural networks where in particular Faster R-CNN

[38] has been widely used. For applications where runtime

is critical, other detectors like [36, 25] provide a very good

trade-off between efficiency and accuracy.

In contrast to standard object detection, task driven ob-

ject detection requires an understanding of the entire scene.

This relates it to the task of visual question answering which

takes as input a question regarding the content of an image

and returns an answer in text form, whereas for task driven

object detection the input is a task and the output are bound-

ing boxes around objects that are best suitable for solving

the task. While [2, 13, 48, 37, 27] pioneered in visual ques-

tion answering, [42, 43, 1, 32, 52] are examples of current

state-of-the-art methods.

Choosing the best object among the available requires

not only recognizing its class but judging its functional at-

tributes, i.e. its affordances. Detecting and segmenting af-

fordances in images has therefore received an increased in-

terest [30, 31, 18, 39, 9]. In the work [54], learning func-

tional and physical properties together with the handling of

objects as tools is investigated. The model is learned from

human demonstration and relies on 3d models of objects.

The model is then used to recognize tools and affordance

regions for 3D objects. Fang et al. [12] propose to learn to

detect affordances from demo videos.

Applying deep neural network on graph structured data

has seen a lot of attention from the community recently

[15, 10, 17, 22]. Many computer vision problems includ-

ing scene context can naturally be represented as a graph.

Wang and Gupta [44] use a Graph Convolutional Network

[17] to represent a video and achieve very good results on

video classification. Qi et al. [35] have used graph neural

networks for semantic segmentation. Chuang et al. [6] used

Gated Graph Neural Networks [22] to model affordances in

context. While our work compares the objects to each other,

[6] focuses on the interaction of objects with their environ-

ment.

The task of scene graph generation proposed by John-

son et al. [16] requires the detection of objects and rela-

tionships between pairs of them. These relationships are

1coco-tasks.github.io

Figure 3. Distribution of chosen objects for task 4 and task 10

across COCO categories. These are the tasks with the highest and

lowest number of selected categories, respectively.

typically prepositions indicating relative geometric posi-

tion and physical interactions. While earlier approaches

[26, 55, 34, 51, 50, 46, 19, 23, 7, 21, 29, 49] avoid the

search over the exhaustive number of relations by heuris-

tics, more recently [47] propose a method which learns to

prune unlikely object relationships. While Li et al. [20] rely

on modeling subgraphs for scene graph generation, Zellers

et al. [49] focus on correlations between objects and higher

order graph structure statistics.

3. COCO-Tasks Dataset

Detecting the objects, which are favored for a given task,

is very difficult. It requires localizing objects as for a stan-

dard object detection task, but the preferred objects in an

image vary among image and task. Figure 2 shows a few

examples for the first task (step on something to

reach top of a shelf) that requires to move an ob-

ject to a shelf in order to step on it and take something from

the top of the shelf, which cannot be reached otherwise. The

first image shows a table which is selected by the annotator

since it serves the task. In the second image, however, the

table is not selected, since a chair which is much handier

is also present. This constitutes the additional difficulty of

task driven object detection compared to object detection:

the validity of a detection also depends on the presence of

better options which need to be detected and assessed. One

needs to understand the scene in order to judge a particular

object. The third image shows a task specific preference of

instances within an object category: The neglected bed on

the left hand side looks heavier than the bed on the right

hand side. The height of the bed on the right hand side is

also sufficient to reach the top of the shelf. In this case, the

choice is not anymore at the object category level, but on a

finer level where attributes of the instances need to be com-

pared. In summary, task driven object detection requires

a detailed understanding of an image, i.e., it needs to be

known what objects are in the image and what are the at-
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Task Selected object

categories

Objects of all

selected categories

Objects chosen

by humans

Intra class

differentiations

Annotation

consistency

1 step on something 12 30214 5783 964 0.927

2 sit comfortably 12 31392 9870 1004 0.938

3 place flowers 10 14732 3737 734 0.925

4 get potatoes out of fire 30 32775 6889 525 0.921

5 water plant 13 19050 4043 760 0.918

6 get lemon out of tea 15 22386 4707 661 0.873

7 dig hole 29 34015 6857 402 0.922

8 open bottle of beer 12 18177 1105 373 0.921

9 open parcel 7 7172 1759 160 0.921

10 serve wine 6 19209 3778 566 0.963

11 pour sugar 11 20596 5739 944 0.863

12 smear butter 9 17489 1819 270 0.896

13 extinguish fire 8 14821 2535 272 0.940

14 pound carpet 14 34160 7176 432 0.941

Table 1. List of the 14 tasks in the COCO-Tasks dataset and some statistics. Selected object categories (column 3) are COCO object

categories for which there exists at least one instance chosen by the majority of the annotators for a given task. Column 4 reports how

many instances of each of the selected categories are in the images. Column 5 provides the numbers of object instances that are chosen for

each task. Column 6 counts the number of instances of categories in an image where at least one instance but not all instances of the same

category are selected. Examples of such cases are shown in the last column of Figure 2. The last column reports the probability that two

annotators agree if an object is preferred or not. Overall, we have a very high annotation consistency.

Figure 2. Whether an object should be chosen for a task depends on the object properties as well as the presence of better alternatives.

The image in the first row shows the objects (green bounding boxes) that have been chosen by the majority of the annotators for the task

step on something to reach top of a shelf. While in the first image the table is chosen, the chair is preferred instead

of the table in the second image. In the last image, one of the two beds is chosen. The second row shows examples for the task sit

comfortably. In the first image, both beds are selected. In the second image, the comfortable chair is preferred over the bed and and

the stool. In the third image, the real toilet is selected. Note that the reflection of the toilet in the mirror is annotated as object in COCO as

object, but it is not selected since one cannot sit on it.

tributes or properties of an instance relative to other objects

in an image.

In order to address the problem of task driven ob-

ject detection, we introduce the COCO-Tasks dataset and

we propose a first approach for task driven object detec-

tion which will be described in Section 4. The COCO-

Tasks dataset is based on the COCO dataset [24], which

is the standard benchmark for object detection. We have

defined 14 tasks which are listed in Table 1 together

with some statistics. The tasks are quite diverse and in-

clude tasks that prefer a specific object shape and mate-

rial like serve wine or place flowers and tasks
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Figure 4. Distribution of the number of preferred objects per im-

age for tasks 2 and 8, which are the tasks with highest and lowest

number of selected instances per image, respectively.

that are related but require different attributes of the ob-

jects like step on something to reach top of

the shelf or sit comfortably. For each of these

tasks, we sample 3600 train images from the COCO

train2014 split and 900 test images from the COCO val2014

split. To focus on more complex scenes with multiple ob-

jects to choose from, we bias the sampling procedure. For

each task, we define which COCO supercategories are most

useful. The list of supercategories per task is provided in the

supplementary materials. Then we make sure that 40% of

the images contain multiple categories from these supercat-

egories, 40% contain exactly one category from these super-

categories but multiple instances of it, and 10% of the im-

ages contain exactly one instance from one category. The

remaining 10% are randomly sampled. In total, our train

set contains 30,229 images and our test set contains 9,495

images.

In order to annotate the preferred objects in each of the

4,500 images for each task, we use the available COCO seg-

mentation masks. We highlight the segmentation masks of

all objects annotated in the COCO dataset for the annotator.

To specify the requirements for the task on a more intuitive

level, we visualize all tasks besides of providing a textual

description of the task. For instance, we show an image of

a shelf for the task step on something to reach

top of the shelf. The annotators could choose any

object, multiple objects or none of them if none of the ob-

jects is considered as suitable for this task. The annotators

neither knew the procedure of sampling the images nor the

supercategories, i.e., they could choose from all 80 COCO

categories for each task. Each task was annotated by 5

trained annotators. An object is considered to be preferred

if it was chosen by the majority of the annotators. Some ex-

ample annotations are shown in Figure 2. More information

about the annotation tool is provided in the supplementary

material.

Table 1 provides some statistics of our dataset. We

measured how diverse the selected objects with respect to

COCO categories are by counting all categories where at

least one instance was selected by the majority of the an-

notators. The datasets shows a high variation in terms of

categories per tasks and the number of selected object cate-

gories varies between 6 and 30 depending on the task. From

the 80 COCO object class categories of the object detec-

tion challenge 2014, instances of 49 classes have been se-

lected for at least one of the 14 tasks. Note that COCO

classes also include animals, which are not relevant for

the tasks in our dataset. We then measured how many in-

stances of all selected categories for each task are present

in our datasets, which also largely varies between 7,172

and 34,160 instances. This shows that just reducing the

number of categories to a small set that could be relevant

for a task would still leave many instances to choose from.

The number of instances that have been selected for each

task varies between 1,105 and 9,870. We finally provide

the number of instances where the annotators differentiate

between instances of the same category as it is shown in

the last column of Figure 2. In such cases, the properties

or attributes of the instances are relevant to make the deci-

sion which object should be used. In Figure 3, we show the

distribution of selected object categories for the tasks with

the lowest and highest number of selected object categories.

While for serving wine instances from the categories

wine glass and cup are mostly selected, there is a large di-

versity of categories that have been selected for getting

potatoes out of the fire. Additionally, we re-

port the distribution of the number of selected instances per

image in Figure 4. While for open bottle of beer

the number of suitable objects is low, there is large diversity

in the number of selected instances per image for sitting

comfortable. The examples show the large variety of

category and instance distributions among the tasks. Ad-

ditional plots are provided in the supplementary material.

Furthermore, we evaluated the consistency of the annota-

tions. For each task and each object, we calculated the prob-

ability that two annotators agree if this object is preferred or

not. As can be seen from Table 1, the consistency between

annotators is very high.

As evaluation metric, we use the AP@0.5 object detec-

tion evaluation metric of the COCO detection challenge

[24] where the preferred objects for a particular task are

the ground truth instances to calculate average precision on.

Taking the mean over the tasks yields mAP@0.5.

4. Task Driven Object Detection

In order to identify the most suitable objects in an im-

age for a task, it is required to understand what objects are

in the scene and why is an object preferred to other present

objects. While the objects in an image can be detected by an

off-the-shelf object detector, we have to model the relations
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Figure 5. Overview of the proposed method. Given an image containing a number of objects (3 in this example shown with colors green,

blue and red), our method first extracts ResNet features from each bounding box containing the object. (a) Using the extracted features and

one-hot encoding of the detected class of the object (ĉi), we compute the initial hidden state of the graph node corresponding to that object

using (1). (b) Using the hidden states of all of the other graph nodes, we aggregate the scene information using (2) and update the node’s

hidden state as in (3). (c) After T iterations of the GGNN, we combine each node’s initial and final hidden states using (4) to compute the

probability of that object being favored for the task. (d) Finally to make the features learned by the ResNet discriminative we also force the

network to estimate suitability scores only from visual features of a single object. At test time, we average the two estimated probabilities.

of all present objects in an image to select the preferred ob-

jects among all detected objects. To this end, we will use

a Gated Graph Neural Network (GGNN) [22] to model the

global information of all objects in an image.

4.1. Proposed Method

Our model consists of a ResNet101 [14] network without

the final fully connected layer with the weights initialized

from ILSVRC. On top of the ResNet features, we construct

a Gated Graph Neural Network [22] where each node is an

object in the image and each node is connected to all of the

other nodes to gather the information from all of the ob-

jects present in the scene. On top of the GGNN, we have a

fully connected layer which predicts the probability of each

object being suitable for each task. We train the whole net-

work end-to-end using binary cross entropy loss. Below we

will describe the model in more detail.

An overview of our method is shown in Figure 5. Given

an input image I and a collection of N detected objects in

that image oi, i = 1, ..., N specified with their correspond-

ing bounding boxes bi, detection scores di and predicted

category ci, our method predicts pi the probability of the

object oi being selected for a task.

We first preprocess the bounding boxes by making them

square and 10% larger in each dimension, and then crop the

image with the preprocessed bounding boxes. We then ex-

tract the features from each cropped bounding box arriving

at φ(oi).
We create a GGNN with one node for each object in the

image. We set the initial hidden value of each node based

on the one-hot encoding of the category of that object ĉi and

the ResNet features φ(oi) such that

h0

i = g(Wcĉi)⊙ g(Wφφ(oi)) (1)

where g(.) is the ReLU activation, ⊙ is the element-wise

multiplication and Wc and Wφ are parameters of the model.

At each step of the GGNN, we first aggregate the infor-

mation from all other nodes in the graph:

xt
i =

∑

j,j 6=i

Wpdjh
t−1

j + bp (2)

where Wp and bp are the parameters of the learned linear

mapping in the aggregation step. This corresponds to a

graph where each node is connected to all other nodes. We

call the multiplication of dj in (2) weighted aggregation. It

gives the possibility to our method to account for misinfor-

mation in bad detections with low detection scores. Using

the aggregated xt
i and the previous hidden state of the node

ht−1

i we arrive at the new hidden state of each node in the

graph using the GRU [4] update rule

zti =σ(Wzx
t
i + Uzh

t−1

i + bz)

rti =σ(Wrx
t
i + Urh

t−1

i + br)

ĥt
i =tanh(Whx

t
i + Uh(r

t
i ⊙ ht−1

i ) + bh)

ht
i =(1− zti)⊙ ht−1

i + zti ⊙ ĥt
i (3)

where σ is the sigmoid activation and the GRU weights

(Wz , Wr, Wh, Uz , Ur, Uh, bz , br, bh) are learned end-

to-end and are shared between all tasks just like the ResNet

backbone network. This update rule is applied T times. In

our experiments T is set to 3. We observed that increasing

T does not improve our results.

At the end of the T iterations the model calculates the

probability estimate from the concatenation of the initial

and final hidden state of each node

pi = σ(f([h0

i ;h
T
i ])) (4)
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while learning the weights. f(.) corresponds to a 2 layer

fully connected MLP with ReLU activations for the hidden

layer where the final layer has a single output. We can mod-

ify this output model to generate one probability value for

each task using a final layer with M outputs where M is the

number of tasks and train a single model for all tasks jointly.

In order to make the features learned by the ResNet discrim-

inative, we also directly compute suitability estimates

p̂i = σ(f̂(φ(oi))) (5)

from only ResNet features φ(oi) as shown in Figure 5 (d).

We use two binary cross entropy losses during training for

pi and p̂i. At test time, we use average fusion of pi and p̂i
to estimate the final probability.

To train our model, we construct each minibatch from

objects inside a single image from our training set. All

COCO annotated objects are included in the batch, the ones

which are specified by our dataset as being preferred for a

task are considered as positive examples for that task and

the others are considered as negative. Since we use the

COCO annotated bounding boxes during training, we set

all dis to 1. During testing, we first perform standard object

detection on the test image and get a set of object bound-

ing boxes and their corresponding detection scores and cat-

egories. We then perform testing by constructing a batch

from all of the detected objects and estimate the probabil-

ity of each object being preferred for each task as described

above. The final confidence for mAP evaluation is obtained

by multiplying the detection score with the estimated prob-

ability. Implementation details are provided in the supple-

mentary material.

5. Experiments

In this section, we first evaluate the performance of sev-

eral baselines as well as our proposed method on COCO-

Tasks. After that, we demonstrate both qualitatively and

quantitatively that our proposed method learns useful infor-

mation about the scene context. Furthermore with ablation

experiments, we show the benefits of each component of

our proposed method. For all of our experiments except the

object detection baseline we train and test the models three

times and report the average performance numbers.

5.1. Comparison to Baselines

For the object detection baseline, we train a separate ob-

ject detector for each task on our train set and infer on the

test set. For all other baselines as well as the proposed

method, we train the respective method on ground truth

bounding boxes of all COCO objects in the train set. We

then evaluate all algorithms on (a) ground truth bounding

boxes of COCO objects and (b) COCO object detections

of a Faster-RCNN object detector [38]. While the latter

Comparison to Baselines mAP@0.5

gt bbox Faster-RCNN detections Yolo detections

object detector - 0.206 -

pick best class 0.386 0.141 -

ranker 0.564 0.091 -

classification 0.616 0.288 0.291

proposed + fusion 0.742 0.326 0.332

Table 2. Comparison of the proposed method to several baselines

on ground truth bounding boxes as well as Faster-RCNN [38]

detections. The classification baseline is the strongest one but

achieves 12.6% lower mAP on ground truth bounding boxes and

3.8% lower mAP on detections compared for our proposed ap-

proach.

evaluates the performance in a realistic scenario, the for-

mer demonstrates the potential of our method that can be

reached with a perfect object detector. As metric, we use

mAP@0.5 for all experiments and report the numbers in

Table 2.

Object Detector Baseline. The most straightforward

approach for task driven object detection is to treat it as a

standard object detection task. To this end, for each of the

14 tasks, we train a 1-class object detector. All objects pre-

ferred for the respective task constitute the object class to

detect. As detector, we use the same Faster-RCNN imple-

mentation. Apart from changing the number of classes from

80 to 1, we reduce the learning rate from 0.005 to 0.0001,

all other hyperparameters stay identical. As reported in Ta-

ble 2, this yields an mAP@0.5 of 20.6%, which is more

than 10% lower than the proposed approach. This verifies

that task driven object detection can not be treated as a stan-

dard object detection task because of the necessity to look

for scene context and all present objects.

Pick Best Class Baseline. COCO classes differ signif-

icantly in their suitability for household tasks. To analyse

this effect, we first rank the classes for each task by the frac-

tion of all instances of this class to be preferred on the train

set. Then for each task and each image of the test set, we

omit all detections with detection confidence lower than 0.1.

Among the remaining detections, we determine the highest

ranked class and only keep the detections belonging to this

class with their detection confidence as final confidence.

The result is 14.1% on detections which is significantly

worse than the object detector baseline. On ground truth

bounding boxes, this baseline yields only 38.6% mAP@0.5.

This shows that the task driven object detection problem

is not solvable by the category information alone, but vi-

sual information from the objects and image context are re-

quired.

Ranker Baseline. For the ranker baseline, we train

a model similar to Deep Relative Attributes [41] to rank

COCO objects in terms of their suitability for a task. We

exchange the original VGG16 backbone [40] of the ranker

for a ResNet101 [14] backbone to make the method compa-
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Ablation experiment results, mAP@0.5

gt bbox Faster-RCNN detections

classifier 0.616 0.288

(a) joint classifier 0.647 0.302

(b) joint classifier + class 0.719 0.301

(c) joint GGNN + class 0.763 0.293

(d) joint GGNN + class + w. aggreg. - 0.303

(e) proposed 0.771 0.318

(f) proposed + fusion 0.742 0.326

(g) no visual input 0.589 0.237

(h) no visual input + bounding box 0.412 0.152

Table 3. Evaluation of the components of our proposed method.

We start with a task wise classifier, (a) then add joint training,

(b) add COCO classes as input, (c) introduce the GGNN, (d) add

weighted aggregation, (e) add the discriminatory loss and (f) per-

form fusion. Further ablation experiments (g) and (h) reveal the

impact of the visual information.

rable to other baselines. We train a model for each task sep-

arately using the Adam optimizer with 10−4 learning rate

for 3 epochs to remain as close as possible to [41]. As for

the pick best class baseline, we prefilter the detections by

a detection confidence threshold of 0.1. Then for each im-

age and each task, we rank all n detections and assign each

detection i of rank ri the confidence ci = 1 −
ri−1

n
. Al-

though on ground truth bounding boxes this method per-

forms better than pick best class, it is the worst baseline on

detections giving only 9.1% mAP@0.5 as can be seen from

Table 2. The reason is that a single detection ranked erro-

neously highly affects all other detections.

Classification Baseline. To investigate if a global anal-

ysis of all objects present in the scene is necessary, we train

a binary classifier on top of the ResNet features for each

task and apply it on detections and ground truth bound-

ing boxes. As for the proposed method, we obtained the

final confidence by multiplying the classifier output and the

detector confidence. This baseline model is equivalent to

our method, without the class information input, the context

modeling using a graph and joint training for all tasks simul-

taneously. This is the strongest baseline as can be seen from

Table 2. It gives 61.6% on ground truth bounding boxes and

28.8% on detections. However, this is still substantially be-

low our proposed method which takes the scene context into

account.

Proposed Method. The proposed method with fusion

where we average pi and p̂i for final estimate, yields 32.6%

on Faster-RCNN [38] detections and 74.2% on ground truth

bounding boxes outperforming our baselines by a large mar-

gin. Various ablation experiments showing the effect of dif-

ferent components of our method will follow.

Other Detector Our method outperforms the strongest

classifier baseline even if we use the Yolov2 detector [36]

as can be seen from Table 2.

5.2. Ablation Experiments

We observed that the classification baseline was lacking

in performance compared to our proposed method. This

is due to the differences between the classification baseline

and our proposed method. These differences are: (a) joint

training of all tasks together, (b) direct class information in-

put, and (c) GGNN for scene context modeling. We will add

these 3 components one by one to the classification baseline

and show the effect of each of them. Furthermore, in our

GGNN we show the effect of (d) weighted aggregation, (e)

the direct discriminatory loss on top of the ResNet features

and (f) fusion of pi and p̂i for the final probability estimate.

The results for these ablation experiments are reported in

Table 3.

a) Joint Training. While for the classification baseline

we train a separate classifier for each of the tasks, a first

improvement can be easily obtained by training a classi-

fier jointly for all tasks, i.e. using shared features. This is

done by replacing the final single output fully connected

layer that estimates pi into a layer with M outputs, where

M is the number of tasks. If a task is annotated for an im-

age during training, we calculate the binary cross entropy

loss and skip that task otherwise. Training the classifier

jointly increases the performance on ground truth bounding

boxes from 61.6% to 64.7% and on detections from 28.8%

to 30.2%. We think this is due to the higher number of train-

ing images and better features that are learned by ResNet.

b) Direct Class Information Input. The object’s class

as a direct input provides additional valuable information

that might be harder for the network to learn from ResNet

features. Given this insight we use (1) to combine the

ResNet features (φ(oi)) and the one-hot encoding of the

classes (ĉi) as it is done in our proposed method. We then

use the hidden representations h0

i as input to the final clas-

sification layer. During training we use the ground truth

class, during inference we use the detected classes which

might be noisy. On ground truth, the results get boosted

from 64.7% to 71.9%. However, on detections, the perfor-

mance stays almost the same. We reckon that this is due to

the difference between reliable ground truth classes during

training and erroneous classes as predicted by the detector

during inference. In our proposed method, this problem is

addressed by our weighted aggregation mechanism.

c) GGNN for Scene Context Modeling. We now add

the GGNNs as described in Section 4.1 to see the effect

of scene context modeling. For this ablation experiment,

the weighted aggregation (by setting all dis in (2) to 1) and

the discriminator loss are not used. This is equivalent to a

simplified GGNN. On ground truth bounding boxes we get

an improvement of 4.4% arriving at 76.3% as a result of

scene context modeling, but on detections the performance

slightly drops to 29.3%. The detection confidence problems

encountered by the classifier are amplified, since the GGNN
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takes all detections into account when judging a single one.

Thus the final result for each detection is affected by low

confidence detections during inference. Typically these are

wrong detections, thus the GGNN is confronted with visual

input not seen during training. To solve this issue, we have

incorporated the weighted aggregation.

d) Weighted Aggregation. By the weighted aggrega-

tion, we take the confidences of the detections dis into ac-

count (2). We observe that addition of such weighting im-

proves our results considerably on detections. This thwarts

the propagation of visual features of low confidence detec-

tions through the GGNN resulting in an improvement from

29.3% to 30.3%. Note that the weighted aggregation does

not change the result on ground truth bounding boxes since

the dis are equal to 1 in this case.

e) Direct Discriminator Loss. We also impose interme-

diate supervision on the visual features fed into the initial-

izer. We add a fully connected layer mapping these features

onto probabilities for each task and apply a task wise binary

cross entropy loss to these probabilities. This loss makes the

visual features more discriminative for the final goal. The

features give a better backup in case the class information

is not correct. In general such a loss improves the perfor-

mance of our model to 77.1% and 31.8% on ground truth

bounding boxes and detections, respectively.

f) Probability Fusion. Average fusion of the probabili-

ties pi from (4) and p̂i from (5) further improves the results

on detections. We observe that this does cause some per-

formance decrease for the case of a perfect detector. The

fusion is therefore only relevant if the detections are noisy.

g) Removing Visual Input φ(oi). Since class informa-

tion improves the results on ground truth bounding boxes

significantly, the question comes to mind if visual informa-

tion inside the bounding boxes is necessary at all. To test

this, we do not use the visual features φ(oi) for GGNN and

only keep the class information as input. As a result, the

mAP significantly drops, showing that the appearance of

the objects is very important for the task and that GGNN

takes it into account.

h) Removing Visual Input φ(oi) and Adding Bound-

ing Box Geometry. We then used the coordinates of the

bounding boxes normalized by image width and height

b(oi) instead of the visual features φ(oi) for GGNN (pro-

posed no vis. input + bbox). This leads to even worse results

since the model overfits to the coordinates of the bounding

boxes of the objects inside the training images.

In the supplementary material we provide the results for

each task.

5.3. Scene Context Learned by GGNN

The aim of introducing the GGNN was to consider scene

context in our model. Intuitively, the GGNN aggregates the

information about all objects relevant for the task which are
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Figure 6. Accuracy of the predicted categories when retrieving

nearest neighbors based on h
0

i vs. retrieving based on h
T

i .

present in the image and stores them in the final hidden node

representation hT
i . To prove this intuition quantitatively, we

retrieve the 5 most similar objects for each task and each ob-

ject of the test set. Then we use the categories present in the

scene of the query object as a prediction for the categories

present in the scene of the retrieved objects and measure the

prediction accuracy. We compute the similarity based on

hT
i , which should contain scene information and compare it

to the similarity computed based on h0

i .

The prediction accuracies are high in both cases, which

is primarily due to the fact that most COCO categories are

absent in any image. However as can be seen from Figure 6,

when retrieving based on similarity of h0

i instead of hT
i ,

the accuracy of this prediction is significantly lower for all

tasks. This verifies our intuition. More analysis and quali-

tative examples are provided in the supplementary material.

6. Conclusion

In this work, we have addressed the problem of task

driven object detection. In contrast to standard object detec-

tion, it requires to detect and select the best objects for solv-

ing a given task. To study this problem, we created a dataset

based on the COCO dataset [24]. It comprises about 40k

images with annotations for 14 tasks. We evaluated several

baselines based on ranking or classification approaches on

this dataset. We furthermore introduced a novel approach

for this task that takes as input all detected objects in an

image and uses a Gated Graph Neural Network to model

the relations of the object hypotheses in order to infer the

objects that are preferred for a given task.
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