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Abstract

We propose a generic framework to calibrate accuracy

and confidence of a prediction in deep neural networks

through stochastic inferences. We interpret stochastic regu-

larization using a Bayesian model, and analyze the relation

between predictive uncertainty of networks and variance of

the prediction scores obtained by stochastic inferences for

a single example. Our empirical study shows that the ac-

curacy and the score of a prediction are highly correlated

with the variance of multiple stochastic inferences given by

stochastic depth or dropout. Motivated by this observation,

we design a novel variance-weighted confidence-integrated

loss function that is composed of two cross-entropy loss

terms with respect to ground-truth and uniform distribu-

tion, which are balanced by variance of stochastic predic-

tion scores. The proposed loss function enables us to learn

deep neural networks that predict confidence calibrated

scores using a single inference. Our algorithm presents out-

standing confidence calibration performance and improves

classification accuracy when combined with two popular

stochastic regularization techniques—stochastic depth and

dropout—in multiple models and datasets; it alleviates

overconfidence issue in deep neural networks significantly

by training networks to achieve prediction accuracy propor-

tional to confidence of prediction.

1. Introduction

Deep neural networks have achieved remarkable perfor-

mance in various tasks, but have critical limitations in relia-

bility of their predictions. One example is that inference re-

sults are often overly confident even for unseen or ambigu-

ous examples. Since many practical applications including

medical diagnosis, autonomous driving, and machine in-

spection require accurate uncertainty estimation as well as

high prediction score for each inference, such an overcon-
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fidence issue makes deep neural networks inappropriate to

be deployed for real-world problems in spite of their im-

pressive accuracy.

Regularization is a common technique in training deep

neural networks to avoid overfitting problems and improve

generalization performance [10, 11, 24]. Although regular-

ization is effective to learn robust models, its objective is

not directly related to generating score distributions aligned

with uncertainty of predictions. Hence, existing deep neural

networks are often poor at calibrating prediction accuracy

and confidence.

Our goal is to learn deep neural networks that are able

to estimate uncertainty of each prediction while maintain-

ing accuracy. In other words, we propose a generic frame-

work to calibrate prediction score (confidence) with accu-

racy in deep neural networks. The main idea of our algo-

rithm starts with an observation that the variance of predic-

tion scores measured from multiple stochastic inferences is

highly correlated with the accuracy and confidence of the

average prediction. We also show that a Bayesian interpre-

tation of stochastic regularizations such as stochastic depth

and dropout leads to the consistent conclusion with the ob-

servation. By using the empirical observation with the theo-

retical interpretation, we design a novel loss function to en-

able a deep neural network to predict confidence-calibrated

scores based only on a single prediction, without multiple

stochastic inferences. Our contribution is summarized as

• We provide a generic framework to estimate uncer-

tainty of a prediction based on stochastic inferences in

deep neural networks, which is supported by empirical

observations and theoretical analysis.

• We propose a novel variance-weighted confidence-

integrated loss function in a principled way, which en-

ables networks to produce confidence-calibrated pre-

dictions even without performing stochastic inferences

and introducing hyper-parameters.

• The proposed framework presents outstanding perfor-

mance to reduce overconfidence issue and estimate ac-
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Figure 1. Reliability diagrams of VGG-16 models trained with baseline, CI (ours) and VWCI (ours) losses in Tiny ImageNet dataset. This

diagram shows expected accuracy as a function of confidence, i.e., classification score. ECE (Expected Calibration Error) denotes the

average gap between confidence and expected accuracy. The proposed algorithm (VWCI) achieves well-calibrated results compared to the

baseline and the best estimate by a simpler version of ours (CI).

curate uncertainty in various combinations of network

architectures and datasets.

The rest of the paper is organized as follows. We review

the prior research and describe the theoretical background

in Section 2 and 3, respectively. Section 4 presents our con-

fidence calibration algorithm through stochastic inferences,

and Section 5 demonstrates experimental results.

2. Related Work

Uncertainty modeling and estimation in deep neural net-

works is a critical problem and receives growing attention

from machine learning community. Bayesian approach is

a common tool to provide a mathematical framework for

uncertainty estimation. However, the exact Bayesian in-

ference is not tractable in deep neural networks due to its

high computational cost, and various approximate inference

techniques—MCMC [17], Laplace approximation [14] and

variational inference [1, 4, 8, 20]—have been proposed.

Recently, a Bayesian interpretation of multiplicative noise

is employed to estimate uncertainty in deep neural net-

works [3, 15]. Besides, there are several approaches outside

Bayesian modeling, e.g., post-processing [5, 18, 22, 28] and

deep ensembles [12]. All the post-processing methods re-

quire a hold-out validation set to adjust prediction scores

after training, and the ensemble-based technique employs

multiple models to estimate uncertainty.

Stochastic regularization is a well-known technique to

improve generalization performance by injecting random

noise to deep neural networks. The most notable method

is dropout [24], which rejects a subset of hidden units in a

layer based on Bernoulli random noise. There exist several

variants, for example, dropping weights [27] or skipping

layers [10]. Most stochastic regularization methods perform

stochastic inferences during training, but make determinis-

tic predictions using the full network during testing. On the

contrary, we also employ stochastic inferences to obtain di-

verse and reliable outputs during testing.

Although the following works do not address uncertainty

estimation, their main idea is related to our objective more

or less. Label smoothing [25] encourages models to be less

confident, by preventing a network from assigning the full

probability to a single class. A similar loss function is dis-

cussed to train confidence-calibrated classifiers in [13], but

it focuses on how to discriminate in-distribution and out-of-

distribution examples, rather than estimating uncertainty or

alleviating miscalibration of in-distribution examples. On

the other hand, [21] claims that blind label smoothing and

penalizing entropy enhances accuracy by integrating loss

functions with the same concept with [13, 25], but its im-

provement is marginal in practice.

3. Preliminaries

This section describes a Bayesian interpretation of

stochastic regularization in deep neural networks, and dis-

cusses the relationship between stochastic regularization

and uncertainty modeling.

3.1. Stochastic Methods for Regularizations

A popular class of regularization techniques is stochastic

regularization, which introduces random noise for perturb-

ing network structures. Our approach focuses on the multi-

plicative binary noise injection, where random binary noise

is applied to the inputs or weights by elementwise mul-

tiplication, since such stochastic regularization techniques

are widely used [10, 24, 27]. Note that input perturba-

tion can be reformulated as weight perturbation. For ex-

ample, dropout—binary noise injection to activations—is

interpretable as weight perturbation that masks out all the

weights associated with the dropped inputs. Therefore, if a
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classification network modeling p(y|x, θ) with parameters

θ is trained with stochastic regularization methods by mini-

mizing cross entropy, the loss function is defined by

LSR(θ) = −
1

N

N∑
i=1

log p (yi|xi, ω̂i), (1)

where ω̂i = θ ⊙ ǫi is a set of perturbed parameters by el-

ementwise multiplication with random noise sample ǫi ∼
p(ǫ), and (xi, yi) ∈ D is a pair of input and output in train-

ing dataset D.

At inference time, the network is parameterized by the

expectation of the perturbed parameters, Θ = E[ω] = θ ⊙
E[ǫ], to predict an output ŷ, which is given by

ŷ = argmax
y

p (y|x,Θ) . (2)

3.2. Bayesian Modeling

Given the dataset D with N examples, Bayesian objec-

tive is to estimate the posterior distribution of the model

parameter, denoted by p(ω|D), to predict a label y for an

input x, which is given by

p(y|x,D) =

∫
ω

p(y|x, ω)p(ω|D)dω. (3)

A common technique for the posterior estimation is varia-

tional approximation, which introduces an approximate dis-

tribution qθ(ω) and minimizes Kullback-Leibler (KL) diver-

gence with the true posterior DKL(qθ(ω)||p(ω|D)) as fol-

lows:

LVA(θ) =−

N∑
i=1

∫
ω

qθ(ω) log p(yi|xi, ω)dω

+DKL(qθ(ω)||p(ω)). (4)

The intractable integration and summation over the entire

dataset in Eq. (4) is approximated by Monte Carlo method

and mini-batch optimization, resulting in

L̂VA(θ) =−
N

MS

M∑
i=1

S∑
j=1

log p (yi|xi, ω̂i,j)

+DKL (qθ(ω)||p(ω)) , (5)

where ω̂i,j ∼ qθ(ω) is a sample from the approximate dis-

tribution, S is the number of samples, and M is the size of

a mini-batch. Note that the first term is data likelihood and

the second term is divergence of the approximate distribu-

tion with respect to the prior distribution.

3.3. Bayesian View of Stochastic Regularization

Suppose that we train a classifier with ℓ2 regularization

by a stochastic gradient descent method. Then, the loss

function in Eq. (1) is rewritten as

L̂SR(θ) = −
1

M

M∑
i=1

log p (yi|xi, ω̂i) + λ||θ||22, (6)

where ℓ2 regularization is applied to the deterministic pa-

rameters θ with weight λ. Optimizing this loss function

is equivalent to optimizing Eq. (5) if there exists a proper

prior p(ω) and qθ(ω) is approximated as a Gaussian mix-

ture distribution [3]. Note that [3] casts dropout training

as an approximate Bayesian inference. Thus, we can in-

terpret training with stochastic depth [10] within the same

framework by a simple modification. (See our supplemen-

tary document for the details.) Then, the predictive distri-

bution of a model trained with stochastic regularization is

approximately given by

p̂(y|x,D) =

∫
ω

p(y|x, ω)qθ(ω)dω. (7)

Following [3] and [26], we estimate the predictive mean and

uncertainty using a Monte Carlo approximation by drawing

parameter samples {ω̂i}
T
i=1 as

Ep̂[y = c] ≈
1

T

T∑
i=1

p̂(y = c|x, ω̂i), (8)

Covp̂[y] ≈ Ep̂[yy
⊺]− Ep̂[y]Ep̂[y]

⊺, (9)

where y = (y1, . . . , yC)
⊺ denotes a score vector of C class

labels. Eq. (8) and Eq. (9) mean that the average prediction

and its predictive uncertainty can be estimated from multi-

ple stochastic inferences.

4. Methods

We present a novel confidence calibration technique for

prediction in deep neural networks, which is given by a

variance-weighted confidence-integrated loss function. We

present our observation that variance of multiple stochas-

tic inferences is closely related to accuracy and confidence

of predictions, and provide an end-to-end training frame-

work for confidence self-calibration. Then, we show that

the prediction accuracy and uncertainty are directly acces-

sible from a predicted score from a single forward pass.

4.1. Empirical Observations

Eq. (9) implies that the variation of models results in

the variance of multiple stochastic predictions for a single

example. Figure 2 presents how the variance of multiple

stochastic inferences given by stochastic depth or dropout

is related to the accuracy and confidence of the correspond-

ing average prediction, where the confidence is measured by

the maximum score of the average prediction. In the figure,

the accuracy and the score of each bin are computed with
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(a) Prediction uncertainty characteristics with stochastic depth in ResNet-34
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(b) Prediction uncertainty characteristics with dropout in VGGNet with 16 layers

Figure 2. Uncertainty observed from multiple stochastic inferences with two stochastic regularization methods, (a) stochastic depth and

(b) dropout. We present (left, middle) tendency of accuracy and score of the average prediction with respect to normalized variance of

stochastic inferences and (right) relation between score and accuracy. In regularization methods, average accuracy and score drop gradually

as normalized variance increases. The red lines indicate coverage (cumulative ratio) of examples. We present results from CIFAR-100.

the examples belonging to the corresponding bin of the nor-

malized variance. We present results from CIFAR-100 with

ResNet-34 and VGGNet with 16 layers. The histograms il-

lustrate the strong correlation between the predicted vari-

ance and the reliability—accuracy and confidence—of a

prediction; we can estimate accuracy and uncertainty of an

example effectively based on its prediction variances given

by multiple stochastic inferences.

4.2.Variance­Weighted Confidence­Integrated Loss

The strong correlation of accuracy and confidence with

the predicted variance observed in Figure 2 shows great po-

tential to make confidence-calibrated predictions through

stochastic inferences. However, variance computation in-

volves multiple stochastic inferences by executing multiple

forward passes. Note that this property incurs additional

computational cost and may produce inconsistent results.

To alleviate these limitations, we propose a generic

framework for training accuracy-score calibrated networks

whose prediction score from a single forward pass directly

provides the confidence of a prediction. This objective

achieved by designing a new loss function, which augments

a confidence-calibration term to the standard cross-entropy

loss, while the two terms are balanced by the variance mea-

sured by multiple stochastic inferences. Specifically, our

variance-weighted confidence-integrated loss LVWCI(·) for

the whole training data (xi, yi) ∈ D is defined by a lin-

ear combination of the standard cross-entropy loss with the

ground-truth LGT(·) and the cross-entropy with a uniform

distribution LU(·), which is formally given by

LVWCI(θ) =

N∑
i=1

(1− αi)L
(i)
GT(θ) + αiL

(i)
U (θ)

=
1

T

N∑
i=1

T∑
j=1

−(1− αi) log p(yi|xi, ω̂i,j)

+ αiDKL(U(y)||p(y|xi, ω̂i,j)) + ξi (10)

where αi ∈ [0, 1] is a normalized variance, ω̂i,j(= θ⊙ ǫi,j)
is a sampled model parameter with binary noise for stochas-

tic prediction, T is the number of stochastic inferences, and

ξi is a constant.

The two terms in our variance-weighted confidence-

integrated loss pushes the network toward the opposite di-

rections; the first term encourages the network to fit the

ground-truth label while the second term forces the net-

work to make a prediction close to the uniform distribution.

These terms are linearly interpolated by an instance-specific

balancing coefficient αi, which is given by normalizing the

prediction variance of an example obtained from multiple

stochastic inferences. Note that the normalized variance αi

is distinct for each training example and is used to measure
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model uncertainty. Therefore, the optimization of our loss

function produces gradient signals, which lead the predic-

tions toward a uniform distribution for the examples with

high uncertainty derived by high variances while increasing

the prediction scores of the examples with low variances.

By training deep neural networks using the proposed loss

function, we estimate the uncertainty of each testing exam-

ple with a single forward pass. Unlike the ordinary models,

a prediction score of our model is well-calibrated and rep-

resents confidence of a prediction, which means that we can

rely more on the predictions with higher scores.

4.3. Confidence­Integrated Loss

Our claim is that an adaptive combination of the cross-

entropy losses with respect to the ground-truth and a uni-

form distribution is a reasonable choice to learn uncertainty.

As a special case of the proposed loss, we also present a

blind version of the combination, which can be used as a

baseline uncertainty estimation technique. This baseline

loss function is referred to as the confidence-integrated loss,

which is given by

LCI(θ) = LGT(θ) + βLU(θ)

=

N∑
i=1

− log p(yi|xi, θ)

+ βDKL(U(y)||p(y|xi, θ)) + ξ, (11)

where p(y|xi, θ) is the predicted distribution with model pa-

rameter θ and ξ is a constant. The main idea of this loss

function is to regularize with a uniform distribution by ex-

pecting the score distributions of uncertain examples to be

flattened first while the distributions of confident ones re-

main intact, where the impact of the confidence-integrated

loss term is controlled by a global hyper-parameter β.

The proposed loss function is also employed in [21] to

regularize deep neural networks and improve classification

accuracy. However, [21] does not discuss confidence cali-

bration issues while presenting marginal accuracy improve-

ment. On the other hand, [13] discusses a similar loss func-

tion but focuses on differentiating between in-distribution

and out-of-distribution examples by measuring the loss of

each example using only one of the two loss terms depend-

ing on its origin.

Contrary to the existing approaches, we employ the loss

function in Eq. (11) to estimate prediction confidence in

deep neural networks. Although the confidence-integrated

loss makes sense intuitively, such blind selection of a hyper-

parameter β limits its generality compared to our variance-

weighted confidence-integrated loss.

4.4. Relation to Other Calibration Approaches

There are several score calibration techniques [5, 16, 18,

29] by adjusting confidence scores through post-processing,

among which [5] presents a method to calibrate confidence

of predictions by scaling logits of a network using a global

temperature τ . The scaling is performed before apply-

ing the softmax function, and τ is trained with a valida-

tion dataset. As discussed in [5], this simple technique is

equivalent to maximize entropy of the output distribution

p(yi|xi). It is also identical to minimize KL-divergence

DKL(p(yi|xi)|| U(y)) because

DKL(p(yi|xi)|| U(y))

=
∑
c∈C

p(yci |xi) log p(y
c
i |xi)− p(yci |xi) logU(y

c)

= −H(p(yi|xi)) + ξ′, (12)

where C is a class set and ξ′ is a constant. We can formulate

another confidence-integrated loss with the entropy as

L′
CI(θ) =

N∑
i=1

− log p(yi|xi, θ)− γH(p(yi|xi, θ)), (13)

where γ is a constant. Eq. (13) implies that temperature

scaling in [5] is closely related to our framework.

5. Experiments

5.1. Experimental Settings

We select four most widely used deep neural network ar-

chitectures to test the proposed algorithm: ResNet [7], VG-

GNet [23], WideResNet [30] and DenseNet [9].

We employ stochastic depth in ResNet as proposed in

[7] while employing dropouts [24] before every fc layer ex-

cept for the classification layer in other architectures. Note

that, as discussed in Section 3.3, both stochastic depth and

dropout inject multiplicative binary noise to within-layer

activations or residual blocks, they are equivalent to noise

injection into network weights. Hence, training with ℓ2 reg-

ularization term enables us to interpret stochastic depth and

dropout by Bayesian models.

We evaluate the proposed framework on two bench-

marks, Tiny ImageNet and CIFAR-100, which contain 64×
64 images in 200 object classes and 32× 32 images in 100

object classes, respectively. There are 500 training images

per class in both datasets. For testing, we use the validation

set of Tiny ImageNet and the test set of CIFAR-100, which

have 50 and 100 images per class, respectively. To test the

two benchmarks with the same architecture, we resize im-

ages in Tiny ImageNet to 32× 32.

All networks are trained by a stochastic gradient decent

method with the momentum 0.9 for 300 epochs. We set the

initial learning rate to 0.1 with the exponential decay in a

factor of 0.2 at epoch 60, 120, 160, 200 and 250. Each batch

consists of 64 training examples for ResNet, WideResNet

and DenseNet and 256 for VGGNet. To train networks with
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Table 1. Classification accuracy and calibration scores for several combinations of network architectures and datasets. We compare models

trained with baseline, CI and VWCI losses. Since CI loss involves a hyper-parameter β, we present mean and standard deviation of results

from models with five different β’s. In addition, we also show results from the oracle CI loss, CI[Oracle], which are the most optimistic

values out of results from all β’s in individual columns. Note that the numbers corresponding to CI[Oracle] may come from different β’s.

Refer to the supplementary document for the full results.

Dataset Architecture Method Accuracy [%] ECE MCE NLL Brier Score

Tiny ImageNet

ResNet-34

Baseline 50.82 0.067 0.147 2.050 0.628

CI 50.09 ± 1.08 0.134 ± 0.079 0.257 ± 0.098 2.270 ± 0.212 0.665 ± 0.037

VWCI 52.80 0.027 0.076 1.949 0.605

CI[Oracle] 51.45 0.035 0.171 2.030 0.620

VGG-16

Baseline 46.58 0.346 0.595 4.220 0.844

CI 46.82 ± 0.81 0.226 ± 0.095 0.435 ± 0.107 3.224 ± 0.468 0.761 ± 0.054

VWCI 48.03 0.053 0.142 2.373 0.659

CI[Oracle] 47.39 0.122 0.320 2.812 0.701

WideResNet-16-8

Baseline 55.92 0.132 0.237 1.974 0.593

CI 55.80 ± 0.44 0.115 ± 0.040 0.288 ± 0.100 1.980 ± 0.114 0.594 ± 0.017

VWCI 56.66 0.046 0.136 1.866 0.569

CI[Oracle] 56.38 0.050 0.208 1.851 0.572

DenseNet-40-12

Baseline 42.50 0.020 0.154 2.423 0.716

CI 40.18 ± 1.68 0.059 ± 0.061 0.152 ± 0.082 2.606 ± 0.208 0.748 ± 0.035

VWCI 43.25 0.025 0.089 2.410 0.712

CI[Oracle] 41.21 0.025 0.094 2.489 0.726

CIFAR-100

ResNet-34

Baseline 77.19 0.109 0.304 1.020 0.345

CI 77.56 ± 0.60 0.134 ± 0.131 0.251 ± 0.128 1.064 ± 0.217 0.360 ± 0.057

VWCI 78.64 0.034 0.089 0.908 0.310

CI[Oracle] 78.54 0.029 0.087 0.921 0.321

VGG-16

Baseline 73.78 0.187 0.486 1.667 0.437

CI 73.75 ± 0.35 0.183 ± 0.079 0.489 ± 0.214 1.526 ± 0.175 0.436 ± 0.034

VWCI 73.87 0.098 0.309 1.277 0.391

CI[Oracle] 73.78 0.083 0.285 1.289 0.396

WideResNet-16-8

Baseline 77.52 0.103 0.278 0.984 0.336

CI 77.35 ± 0.21 0.133 ± 0.091 0.297 ± 0.108 1.062 ± 0.180 0.356 ± 0.044

VWCI 77.74 0.038 0.101 0.891 0.314

CI[Oracle] 77.53 0.074 0.211 0.931 0.327

DenseNet-40-12

Baseline 65.91 0.074 0.134 1.238 0.463

CI 64.72 ± 1.46 0.070 ± 0.040 0.138 ± 0.055 1.312 ± 0.125 0.482 ± 0.028

VWCI 67.45 0.026 0.094 1.161 0.439

CI[Oracle] 66.20 0.019 0.053 1.206 0.456

the proposed variance-weighted confidence-integrated loss,

we draw T samples with network parameters ωi for each in-

put image, and compute the normalized variance α based on

T forward passes. The normalized variance is given by the

mean of the Bhattacharyya coefficients between individual

predictions and the average prediction, and, consequently,

in the range of [0.1].

5.2. Evaluation Metric

We measure classification accuracy and calibration

scores—expected calibration error (ECE), maximum cal-

ibration error (MCE), negative log likelihood (NLL) and

Brier score—of the trained models.

Let Bm be a set of indices of test examples whose pre-

diction scores for the ground-truth labels fall into interval

(m−1
M

, m
M
], where M(= 20) is the number of bins. ECE

and MCE are formally defined by

ECE =

M∑
m=1

|Bm|

N ′
|acc(Bm)− conf(Bm)| ,

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)| ,

where N ′ is the number of the test samples. Also, accuracy

and confidence of each bin are given by

acc(Bm) =
1

|Bm|

∑
i∈Bm

✶(ŷi = yi),

conf(Bm) =
1

|Bm|

∑
i∈Bm

pi,

where ✶ is an indicator function, ŷi and yi are predicted and

true label of the ith example and pi is its predicted confi-
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Table 2. Comparison between VWCI and TS of multiple datasets and architectures.

Dataset Architecture Method Accuracy [%] ECE MCE NLL Brier Score

Tiny ImageNet

ResNet-34

TS (case 1) 50.82 0.162 0.272 2.241 0.660

TS (case 2) 47.20 0.021 0.080 2.159 0.661

VWCI 52.80 0.027 0.076 1.949 0.605

VGG-16

TS (case 1) 46.58 0.358 0.604 4.425 0.855

TS (case 2) 46.53 0.028 0.067 2.361 0.671

VWCI 48.03 0.053 0.142 2.373 0.659

WideResNet-16-8

TS (case 1) 55.92 0.200 0.335 2.259 0.627

TS (case 2) 53.95 0.027 0.224 1.925 0.595

VWCI 56.66 0.046 0.136 1.866 0.569

DenseNet-40-12

TS (case 1) 42.50 0.037 0.456 2.436 0.717

TS (case 2) 41.63 0.024 0.109 2.483 0.728

VWCI 43.25 0.025 0.089 2.410 0.712

CIFAR-100

ResNet-34

TS (case 1) 77.67 0.133 0.356 1.162 0.354

TS (case 2) 77.40 0.036 0.165 0.886 0.323

VWCI 78.64 0.034 0.089 0.908 0.310

VGG-16

TS (case 1) 73.66 0.197 0.499 1.770 0.445

TS (case 2) 72.69 0.031 0.074 1.193 0.389

VWCI 73.87 0.098 0.309 1.277 0.391

WideResNet-16-8

TS (case 1) 77.52 0.144 0.400 1.285 0.361

TS (case 2) 76.42 0.028 0.101 0.891 0.332

VWCI 77.74 0.038 0.101 0.891 0.314

DenseNet-40-12

TS (case 1) 65.91 0.095 0.165 1.274 0.468

TS (case 2) 64.96 0.082 0.163 1.306 0.481

VWCI 67.45 0.026 0.094 1.161 0.439

dence. NLL and Brier score are another ways to measure

the calibration [2, 5, 6], which are defined as

NLL = −

N ′∑
i=1

log p(yi|xi, θ),

Brier =

N ′∑
i=1

C∑
j=1

(p(ŷi = j|xi, θ)− ✶(yi = j))2.

We note that low values for all these calibration scores

means that the network is well-calibrated.

5.3. Results

Table 1 presents accuracy and calibration scores for sev-

eral combinations of network architectures and benchmark

datasets. The models trained with VWCI loss consistently

outperform the models with CI loss, which is a special case

of VWCI, and the baseline on both classification accuracy

and confidence calibration performance. We believe that

the accuracy gain is partly by virtue of the stochastic regu-

larization with multiple samples [19]. Performance of CI is

given by the average and variance from 5 different cases of

β(= 1, 10−1, 10−2, 10−3, 10−4)1 and CI[Oracle] denotes

the most optimistic value among the 5 cases in each column.

Note that VWCI presents outstanding results in most cases

1These 5 values of β are selected favorably to CI based on our prelim-

inary experiment.

even when compared with CI[Oracle] and that performance

of CI is sensitive to the choice of β’s. These results im-

ply that the proposed loss function balances two conflicting

loss terms effectively using the variance of multiple stochas-

tic inferences while performance of CI varies depending on

hyper-parameter setting in each dataset.

We also compare the proposed framework with the

state-of-the-art post-processing method, temperature scal-

ing (TS) [5]. The main distinction between post-processing

methods and our work is the need for held-out dataset; our

method allows to calibrate scores during training without

additional data while [5] requires held-out validation sets

to calibrate scores. To illustrate the effectiveness of our

framework, we compare our approach with TS in the fol-

lowing two scenarios: 1) using the entire training set for

both training and calibration and 2) using 90% of train-

ing set for training and the remaining 10% for calibration.

Table 2 presents that case 1 suffers from poor calibration

performance and case 2 loses accuracy substantially due to

training data reduction although it shows comparable cali-

bration scores to VWCI. Note that TS may also suffer from

the binning artifacts of histograms although we do not in-

vestigate this limitation in our work.

5.4. Discussion

To show the effectiveness of the propose framework, we

analyze the proposed algorithm with ablative experiments.
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Figure 3. ECE of VWCI loss with respect to the number of samples

(T) on Tiny ImageNet (top) and CIFAR-100 (bottom) dataset.

Table 3. Comparisons between the models based on the VWCI

losses, trained from scratch and the uncalibrated pretrained net-

works (denoted by VWCI*).

Architecture Method Acc. [%] ECE MCE NLL Brier

ResNet-34

Baseline 77.19 0.109 0.304 1.020 0.345

VWCI 78.64 0.034 0.089 0.908 0.310

VWCI∗ 77.87 0.026 0.069 1.013 0.346

VGG-16

Baseline 73.78 0.187 0.486 1.667 0.437

VWCI 73.87 0.098 0.309 1.277 0.391

T
in

y
Im

ag
eN

et

VWCI∗ 74.17 0.074 0.243 1.227 0.385

ResNet-34

Baseline 50.82 0.067 0.147 2.050 0.628

VWCI 52.80 0.027 0.076 1.949 0.605

VWCI∗ 52.77 0.034 0.099 1.965 0.605

VGG-16

Baseline 46.58 0.346 0.595 4.220 0.844

VWCI 48.03 0.053 0.142 2.373 0.659C
IF

A
R

-1
0

0

VWCI∗ 46.98 0.056 0.162 2.446 0.683

Effect of sample size for stochastic inferences Figure 3

illustrates ECE of the models trained with our VWCI loss

by varying the number of stochastic inferences (T ) during

training. The increase of T is helpful to improve accuracy

and calibration quality at the beginning but its benefit is sat-

urated when T is between 5 and 10 in general. Such ten-

dency is consistent in all the tested architectures, datasets,

and evaluation metrics including ECE. We set T to 5 in all

the experiments.

Training cost Although our approach allows single-shot

confidence calibration at test-time, it increases time com-

plexity for training due to multiple stochastic inferences.

Fortunately, the calibrated models can be trained more ef-

ficiently without stochastic inferences in the majority (≥
80%) of iterations by initializing the networks with the pre-

trained baseline models. Table 3 confirms that the perfor-

mance of our models trained from the uncalibrated pre-

trained models is as competitive as (or often even better

than) the ones trained from scratch with the VWCI losses.
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Figure 4. Coverage of ResNet-34 models with respect to confi-

dence interval on Tiny ImageNet (top) and CIFAR-100 (bottom).

The coverage is computed by the portion of examples with higher

accuracy and confidence than the thresholds shown in x-axis. We

present results from multiple CI models with best performances

with respect to individual metrics, which are shown in the legends.

Reliability Our approach effectively maintains examples

with high accuracy and confidence, which is a desirable

property for building reliable real-world systems. Figure 4

illustrates portion of test examples with higher accuracy

and confidence than the various thresholds in ResNet-34,

where VWCI presents better coverage of the examples than

CI[Oracle]. Note that coverage of CI often depends on the

choice of β significantly as demonstrated in Figure 4 (right)

while VWCI maintains higher coverage than CI using accu-

rately calibrated prediction scores. These results imply that

using the predictive uncertainty for balancing the loss terms

is preferable to setting with a constant coefficient.

6. Conclusion

We presented a generic framework for uncertainty es-

timation of a prediction in deep neural networks by cali-

brating accuracy and score based on stochastic inferences.

Based on Bayesian interpretation of stochastic regulariza-

tion and our empirical observation results, we claim that

variation of multiple stochastic inferences for a single ex-

ample is a crucial factor to estimate uncertainty of the aver-

age prediction. Inspired by this fact, we design the variance-

weighted confidence-integrated loss to learn confidence-

calibrated networks and enable uncertainty to be estimated

by a single prediction. The proposed algorithm is also use-

ful to understand existing confidence calibration methods

in a unified way, and we compared our algorithm with other

variations within our framework to analyze their properties.
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