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Abstract

We propose a generic framework to calibrate accuracy
and confidence of a prediction in deep neural networks
through stochastic inferences. We interpret stochastic regu-
larization using a Bayesian model, and analyze the relation
between predictive uncertainty of networks and variance of
the prediction scores obtained by stochastic inferences for
a single example. Our empirical study shows that the ac-
curacy and the score of a prediction are highly correlated
with the variance of multiple stochastic inferences given by
stochastic depth or dropout. Motivated by this observation,
we design a novel variance-weighted confidence-integrated
loss function that is composed of two cross-entropy loss
terms with respect to ground-truth and uniform distribu-
tion, which are balanced by variance of stochastic predic-
tion scores. The proposed loss function enables us to learn
deep neural networks that predict confidence calibrated
scores using a single inference. Our algorithm presents out-
standing confidence calibration performance and improves
classification accuracy when combined with two popular
stochastic regularization techniques—stochastic depth and
dropout—in multiple models and datasets; it alleviates
overconfidence issue in deep neural networks significantly
by training networks to achieve prediction accuracy propor-
tional to confidence of prediction.

1. Introduction

Deep neural networks have achieved remarkable perfor-
mance in various tasks, but have critical limitations in relia-
bility of their predictions. One example is that inference re-
sults are often overly confident even for unseen or ambigu-
ous examples. Since many practical applications including
medical diagnosis, autonomous driving, and machine in-
spection require accurate uncertainty estimation as well as
high prediction score for each inference, such an overcon-
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fidence issue makes deep neural networks inappropriate to
be deployed for real-world problems in spite of their im-
pressive accuracy.

Regularization is a common technique in training deep
neural networks to avoid overfitting problems and improve
generalization performance [10, 11, 24]. Although regular-
ization is effective to learn robust models, its objective is
not directly related to generating score distributions aligned
with uncertainty of predictions. Hence, existing deep neural
networks are often poor at calibrating prediction accuracy
and confidence.

Our goal is to learn deep neural networks that are able
to estimate uncertainty of each prediction while maintain-
ing accuracy. In other words, we propose a generic frame-
work to calibrate prediction score (confidence) with accu-
racy in deep neural networks. The main idea of our algo-
rithm starts with an observation that the variance of predic-
tion scores measured from multiple stochastic inferences is
highly correlated with the accuracy and confidence of the
average prediction. We also show that a Bayesian interpre-
tation of stochastic regularizations such as stochastic depth
and dropout leads to the consistent conclusion with the ob-
servation. By using the empirical observation with the theo-
retical interpretation, we design a novel loss function to en-
able a deep neural network to predict confidence-calibrated
scores based only on a single prediction, without multiple
stochastic inferences. Our contribution is summarized as

e We provide a generic framework to estimate uncer-
tainty of a prediction based on stochastic inferences in
deep neural networks, which is supported by empirical
observations and theoretical analysis.

e We propose a novel variance-weighted confidence-
integrated loss function in a principled way, which en-
ables networks to produce confidence-calibrated pre-
dictions even without performing stochastic inferences
and introducing hyper-parameters.

e The proposed framework presents outstanding perfor-
mance to reduce overconfidence issue and estimate ac-
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Figure 1. Reliability diagrams of VGG-16 models trained with baseline, CI (ours) and VWCI (ours) losses in Tiny ImageNet dataset. This
diagram shows expected accuracy as a function of confidence, i.e., classification score. ECE (Expected Calibration Error) denotes the
average gap between confidence and expected accuracy. The proposed algorithm (VWCI) achieves well-calibrated results compared to the

baseline and the best estimate by a simpler version of ours (CI).

curate uncertainty in various combinations of network
architectures and datasets.

The rest of the paper is organized as follows. We review
the prior research and describe the theoretical background
in Section 2 and 3, respectively. Section 4 presents our con-
fidence calibration algorithm through stochastic inferences,
and Section 5 demonstrates experimental results.

2. Related Work

Uncertainty modeling and estimation in deep neural net-
works is a critical problem and receives growing attention
from machine learning community. Bayesian approach is
a common tool to provide a mathematical framework for
uncertainty estimation. However, the exact Bayesian in-
ference is not tractable in deep neural networks due to its
high computational cost, and various approximate inference
techniques—MCMC [17], Laplace approximation [14] and
variational inference [I, 4, 8, 20]—have been proposed.
Recently, a Bayesian interpretation of multiplicative noise
is employed to estimate uncertainty in deep neural net-
works [3, 15]. Besides, there are several approaches outside
Bayesian modeling, e.g., post-processing [5, 18, 22, 28] and
deep ensembles [12]. All the post-processing methods re-
quire a hold-out validation set to adjust prediction scores
after training, and the ensemble-based technique employs
multiple models to estimate uncertainty.

Stochastic regularization is a well-known technique to
improve generalization performance by injecting random
noise to deep neural networks. The most notable method
is dropout [24], which rejects a subset of hidden units in a
layer based on Bernoulli random noise. There exist several
variants, for example, dropping weights [27] or skipping
layers [ 1 0]. Most stochastic regularization methods perform
stochastic inferences during training, but make determinis-

tic predictions using the full network during testing. On the
contrary, we also employ stochastic inferences to obtain di-
verse and reliable outputs during testing.

Although the following works do not address uncertainty
estimation, their main idea is related to our objective more
or less. Label smoothing [25] encourages models to be less
confident, by preventing a network from assigning the full
probability to a single class. A similar loss function is dis-
cussed to train confidence-calibrated classifiers in [13], but
it focuses on how to discriminate in-distribution and out-of-
distribution examples, rather than estimating uncertainty or
alleviating miscalibration of in-distribution examples. On
the other hand, [21] claims that blind label smoothing and
penalizing entropy enhances accuracy by integrating loss
functions with the same concept with [13, 25], but its im-
provement is marginal in practice.

3. Preliminaries

This section describes a Bayesian interpretation of
stochastic regularization in deep neural networks, and dis-
cusses the relationship between stochastic regularization
and uncertainty modeling.

3.1. Stochastic Methods for Regularizations

A popular class of regularization techniques is stochastic
regularization, which introduces random noise for perturb-
ing network structures. Our approach focuses on the multi-
plicative binary noise injection, where random binary noise
is applied to the inputs or weights by elementwise mul-
tiplication, since such stochastic regularization techniques
are widely used [10, 24, 27]. Note that input perturba-
tion can be reformulated as weight perturbation. For ex-
ample, dropout—binary noise injection to activations—is
interpretable as weight perturbation that masks out all the
weights associated with the dropped inputs. Therefore, if a
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classification network modeling p(y|z, ) with parameters
0 is trained with stochastic regularization methods by mini-
mizing cross entropy, the loss function is defined by

| X
Lsr(0) = *ﬁzlogp(ydxi,@), (1

i=1

where @w; = 6 © ¢; is a set of perturbed parameters by el-
ementwise multiplication with random noise sample ¢; ~
p(€), and (z;,y;) € D is a pair of input and output in train-
ing dataset D.

At inference time, the network is parameterized by the
expectation of the perturbed parameters, © = Ejw] = 0 ©
Ele], to predict an output g, which is given by

§ = argmaxp (y|z,0). 2)
Yy

3.2. Bayesian Modeling

Given the dataset D with N examples, Bayesian objec-
tive is to estimate the posterior distribution of the model
parameter, denoted by p(w|D), to predict a label y for an
input x, which is given by

p(ylz, D) = / p(y|z, w)p(w|D)dw. 3)
A common technique for the posterior estimation is varia-
tional approximation, which introduces an approximate dis-
tribution gy (w) and minimizes Kullback-Leibler (KL) diver-
gence with the true posterior Dk, (qs(w)||p(w|D)) as fol-
lows:

N
zmw>=—§j/QMngmmm“wmu

+ Dkw(go(w)][p(w))- @)

The intractable integration and summation over the entire
dataset in Eq. (4) is approximated by Monte Carlo method
and mini-batch optimization, resulting in

R N M S
Lva(0) = = 575 DD logp (yilvi @iy)

i=1 j=1
+ D1, (g0(w)|Ip(w)) , ©)

where @; ; ~ gg(w) is a sample from the approximate dis-
tribution, S is the number of samples, and M is the size of
a mini-batch. Note that the first term is data likelihood and
the second term is divergence of the approximate distribu-
tion with respect to the prior distribution.

3.3. Bayesian View of Stochastic Regularization

Suppose that we train a classifier with /5 regularization
by a stochastic gradient descent method. Then, the loss

function in Eq. (1) is rewritten as

M
1 .
Lsr(0) = i ZIng(yi|xi7wi) +Al0]13, ()

i=1

where ¢, regularization is applied to the deterministic pa-
rameters 6 with weight A. Optimizing this loss function
is equivalent to optimizing Eq. (5) if there exists a proper
prior p(w) and gp(w) is approximated as a Gaussian mix-
ture distribution [3]. Note that [3] casts dropout training
as an approximate Bayesian inference. Thus, we can in-
terpret training with stochastic depth [10] within the same
framework by a simple modification. (See our supplemen-
tary document for the details.) Then, the predictive distri-
bution of a model trained with stochastic regularization is
approximately given by

p0le.D) = [ pulwn@ids. @)
Following [3] and [26], we estimate the predictive mean and
uncertainty using a Monte Carlo approximation by drawing
parameter samples {&;}7_; as

T
1 . .
Esly =l ~ 7 ) _bly = clz, @), ®)
i=1
Covply] ~ EplyyT] — Es[y]Es[y]T, 9)
where y = (y1,...,yc)T denotes a score vector of C' class

labels. Eq. (8) and Eq. (9) mean that the average prediction
and its predictive uncertainty can be estimated from multi-
ple stochastic inferences.

4. Methods

We present a novel confidence calibration technique for
prediction in deep neural networks, which is given by a
variance-weighted confidence-integrated loss function. We
present our observation that variance of multiple stochas-
tic inferences is closely related to accuracy and confidence
of predictions, and provide an end-to-end training frame-
work for confidence self-calibration. Then, we show that
the prediction accuracy and uncertainty are directly acces-
sible from a predicted score from a single forward pass.

4.1. Empirical Observations

Eq. (9) implies that the variation of models results in
the variance of multiple stochastic predictions for a single
example. Figure 2 presents how the variance of multiple
stochastic inferences given by stochastic depth or dropout
is related to the accuracy and confidence of the correspond-
ing average prediction, where the confidence is measured by
the maximum score of the average prediction. In the figure,
the accuracy and the score of each bin are computed with
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(b) Prediction uncertainty characteristics with dropout in VGGNet with 16 layers

Figure 2. Uncertainty observed from multiple stochastic inferences with two stochastic regularization methods, (a) stochastic depth and
(b) dropout. We present (left, middle) tendency of accuracy and score of the average prediction with respect to normalized variance of
stochastic inferences and (right) relation between score and accuracy. In regularization methods, average accuracy and score drop gradually
as normalized variance increases. The red lines indicate coverage (cumulative ratio) of examples. We present results from CIFAR-100.

the examples belonging to the corresponding bin of the nor-
malized variance. We present results from CIFAR-100 with
ResNet-34 and VGGNet with 16 layers. The histograms il-
lustrate the strong correlation between the predicted vari-
ance and the reliability—accuracy and confidence—of a
prediction; we can estimate accuracy and uncertainty of an
example effectively based on its prediction variances given
by multiple stochastic inferences.

4.2.Variance-Weighted Confidence-Integrated Loss

The strong correlation of accuracy and confidence with
the predicted variance observed in Figure 2 shows great po-
tential to make confidence-calibrated predictions through
stochastic inferences. However, variance computation in-
volves multiple stochastic inferences by executing multiple
forward passes. Note that this property incurs additional
computational cost and may produce inconsistent results.

To alleviate these limitations, we propose a generic
framework for training accuracy-score calibrated networks
whose prediction score from a single forward pass directly
provides the confidence of a prediction. This objective
achieved by designing a new loss function, which augments
a confidence-calibration term to the standard cross-entropy
loss, while the two terms are balanced by the variance mea-
sured by multiple stochastic inferences. Specifically, our
variance-weighted confidence-integrated loss Lyvwci(+) for

the whole training data (x;,y;) € D is defined by a lin-
ear combination of the standard cross-entropy loss with the
ground-truth Lo (-) and the cross-entropy with a uniform
distribution Ly (+), which is formally given by

N
Lower(8) =3_(1 = ai) £ (0) + @il (9)
=1
1 N T
=72 —(1—a)logp(yilui, @i )
i=1 j=1

+ a; Dxr,(U(y)|p(ylei, @i 5)) + & (10)

where «; € [0, 1] is a normalized variance, @; j(= 6 @ ;)
is a sampled model parameter with binary noise for stochas-
tic prediction, 7 is the number of stochastic inferences, and
&; is a constant.

The two terms in our variance-weighted confidence-
integrated loss pushes the network toward the opposite di-
rections; the first term encourages the network to fit the
ground-truth label while the second term forces the net-
work to make a prediction close to the uniform distribution.
These terms are linearly interpolated by an instance-specific
balancing coefficient a;, which is given by normalizing the
prediction variance of an example obtained from multiple
stochastic inferences. Note that the normalized variance «;
is distinct for each training example and is used to measure
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model uncertainty. Therefore, the optimization of our loss
function produces gradient signals, which lead the predic-
tions toward a uniform distribution for the examples with
high uncertainty derived by high variances while increasing
the prediction scores of the examples with low variances.

By training deep neural networks using the proposed loss
function, we estimate the uncertainty of each testing exam-
ple with a single forward pass. Unlike the ordinary models,
a prediction score of our model is well-calibrated and rep-
resents confidence of a prediction, which means that we can
rely more on the predictions with higher scores.

4.3. Confidence-Integrated Loss

Our claim is that an adaptive combination of the cross-
entropy losses with respect to the ground-truth and a uni-
form distribution is a reasonable choice to learn uncertainty.
As a special case of the proposed loss, we also present a
blind version of the combination, which can be used as a
baseline uncertainty estimation technique. This baseline
loss function is referred to as the confidence-integrated loss,
which is given by

501(9) = EGT(Q) + 5£U(9)
N
= Z —log p(yili, 0)

+ BDkrUW)Ip(ylz:, 0)) +&, (1)

where p(y|z;, 6) is the predicted distribution with model pa-
rameter 6 and £ is a constant. The main idea of this loss
function is to regularize with a uniform distribution by ex-
pecting the score distributions of uncertain examples to be
flattened first while the distributions of confident ones re-
main intact, where the impact of the confidence-integrated
loss term is controlled by a global hyper-parameter 5.

The proposed loss function is also employed in [21] to
regularize deep neural networks and improve classification
accuracy. However, [21] does not discuss confidence cali-
bration issues while presenting marginal accuracy improve-
ment. On the other hand, [13] discusses a similar loss func-
tion but focuses on differentiating between in-distribution
and out-of-distribution examples by measuring the loss of
each example using only one of the two loss terms depend-
ing on its origin.

Contrary to the existing approaches, we employ the loss
function in Eq. (11) to estimate prediction confidence in
deep neural networks. Although the confidence-integrated
loss makes sense intuitively, such blind selection of a hyper-
parameter /3 limits its generality compared to our variance-
weighted confidence-integrated loss.

4.4. Relation to Other Calibration Approaches

There are several score calibration techniques [5, 16, 18,
] by adjusting confidence scores through post-processing,

among which [5] presents a method to calibrate confidence
of predictions by scaling logits of a network using a global
temperature 7. The scaling is performed before apply-
ing the softmax function, and 7 is trained with a valida-
tion dataset. As discussed in [5], this simple technique is
equivalent to maximize entropy of the output distribution
p(yi|z;). Tt is also identical to minimize KL-divergence
Dxr(p(yilzi)|| U(y)) because

Dxr(p(yilzi)|| U(y))

= p(yflw:) log p(ysla) — p(ys|e:) logU (y°)
ceC

= —H(p(yilzi)) + ¢, (12)

where C'is a class set and £’ is a constant. We can formulate
another confidence-integrated loss with the entropy as
N
or(0) = —logp(yilzi, 0) — vH(p(yilxi, 0)), (13)

i=1

where «y is a constant. Eq. (13) implies that temperature
scaling in [5] is closely related to our framework.

S. Experiments
5.1. Experimental Settings

We select four most widely used deep neural network ar-
chitectures to test the proposed algorithm: ResNet [7], VG-
GNet [23], WideResNet [30] and DenseNet [9].

We employ stochastic depth in ResNet as proposed in
[7] while employing dropouts [24] before every fc layer ex-
cept for the classification layer in other architectures. Note
that, as discussed in Section 3.3, both stochastic depth and
dropout inject multiplicative binary noise to within-layer
activations or residual blocks, they are equivalent to noise
injection into network weights. Hence, training with /5 reg-
ularization term enables us to interpret stochastic depth and
dropout by Bayesian models.

We evaluate the proposed framework on two bench-
marks, Tiny ImageNet and CIFAR-100, which contain 64 x
64 images in 200 object classes and 32 x 32 images in 100
object classes, respectively. There are 500 training images
per class in both datasets. For testing, we use the validation
set of Tiny ImageNet and the test set of CIFAR-100, which
have 50 and 100 images per class, respectively. To test the
two benchmarks with the same architecture, we resize im-
ages in Tiny ImageNet to 32 x 32.

All networks are trained by a stochastic gradient decent
method with the momentum 0.9 for 300 epochs. We set the
initial learning rate to 0.1 with the exponential decay in a
factor of 0.2 at epoch 60, 120, 160, 200 and 250. Each batch
consists of 64 training examples for ResNet, WideResNet
and DenseNet and 256 for VGGNet. To train networks with
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Table 1. Classification accuracy and calibration scores for several combinations of network architectures and datasets. We compare models
trained with baseline, CI and VWCI losses. Since CI loss involves a hyper-parameter (3, we present mean and standard deviation of results
from models with five different 8’s. In addition, we also show results from the oracle CI loss, CI[Oracle], which are the most optimistic
values out of results from all 3’s in individual columns. Note that the numbers corresponding to CI[Oracle] may come from different 3’s.

Refer to the supplementary document for the full results.

Dataset Architecture Method Accuracy [%] ECE MCE NLL Brier Score

Baseline 50.82 0.067 0.147 2.050 0.628

ResNet-34 CI 50.09 £ 1.08 0.134 £0.079 0.257 £0.098 2.270 £ 0.212 0.665 £+ 0.037
eset VWCI 52.80 0.027 0.076 1.949 0.605

" CI[Oracle] ~ 5145 0035 0171 2030 0.620
Baseline 46.58 0.346 0.595 4.220 0.844

VGG-16 CI 46.82 +0.81 0.226 £0.095 0.435+0.107 3.224 £0.468 0.761 + 0.054

' o vwer 4803 0083 012 2373 0.659
Tiny ImageNet CI[Oracle] 47.39 0.122 0.320 2.812 0.701
Baseline 55.92 0.132 0.237 1.974 0.593

WideResNet-16-8 CI 55.80 £0.44 0.115+£0.040 0.288+0.100 1.980+0.114 0.594 £+ 0.017

ST vwar  sees 0.046 0436 1866 0.569
CI[Oracle] 56.38 0.050 0.208 1.851 0.572
Baseline 42.50 0.020 0.154 2.423 0.716

D Net-40-12 CI 40.18 £ 1.68  0.059 £0.061 0.152 +0.082 2.606 £ 0.208 0.748 + 0.035

WS wwar a2 0025 0089 2410 0712
CI[Oracle] 41.21 0.025 0.094 2.489 0.726
Baseline 77.19 0.109 0.304 1.020 0.345

ResNet-34 CI 7756 £0.60 0.134 £0.131 0.251 £0.128 1.064 £ 0.217 0.360 £ 0.057

S vwa o 7se 0.034 0089 0.908 0310
CI[Oracle] 78.54 0.029 0.087 0.921 0.321
Baseline 73.78 0.187 0.486 1.667 0.437

VGG-16 CI 73.75+£035 0.183£0.079 0.489 +£0.214 1.526 £0.175 0.436 +0.034

' o vwar 7387 0.098 0309 1277 0.391
CIFAR-100 CI[Oracle] 73.78 0.083 0.285 1.289 0.396
Baseline 77.52 0.103 0278 0.984 0.336

WideResNet-16-8 CI 77.35+£0.21 0.133 £0.091 0.297 £0.108 1.062 £ 0.180 0.356 &+ 0.044

R _vwer 7 0038 ____odo1 0891 | 0314
CI[Oracle] 77.53 0.074 0.211 0.931 0.327
Baseline 65.91 0.074 0.134 1.238 0.463

D Net-40-12 CI 64.72 +1.46 0.070 £0.040 0.138 £0.055 1.312+0.125 0.482 £+ 0.028

TS vwar o eras 0026 0094 LI6L 0439
CI[Oracle] 66.20 0.019 0.053 1.206 0.456

the proposed variance-weighted confidence-integrated loss,
we draw T' samples with network parameters w; for each in-
put image, and compute the normalized variance o based on
T forward passes. The normalized variance is given by the
mean of the Bhattacharyya coefficients between individual
predictions and the average prediction, and, consequently,
in the range of [0.1].

5.2. Evaluation Metric

We measure classification accuracy and calibration
scores—expected calibration error (ECE), maximum cal-
ibration error (MCE), negative log likelihood (NLL) and
Brier score—of the trained models.

Let B,, be a set of indices of test examples whose pre-

diction scores for the ground-truth labels fall into interval
(=t ], where M (= 20) is the number of bins. ECE

and MCE are formally defined by

M |B ‘
ECE = ) N 1ace(Bin) — conf (B
m=1

MCE = max |ace(By,) — conf(B,,)]|,
me{l,...,M}

where N’ is the number of the test samples. Also, accuracy
and confidence of each bin are given by

1 N
acc(Bp,) = Bl (9 = yi)s
™! €Bm
1
conf(B,,) = 1B Z Dis

1€Bpm,

where 1 is an indicator function, g; and y; are predicted and
true label of the i example and p; is its predicted confi-
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Table 2. Comparison between VWCI and TS of multiple datasets and architectures.

Dataset Architecture Method Accuracy [%] ECE MCE NLL Brier Score
TS (case 1) 50.82 0.162 0272 2241 0.660
ResNet-34 TS (case 2) 47.20 0.021 0.080 2.159 0.661
VWCI 52.80 0.027 0.076 1.949 0.605
TS (case 1) 46.58 0.358 0.604 4.425 0.855
VGG-16 TS (case 2) 46.53 0.028 0.067 2.361 0.671
Tiny ImageNet VWCI 48.03 0.053 0.142 2373 0.659
TS (case 1) 55.92 0.200 0.335 2.259 0.627
WideResNet-16-8 TS (case 2) 53.95 0.027 0.224 1925 0.595
VWCI 56.66 0.046 0.136 1.866 0.569
TS (case 1) 42.50 0.037 0.456 2.436 0.717
DenseNet-40-12 TS (case 2) 41.63 0.024 0.109 2483 0.728
VWCI 43.25 0.025 0.089 2410 0.712
TS (case 1) 77.67 0.133  0.356 1.162 0.354
ResNet-34 TS (case 2) 77.40 0.036 0.165 0.886 0.323
VWCI 78.64 0.034 0.089 0.908 0.310
TS (case 1) 73.66 0.197 0499 1.770 0.445
VGG-16 TS (case 2) 72.69 0.031 0.074 1.193 0.389
CIFAR-100 VWCI 73.87 0.098 0.309 1.277 0.391
TS (case 1) 77.52 0.144 0.400 1.285 0.361
WideResNet-16-8 TS (case 2) 76.42 0.028 0.101 0.891 0.332
VWCI 71.74 0.038 0.101 0.891 0.314
TS (case 1) 65.91 0.095 0.165 1.274 0.468
DenseNet-40-12 TS (case 2) 64.96 0.082 0.163 1.306 0.481
VWCI 67.45 0.026 0.094 1.161 0.439

dence. NLL and Brier score are another ways to measure

the calibration [2, 5, 6], which are defined as
N/
NLL = = "logp(yil:,0),
i=1
N C
Brier = ZZ(p(ﬁi = jli 0) — Ly = 7))
i=1 j=1

We note that low values for all these calibration scores
means that the network is well-calibrated.

5.3. Results

Table 1 presents accuracy and calibration scores for sev-
eral combinations of network architectures and benchmark
datasets. The models trained with VWCI loss consistently
outperform the models with CI loss, which is a special case
of VWCI, and the baseline on both classification accuracy
and confidence calibration performance. We believe that
the accuracy gain is partly by virtue of the stochastic regu-
larization with multiple samples [19]. Performance of CI is
given by the average and variance from 5 different cases of
B(= 1,1071,1072,1072,10~%)" and CI[Oracle] denotes
the most optimistic value among the 5 cases in each column.
Note that VWCI presents outstanding results in most cases

IThese 5 values of 3 are selected favorably to CI based on our prelim-
inary experiment.

even when compared with CI[Oracle] and that performance
of CI is sensitive to the choice of 3’s. These results im-
ply that the proposed loss function balances two conflicting
loss terms effectively using the variance of multiple stochas-
tic inferences while performance of CI varies depending on
hyper-parameter setting in each dataset.

We also compare the proposed framework with the
state-of-the-art post-processing method, temperature scal-
ing (TS) [5]. The main distinction between post-processing
methods and our work is the need for held-out dataset; our
method allows to calibrate scores during training without
additional data while [5] requires held-out validation sets
to calibrate scores. To illustrate the effectiveness of our
framework, we compare our approach with TS in the fol-
lowing two scenarios: 1) using the entire training set for
both training and calibration and 2) using 90% of train-
ing set for training and the remaining 10% for calibration.
Table 2 presents that case 1 suffers from poor calibration
performance and case 2 loses accuracy substantially due to
training data reduction although it shows comparable cali-
bration scores to VWCI. Note that TS may also suffer from
the binning artifacts of histograms although we do not in-
vestigate this limitation in our work.

5.4. Discussion

To show the effectiveness of the propose framework, we
analyze the proposed algorithm with ablative experiments.
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Figure 3. ECE of VWClI loss with respect to the number of samples
(T) on Tiny ImageNet (top) and CIFAR-100 (bottom) dataset.

Table 3. Comparisons between the models based on the VWCI
losses, trained from scratch and the uncalibrated pretrained net-
works (denoted by VWCI*).

Architecture  Method Acc. [%] ECE MCE NLL Brier
Baseline 77.19 0.109 0.304 1.020 0.345

2 ResNet34 VWCI  78.64 0034 0.089 0.908 0.310
% S VWCTT  77.87  0.026 0.069 1.013 0.346
g Baseline 7378  0.187 0.486 1.667 0.437
£ VGG-16  VWCI 7387 0098 0309 1277 0.391
= VWCT*™ ~ 7417 ~0.074 0.243 1227 0385
Baseline ~ 50.82  0.067 0.147 2.050 0.628
o ResNet:34 VWCI 5280  0.027 0.076 1.949 0.605
= VWCT*™ ~ 52777 70034 0.099 1965 0.605
~
< Baseline 4658 0346 0.595 4.220 0.844
T VGG-16  VWCI  48.03  0.053 0.142 2.373 0.659

Effect of sample size for stochastic inferences Figure 3
illustrates ECE of the models trained with our VWCI loss
by varying the number of stochastic inferences (71") during
training. The increase of T is helpful to improve accuracy
and calibration quality at the beginning but its benefit is sat-
urated when T is between 5 and 10 in general. Such ten-
dency is consistent in all the tested architectures, datasets,
and evaluation metrics including ECE. We set 7" to 5 in all
the experiments.

Training cost Although our approach allows single-shot
confidence calibration at test-time, it increases time com-
plexity for training due to multiple stochastic inferences.
Fortunately, the calibrated models can be trained more ef-
ficiently without stochastic inferences in the majority (>
80%) of iterations by initializing the networks with the pre-
trained baseline models. Table 3 confirms that the perfor-
mance of our models trained from the uncalibrated pre-
trained models is as competitive as (or often even better
than) the ones trained from scratch with the VWCI losses.
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Figure 4. Coverage of ResNet-34 models with respect to confi-
dence interval on Tiny ImageNet (top) and CIFAR-100 (bottom).
The coverage is computed by the portion of examples with higher
accuracy and confidence than the thresholds shown in z-axis. We
present results from multiple CI models with best performances
with respect to individual metrics, which are shown in the legends.

Reliability Our approach effectively maintains examples
with high accuracy and confidence, which is a desirable
property for building reliable real-world systems. Figure 4
illustrates portion of test examples with higher accuracy
and confidence than the various thresholds in ResNet-34,
where VWCI presents better coverage of the examples than
CI[Oracle]. Note that coverage of CI often depends on the
choice of [ significantly as demonstrated in Figure 4 (right)
while VWCI maintains higher coverage than CI using accu-
rately calibrated prediction scores. These results imply that
using the predictive uncertainty for balancing the loss terms
is preferable to setting with a constant coefficient.

6. Conclusion

We presented a generic framework for uncertainty es-
timation of a prediction in deep neural networks by cali-
brating accuracy and score based on stochastic inferences.
Based on Bayesian interpretation of stochastic regulariza-
tion and our empirical observation results, we claim that
variation of multiple stochastic inferences for a single ex-
ample is a crucial factor to estimate uncertainty of the aver-
age prediction. Inspired by this fact, we design the variance-
weighted confidence-integrated loss to learn confidence-
calibrated networks and enable uncertainty to be estimated
by a single prediction. The proposed algorithm is also use-
ful to understand existing confidence calibration methods
in a unified way, and we compared our algorithm with other
variations within our framework to analyze their properties.
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