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Abstract

Although low-rank and sparse decomposition based

methods have been successfully applied to the problem of

moving object detection using structured sparsity-inducing

norms, they are still vulnerable to significant illumination

changes that arise in certain applications. We are inter-

ested in moving object detection in applications involv-

ing time-lapse image sequences for which current methods

mistakenly group moving objects and illumination changes

into foreground. Our method relies on the multilinear (ten-

sor) data low-rank and sparse decomposition framework

to address the weaknesses of existing methods. The key to

our proposed method is to create first a set of prior maps

that can characterize the changes in the image sequence

due to illumination. We show that they can be detected by

a k-support norm. To deal with concurrent, two types of

changes, we employ two regularization terms, one for de-

tecting moving objects and the other for accounting for il-

lumination changes, in the tensor low-rank and sparse de-

composition formulation. Through comprehensive experi-

ments using challenging datasets, we show that our method

demonstrates a remarkable ability to detect moving objects

under discontinuous change in illumination, and outper-

forms the state-of-the-art solutions to this challenging prob-

lem.

1. Introduction

Moving object detection in an image sequence captured

under uncontrolled illumination conditions is a common

problem in computer vision applications such as visual

surveillance [26], traffic monitoring [5], and social signal

processing [28]. Although moving object detection and

background subtraction is a well established area of re-

search and many solutions have been proposed, still most

of the existing solutions are vulnerable to complex illumi-

nation changes that frequently occur in practical situations,

 

Figure 1: First row of each sequence: images captured in a

industrial or wildlife monitoring system. Second row: re-

sults of our proposed method to detect foreground objects.

especially when the changes are discontinuous in time. In

such cases, current methods are often not able to distin-

guish between illumination changes (including those due

to shadow), and changes caused by moving objects in the

scene. In general, outdoor illumination conditions are un-

controlled, making moving object detection a difficult and

challenging problem. This is a common problem for many

surveillance systems in industrial or wildlife monitoring ar-

eas in which a motion triggered camera or a time-lapse pho-

tography system is employed for detecting objects of inter-

est over time. Fig. 1 shows four image sequences under dis-

continuous changes in illumination, which illustrate these

applications. Due to significant and complex changes in il-

lumination and independent changes of the moving objects

between images of the sequences, detection of the moving

objects is extremely challenging. The second row of each

sequence in Fig. 1 shows the sample results of our proposed

method with detected moving objects.

Among the leading methods for the problem addressed

in this paper is a group based on low-rank and sparse de-

composition. This group of methods exploit the fact that

the background in an image sequence can be described as

a low-rank matrix whose columns are image pixels that are

correlated [20, 3]. However, image sequences with mov-

ing objects under discontinuous change in illumination and

object location using the timer-lapse photography are qual-
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itatively different from regular frame-rate video sequences.

While some existing solutions are able to handle the dis-

continuity in object location with limited success, there is a

need to improve their ability to distinguish between moving

objects and changes due to illumination.

Taking the idea of using the low-rank components of a

matrix to capture the image background, the most recent de-

velopment relies on tensors, which are higher dimensional

data structures than 2D-matrices. Since the real world data

are ubiquitously multi-dimensional, tensors are often more

appropriate than 2D-matrices to capture higher order rela-

tions in data. It is not surprising that tensor low-rank meth-

ods have been successfully developed with promising re-

sults on real-time video sequences. However, such methods

have yet to be studied for detecting moving objects under

discontinuous changes in illumination and object position,

such as those found in time-lapse image sequences.

In this paper, we propose a solution to the problem of

moving object detection within the tensor low-rank frame-

work that specifically addresses the problem of discontin-

uous changes in illumination and object location. We for-

mulate the problem in a unified framework named tensor

low-rank and invariant sparse decomposition (TLISD). To

separate illumination changes from moving objects, first we

compute multiple prior maps as illumination invariant rep-

resentations of each image to build our tensor data structure.

These prior maps provide us with information about the ef-

fect of illumination in different parts of an image. We show

that by defining two specific penalty terms using these prior

maps, our proposed method is able to decompose an im-

age into background, illumination changes and foreground

objects, with a significant boost in performance of moving

object detection.

The main contributions are as follows.

• We propose to use multiple priors to model the effect

of illumination in natural images by exploiting invari-

ance properties of color image chromaticity.

• We make use of the priors in a tensor representation

for the problem of moving object detection.

• We propose a low-rank tensor decomposition using

group sparsity and k-support norm as two regulariza-

tion terms to separate moving objects and illumination

variations that undergo discontinuous changes.

• We introduce an extended illumination change dataset

with over 80k real images captured by motion trigger

cameras in industrial and wildlife monitoring systems.

2. Related Work

One successful approach to moving object detection at-

tempts to decompose a matrix D representing an image se-

quence into a low-rank matrix L and sparse matrix S, so

as to recover the background and the foreground [2]. The

problem is initially solved by the robust principal compo-

nent analysis (RPCA). Since the foreground objects are de-

scribed by the sparse matrix S, we can categorize existing

methods by the types of constraints on S. The first group

of these methods use l1-norm to constrain S [3, 34, 29] and

solve the following convex optimization.

min
L,S
‖L‖∗ + λ‖S‖1 s.t. D = L+ S (1)

where ‖L‖∗ denotes the nuclear norm of matrix L, and

‖S‖1 is the l1-norm of S.

The second group of methods used the additional prior

knowledge on the spatial continuity of objects to constrain

sparse matrix S and improve the detection accuracy [10, 6].

Using spatial continuity (e.g., l2,1-norm in [10]) to enforce

the block-sparsity of the foreground, results become more

stable than conventional RPCA in the presence of illumi-

nation changes. However, it remains a challenge to han-

dle moving shadows or significant changes in illumination.

Furthermore, the position of an object in a time-lapse im-

age sequence is discontinuous from one image to another

so that the continuity assumption is invalid as a way to sep-

arate moving objects and changes in illumination.

The third group of methods also imposed the connec-

tivity constraint on S [32, 30, 35, 21, 31, 17] using other

formulations than the second group. For example, Liu et

al. [17] attempted to use a structured sparsity norm [19]

and a motion saliency map, to improve the accuracy of mov-

ing object segmentation under sudden illumination changes.

However, this method still cannot handle shadows and

severe illumination changes, especially in time-lapse se-

quences with independent object locations among the im-

ages in the sequence that change similarly to shadow and

illumination. In general, although the low-rank framework

is well-known to be robust against moderate illumination

changes in frame-rate sequences, the existing methods are

still not able to handle discontinuous change in illumination

and shadow, especially in time-lapse sequences.

To effectively separate discontinuous changes due to

moving objects and those due to illumination, Shakeri et

al. [23] proposed a method called LISD. This method re-

lies on an illumination regularization term combined with

the standard low-rank framework to explicitly separate the

sparse outliers into sparse foreground objects and illumina-

tion changes. Although this regularization term can signif-

icantly improve the performance of object detection under

significant illumination changes, LISD assumes a) the in-

variant representation [22] of all images in a sequence are

modeled by only one invariant direction and b) all illumina-

tion variations are removed in the invariant representation

of images, which are not strictly valid in practice.

Recently, multi-way or tensor data analysis has attracted

much attention and has been successfully used in many ap-

plications. Formally and without loss of generality, denote
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a 3-way tensor by D ∈ Rn1×n2×n3 . Tensor low-rank meth-

ods attempt to decompose D ∈ Rn1×n2×n3 into a low-rank

tensor L and an additional sparse tensor S [8]. This de-

composition is applicable in solving many computer vision

problems, including moving object detection. One of the

most recent methods relevant to our research is proposed by

Lu et al. [18]. A tensor nuclear norm was used to estimate

the rank of tensor data and RPCA was extended from 2D to

3D to formulate the following tensor robust PCA (TRPCA):

min
L,S
‖L‖∗ + λ‖S‖1 s.t. D = L+ S (2)

They showed that the tensor nuclear norm on tensor data

can capture higher order relations in data. Tensor data

is used for background subtraction and foreground detec-

tion [24, 13, 12, 4, 16] by stacking two dimensional im-

ages into a three dimensional data structure, using which

tensor decomposition can capture moving object due to the

continuity of object positions in the third dimension. Ob-

viously, this approach only works for frame-rate sequences

with continuous foreground motion, but is not applicable to

time-lapse image sequences with discontinuous changes in

both object location and illumination.

In this paper, we introduce a new formulation for mov-

ing object detection under the framework of tensor low-rank

representation and invariant sparse outliers. We first build

a set of prior maps for each image in the image sequence

and treat it as a tensor. These prior maps enable us to use

two regularization terms to distinguish between moving ob-

jects and illumination changes. We demonstrate that their

use within our proposed method significantly improves the

performance of moving object detection in the case of dis-

continuous changes in illumination, a problem that most of

the existing methods cannot handle effectively.

3. Tensor Low-Rank and Invariant Sparse De-

composition

Our proposed formulation seeks to decompose tensor

data D into a low-rank tensor L, an illumination change

tensor C, and a sparse foreground tensor S as follows.

D = L+ S + C (3)

In (3), both S and C are stochastic in time-lapse image se-

quences due to discontinuous change in object locations and

illumination changes, and separating them is an ill-posed

problem. To solve this issue, we compute a set of prior maps

using multiple representations of an image, which are more

robust against illumination change than RGB images. These

prior maps enable us to find higher order relations between

the different invariant representations and the intensity im-

ages, in both space and time. These relations are exploited

as the basis for separating S from C as will be detailed in

Section 3.1. It is worth mentioning that on one hand, illumi-

nation changes are related to the material in a scene, which

is invariant in all frames leading to a correlation between

them. On the other hand, these changes are also related

to the source of lighting, which is not necessarily corre-

lated between frames. Consequently, illumination changes

should be accounted for by both the low-rank part and the

sparse part in an image decomposition. In our method, we

model the highly correlated part of illumination with the

low-rank tensor L as background, and we model the inde-

pendent changes in illumination as the foreground, while

recognizing that uncorrelated illumination changes are not

necessarily sparse. To accomplish such illumination model-

ing, we propose to use a balanced norm or k−support norm.

We introduce our formulation in details in Section 3.2, and

we describe a solution to the formulation in Section 3.3.

3.1. Generation of Prior Maps and Tensor Data D

In this section we focus on obtaining the prior infor-

mation that will enable us to distinguish between moving

objects and illumination changes in our proposed formula-

tion. In the case of discontinuous change in illumination,

which is common in time-lapse image sequences, variation

of shadows and illumination are unstructured phenomena

and they are often mistakenly considered by many meth-

ods as moving objects. We address this problem through

creating illumination-invariant and shadow-free images, a

problem that has been well studied.

One of the most popular methods for this problem is

proposed by Finlayson et al. [7], which computes the two-

vector log-chromaticity χ′ using red, green and blue chan-

nels. [7] showed that with changing illumination, χ′ moves

along a straight line e roughly. Projecting the vector χ′ onto

the vector orthogonal to e, which is called invariant direc-

tion, an invariant representation I = χ′e⊥ can be computed.

This method works well when the assumption defined above

hold true but in practice this assumption never holds exactly,

i.e., χ′ does not move along a straight line. As a result, the

correspond invariant representation is flawed and can lead

to sub-optimal performance.

Fig. 2 shows an example of the variability of the illumi-

nation invariant direction in an image sequence and its im-

pact on generating a illumination-invariant image represen-

tation. Fig. 2(a) shows the invariant directions of an image

sequence of 200 frames while illumination changes (blue

line), one direction for each image, varying mostly between

−4o and 13o. Fig. 2(c) shows a selected image from the se-

quence, which is image 11 and corresponds to the red line in

Fig. 2(a). The invariant direction for this image is found to

be 13◦ while the average invariant direction of the sequence

is around 5◦, when we assume χ′ moves exactly along a

straight line. Fig. 2(d) compares the two invariant repre-

sentations created with invariant directions of 5◦ and 13◦,

respectively, and Fig. 2(e) shows the detected foreground

objects using these two different representations from the
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Figure 2: (a) Best invariant direction of each image in a

sequence (y-axis: angle of the invariant directions e⊥ in

degrees), (b) Dominant directions (yellow bars) after clus-

tering, (c) 11th image in the sequence as shown with a red

line in (a), where its best invariant direction is 13◦, (d) The

first and the second rows show the invariant representations

of the selected image using the average direction of the se-

quence (5◦) and its best direction (13◦), respectively. (e)

Obtained outliers of the invariant representations.

RPCA method where the use of the optimal invariant direc-

tion (13o) produces much more desirable result than that of

the sub-optimal direction (5o). This example clearly shows

the importance of the choice of the invariant direction in

creating the invariant representations, and the undesirable

outcome when these representations are created with a sub-

optimal invariant direction.

Our idea to account for the difference in the invariant

direction among the images in the sequence, is to first es-

timate the image-specific invariant directions for the se-

quence, and then use a clustering algorithm to identify the

dominant directions (dotted lines in Fig. 2(a) or the domi-

nant yellow bars in Fig. 2(b)). Subsequently, for each im-

age, we create multiple invariant representations, one for

each dominant direction, and these multiple representations

serve as multiple prior maps for the image. In particular,

for each image, we first use the method in [7] to deter-

mine its best invariant direction. With n2 images in an im-

age sequence, this results in n2 invariant directions where

n2 = 200 in Fig. 2(a). Second, we use k-means to iden-

tify k = 10 clusters of the n2 invariant directions. Third,

we choose the centroid of a cluster as a dominant invariant

direction if the cluster has support by at least 10% of the

images (yellow bars in Fig. 2(b)). By definition, there are

no more than 10 dominant directions.

Now, to construct the tensor D ∈ Rn1×n2×n3 formally

 

 

D 

j
th 

lateral slice  

p
th 

frontal slice  

Figure 3: Right: sample images with their corresponding

illumination invariant representations as prior maps. Left:

Tensor D. Frontal slices show pth representation of the im-

ages in the sequence. Lateral slices show different repre-

sentation of each image in the sequence.

(see Fig. 3), let D(:, :, 1) be an observed image sequence

in our problem, where each column of D(:, :, 1) is a vec-

torized image from the sequence with n1 pixels, and n2

is the number of images in the sequence. pth frontal slice

D(:, :, p), p = 2, ..., n3 is a corresponding prior map, gen-

erated with a dominant invariant direction. Based on this

tensor data structure, we are ready to present our new ten-

sor low-rank and invariant sparse decomposition (TLISD)

to extract the invariant sparse outliers as moving objects.

3.2. TLISD Formulation

As mentioned in Section 2, to detect moving objects un-

der discontinuous illumination change in a sequence, cur-

rent low-rank methods are insufficient when changes due to

illumination and moving shadows are easily lumped with

moving objects as the sparse outliers in the low-rank for-

mulation. To separate real changes due to moving ob-

jects from those due to illumination, we use multiple prior

illumination-invariant maps, introduced in Section 3.1, as

constraints on real changes and illumination changes. In

particular, real changes should appear in all frontal slices.

Furthermore, lateral slices are completely independent from

each other in a time-lapse sequence, but the different repre-

sentations in each lateral slice (see Fig. 3) are from one im-

age and therefore, the locations of real changes should be

exactly the same in each lateral slice. Now, based on these

observations, real changes in each frame should satisfy the

group sparsity constraint, which is modeled with the mini-

mization of the l1,1,2−norm defined as:
n1
∑

i=1

n2
∑

j=1

‖Si,j,:‖2 (4)

As discussed, illumination changes in an image sequence

should be accounted for by both the low-rank part and the

sparse part. The highly correlated part of illumination can

be modeled with the low-rank tensor L as background, but

the independent changes in illumination are grouped as the

foreground. To capture these uncorrelated illumination and

shadow changes, and separate them from real changes, we

recognize that they are not necessarily sparse. Fig. 4 shows

two samples extracted illumination changes using our pro-

posed method. Based on Fig. 4, it is easy to understand that

illumination changes are on entire image and so, those un-

correlated changes are not completely sparse. These prop-

erties can be conveniently modeled with the k−support

norm [1], which is a balanced norm and defined as:

‖C:,:,p‖
sp
k =

(

k−r−1
∑

m=1

(|c|↓m)2 +
1

r + 1
(

d
∑

m=k−r

|c|↓m)2
)

1

2

(5)

where C:,:,p and |c|↓m denote the pth frontal slice of C
and the mth largest element in |c|, respectively. r ∈
{0; 1; ...; k − 1} is an integer that is computed automati-

cally by Algorithm 2 in the supplementary material. c =
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Figure 4: Two sample images and their corresponding illu-

mination changes captured by our proposed method

vec(C:,:,p) represents the vector constructed by concatenat-

ing the columns of C:,:,p and d = n1× n2 is the dimension

of the frontal slice. The k-support norm has two terms: l2-

norm penalty for the large component, and l1-norm penalty

for the small components. k is a parameter of the cardinality

to achieve a balance between the l2-norm and the l1-norm

(k = n1 in our experiments). The k-support norm pro-

vides an appropriate trade-off between model sparsity and

algorithmic stability [1], and yields more stable solutions

than the l1-norm [14]. In this paper we show that the k-

support norm can estimate the illumination changes in an

image sequence accurately. Joining of this norm and (4) as

two constraints in one optimization framework enables us

to separate real changes from illumination changes.

To summarize, we propose the tensor low-rank and in-

variant sparse decomposition (TLISD) method, as follows.

min
L,S,C

‖L‖∗ + λ1‖S‖1,1,2 + λ2(‖C‖
sp
k )2

s.t. D = L+ S + C (6)

where ‖L‖∗ is the tensor nuclear norm, i.e. the aver-

age of the nuclear norm of all the frontal slices (‖L‖∗ =
1
n3

∑n3

p=1 ‖L:,:,p‖∗), and it approximates the rank of L.

S and C are detected moving objects and illumination

changes, respectively.

3.3. Optimization Algorithm

In order to solve (6), we use the standard inexact aug-

mented Lagrangian method (ALM) with the augmented La-

grangian function H(L,S, C,Y;µ) whose main steps are

described in this section for completeness.

H(L,S, C,Y;µ) = ‖L‖∗ + λ1‖S‖1,1,2 + λ2(‖C‖
sp
k )2

+ < Y,D − L− S − C > +
µ

2
‖D − L − S − C‖2F (7)

where Y is a Lagrangian multiplier, µ is a positive auto-

adjusted scalar, and < A,B >= trace(ATB). λ1 =
1/
√

max(n1, n2)n3 and λ2 is a positive scalar. Now we

solve the problem through alternately updating L,S, and C
in each iteration to minimize H(L,S, C,Y;µ) with other

variables fixed until convergence as follows.

Lt+1 ← min
L
‖L‖∗ +

µ

2
‖Lt− (D−St−Ct +

Yt

µ
)‖2F (8)

St+1←min
S

λ1‖S‖1,1,2+
µ

2
‖St−(D−Lt+1−Ct+

Yt

µ
)‖2F (9)

Ct+1←min
C

λ2(‖C‖
sp
k )2+

µ

2
‖Ct−(D−Lt+1−St+1+

Yt

µ
)‖2F

(10)

Yt+1 = Yt + µ(D − Lt+1 − Ct+1 − St+1) (11)

where µ = min(ρµ, µmax). Both (8) and (9) have closed

form solutions in [18] and [33] respectively, and (10) has an

efficient solution in [14]. The error is computed as ‖D −
Lt−St−Ct‖F /‖D‖F . The loop stops when the error falls

below a threshold (10−5 in our experiments). Details of the

solutions can be found in the supplementary material.

3.4. Time Complexity

In this work, we use ADMM to update L and S , which

have closed form solutions. In these two steps the main

cost per-iteration lies in the update of Lt+1, which re-

quires computing FFT and n3 SVDs of n1 × n2 matrices.

Thus, time complexity of the first two steps per-iteration is

O(n1n2n3logn3+n(1)n
2
(2)n3), where n(1) = max(n1, n2)

and n(2) = min(n1, n2) [18]. To update Ct+1, we use

an efficient solution based on binary search where the

time complexity is reduced to O((n1n2 + k)log(n1n2))
for each frontal slice per-iteration [14]. Therefore, the

total time complexity of the optimization problem (6) is

O(n1n2n3logn3 +n(1)n
2
(2)n3 + (n1n2 + k)n3log(n1n2)).

4. Experimental Results and Discussion

In this section, we provide an experimental evaluation of

our proposed method, TLISD. We first evaluate the effect

of each term in (6) and their λ coefficients. Then, we eval-

uate TLISD on benchmark frame-rate image sequences or

those that are captured via time-lapse or motion-triggered

photography. We also introduce a new dataset captured by

industrial security cameras and wildlife monitoring systems

during three years, and evaluate our method on this dataset.

4.1. Experiment Setup

Existing datasets1: We evaluate our TLISD method on

eleven selected sequences from the CDnet dataset [9],

Wallflower dataset [27], I2R dataset [15], and ICD [23],

which include illumination change and moving shadows.

Extended Illumnation Change (EIC) dataset: Due to the

lack of a comprehensive dataset with various illumination

and shadow changes in a real environment, we have cre-

ated a new benchmark dataset called EIC with around 80k

images in 15 sequences, captured via available surveillance

systems in wildlife and industrial applications. Particularly,

ten sequences are captured via wildlife monitoring systems,

and five sequences from industrial applications, with three

railway sequences and two construction site sequences. Six

sample sequences of this dataset are shown in Fig. 8. All

sequences can be found in the supplementary material.

Evaluation metric: For quantitative evaluation, pixel-level

F-measure = 2 recall×precision
recall+precision

is used. We also compare

the different methods in execution time in seconds.

1https://sites.google.com/site/backgroundsubtraction/test-sequences
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4.2. Algorithm Evaluation: The effect of term C

In the first set of experiments, we evaluate the effect of

term C in TLISD when we set different values for λ1, in

comparison with TLISD without term C, where (6) becomes

min
L,S
‖L‖∗ + λ1‖S‖1,1,2 s.t. D = L+ S (12)

Fig. 5(a) shows (12) can achieve around 70% accuracy

with a well-tuned λ1 = 0.002. Although the result shows

the importance of multiple priors and the effect of group

sparsity on them, the accuracy of (12) is still far below the

accuracy of proposed TLISD by at least 10%, even with a

well-tuned λ1. Fig. 5(a) also shows that adding term C and

k−support norm increases the robustness of our algorithm

against tuning λ1. In fact, in (12) all illumination varia-

tions would be assigned to either of L or S . In this case,

those variations should be assigned to the background (L);

however, they do not actually belong to background (e.g.

moving shadows). As a result, the rank would be increased

to absorb these changes into L and naturally some parts

of the moving objects S would be also absorbed into the

background. Fig. 5(b) supports the conclusion and shows

the obtained rank through the iterations of the optimization.

Between iterations 15 and 20, the rank of our method with-
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Figure 5: Self evaluation of TLISD. (a) Average F-measure

with different values for λ1 on all ICD sequences between

TLISD and (12), (b) Estimated rank of TLISD and (12)

through iterations on sequence “Wildlife3”, (c) Estimated

rank of sequence “Wildlife3” with different values for λ1,

(d) Average F-measure with different values for λ1 and λ2

on all ICD sequences between TLISD and (13), (e) Average

number of iterations to converge TLISD, (12) and (13) on

all ICD sequences, (f) Convergence curves of minimization

error for TLISD, (12) and (13) on sequence “Wildlife3”.

out term C significantly increases to absorb all variations

into L, and to complete the conclusion, Fig. 5(f) shows that

around the same iterations, the residual error of the method

without term C is significantly reduced. This means, illu-

mination variations and shadow changes must grouped into

either of L or S , for (12) to converge. Estimated rank in

Fig 5(c) shows the proof of this concept. Obviously, with

a very small λ1, the estimated rank of L for (12) is small

and all illumination variations are easily lumped with mov-

ing objects in S . This causes less accuracy and sometimes

even cannot provide meaningful results. In contrast, TLISD

can estimate a balanced rank and classify illumination vari-

ations into term C with k − support-norm on it instead of

increasing the rank to absorb them into L.

To justify the use of k − support norm on C in TLISD,

we also compare the method with the other potential term

on C, which is l1-norm to absorb outliers, i.e., define (6) as

min
L,S,C

‖L‖∗+λ1‖S‖1,1,2+λ2‖C‖1 s.t.D=L+S +C (13)

For this experiment, we evaluate our method with both

l1 and k − support norms on C under different values of

λ1 and λ2. Fig. 5(d) illustrates the accuracy of our method

with either of regularizers. Although l1-norm can increase

the accuracy and robustness of the moving object detection

in comparison with (12) that we showed in Fig. 5(a), the

obtained accuracy is still less than TLISD. In addition, the

number of iterations to converge, for both (12) and (13) is

much more than that of in TLISD. Fig. 5(e) shows the av-

erage number of iterations for all three possible methods

with different setup for λ1 on all ICD sequences. For both

TLISD and (13), λ2 = 0.03, which produces robust results

over different values of λ1(refer to Fig. 5(d)). As discussed

in Section 3, illumination changes are not necessarily sparse

and can be found throughout an image. Therefore, l1-norm

is not a suitable regularizer to capture illumination changes.

In such cases, the same issue as (12) happens when the op-

timizer increases the rank to minimize the residual error.

Fig. 5(f) shows the error of all three methods through itera-

tions. For (13), the same pattern as (12) is seen to decrease

the error while the rank increases through optimization.

4.3. Evaluation on Benchmark Sequences

In this section we evaluate our method on the eleven

benchmark sequences described in Section 4.1. Fig. 6 shows

the qualitative results of TLISD on “Cubile” and “Back-

door”. The second and the third columns of Figs. 6(a) and

(b) illustrate the first frontal slice of C and S , corresponding

to illumination changes and moving objects, respectively.

The high-quality of our detection result S is clearly visible.

Figs. 7(a) and (b) show qualitative results of our method

on two sample sequences of ICD, which has the most chal-

lenging conditions in terms of illumination changes. To ap-

preciate the significant variations of illumination we show
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two images from each sequence. The second and the third

rows of each sub-figure show the first frontal slice of C and

S , respectively. The results show the proposed method can

accurately separate the changes caused by illumination and

shadows from real changes.

We then compare TLISD quantitatively with two on-

line and eight related RPCA batch methods. From online

methods we select GMM [36] as a baseline method and

GRASTA [11] as an online method that uses the frame-

work of low-rank and sparse decomposition. Also among

batch methods, we select SSGoDec [34], PRMF [29],

PCP [3], Markov BRMF [30], DECOLOR [35], LSD [17],

ILISD [23], and TRPCA [18]. For all the competing meth-

ods we use their original settings through LRS Library [25],

which resulted in the best performance. For quantitative

evaluation of RPCA-related methods, a threshold criterion

is required to get the binary foreground mask. Similarly,

we adopt the same threshold strategy as in [25]. In TLISD,

λ1 = 1/
√

max(n1, n2)n3 (similar to TRPCA) and λ2 =
0.03. Table 1 shows the performance of TLISD in com-

parison with the competing methods in terms of F-measure.

For all the sequences TLISD ranked among the top two of

all methods, and achieves the best average F-measure in

comparison with all other methods. Although DECOLOR,

LSD, and ILISD work relatively well, Only ILISD is com-

parable with our method due to the use of illumination reg-

ularization terms in ILISD. This evaluation shows the ef-

fectiveness of multiple prior maps and k−support norm as

two regularization terms for separating moving objects from

illumination changes, and boosting the overall performance

of object detection.

4.4. Evaluation of TLISD on EIC Dataset

In this section, we evaluate TLISD on the introduced

EIC dataset. Six sample sequences of ELC are shown in

Fig. 8. To understand the significant variations of illumina-

tion and shadow, we show two images from each sequence

in Figs. 8(a) and (b). Columns (c) and (d) show the first

frantal slices of C and S obtained by TLISD for the im-

ages in column (b), in order to capture illumination changes

and to detect moving objects. Table 2 show the capabil-

ity of TLISD in comparison with the four best competitive

methods (based on Table 1) in terms of F-measure, where

TLISD can outperform the other methods by a clear per-

formance margin. Fig. 9 also compares TLISD with IL-

ISD (the second best method in Table. 2) qualitatively. This

 

(a) (b) 

Figure 6: Columns from left to right show sample image,

illumination changes, and detected moving objects for (a)

cubicle and (b) backdoor sequences

 

(b) (a) 

Figure 7: First row: two sample images from (a) Wildlife1,

(b) Wildlife3 sequences. Second row: illumination changes

obtained from the first frontal slice of C. Third row: de-

tected objects from the first frontal slice S .

 

             (a)                               (b)                                (c)                                (d) 

Figure 8: Columns (a) and (b): two sample images of each

sequence, (c) and (d): illumination changes captured in C,

and detected objects of images in (b), respectively

qualitative comparison shows that one prior map only is not

sufficient for removing the effect of illumination variations

and shadow. As discussed in Section 3.1, due to the varia-

tion in the invariant direction for images in a sequence, in

some conditions separating illumination changes and shad-

ows from real changes is roughly impossible and selecting

multiple prior maps is essential. More results on all se-

quences can be found in the supplementary material.

4.5. Execution Time of TLISD

Based on Tables 1 and 2, since ILISD is the only method

with comparable results to ours, we examine our proposed

method and ILISD in terms of computation time. Table. 3

compares the execution time of both methods on seven se-

quences. Regarding the computation time of the proposed

method, our tensor-based method needs more time than [23]
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Sequence Backdoor CopyMachine Cubicle PeopleInShade LightSwitch Lobby Wildlife1 Wildlife2 Wildlife3 WinterStreet MovingSunlight

GMM [36] 0.6512 0.5298 0.3410 0.3305 0.4946 0.3441 0.2374 0.2880 0.0635 0.1183 0.0717

GRASTA [11] 0.6822 0.6490 0.4113 0.5288 0.5631 0.6727 0.3147 0.3814 0.2235 0.2276 0.1714

SSGoDec [34] 0.6611 0.5401 0.3035 0.2258 0.3804 0.0831 0.2912 0.2430 0.0951 0.1215 0.2824

PRMF [29] 0.7251 0.6834 0.3397 0.5163 0.2922 0.6256 0.2718 0.3991 0.07012 0.2108 0.2932

DECOLOR [35] 0.7656 0.7511 0.5503 0.5559 0.5782 0.7983 0.3401 0.3634 0.1202 0.4490 0.3699

PCP [3] 0.7594 0.6798 0.4978 0.6583 0.8375 0.6240 0.5855 0.6542 0.3003 0.1938 0.3445

BRMF [30] 0.6291 0.3293 0.3746 0.3313 0.2872 0.3161 0.2743 0.2812 0.0735 0.0872 0.2408

LSD [17] 0.7603 0.8174 0.4233 0.6168 0.6640 0.7313 0.6471 0.3790 0.0871 0.1604 0.3593

ILISD [23] 0.8150 0.8179 0.6887 0.8010 0.7128 0.7849 0.8033 0.7277 0.7398 0.6931 0.6475

TRPCA [18] 0.7022 0.6805 0.5329 0.5683 0.6924 0.6176 0.4382 0.3926 0.2854 0.2721 0.3018

TLISD 0.8276 0.8445 0.7350 0.7961 0.7429 0.8012 0.8862 0.8065 0.8010 0.7092 0.7122

Table 1: Comparison of F-measure score between our proposed method and other compared methods on benchmark real-time

sequences (best F-measure: bold, second best F-measure: underline)

 

Figure 9: Comparison of qualitative results between TLISD

and ILISD on four sequences of EIC dataset. Top to bottom:

Sample Image, Ground Truth, ILISD, and TLISD

Sequence Wildlife4 Wildlife5 Wildlife6 Railway1 Railway2 Industrial area1

PCP [3] 0.4150 0.4016 0.3092 0.3634 0.4086 0.2869

DECOLOR [35] 0.3475 0.2010 0.2604 0.2853 0.3021 0.3242

ILISD [23] 0.6020 0.6104 0.6170 0.5983 0.5414 0.5626

TRPCA [18] 0.2934 0.3082 0.2855 0.3447 0.2805 0.2914

TLISD 0.7508 0.8049 0.7522 0.7241 0.7116 0.7035

Table 2: Comparison of F-measure score between our pro-

posed method and other compared methods on EIC dataset

for each iteration, which is normal due to use of the tensor

structure. However, the number of iterations in our method

is less than that of [23]. Fig. 10 shows the number of itera-

tions to converge for both ILISD and TLISD methods. IL-

ISD [23] has two independent optimization formulae: one

for providing a prior map and the other for separating mov-

ing objects from illumination changes, and they have in-

dependent numbers of iterations to converge. After con-

vergence, the optimized values are interchangeably used in

an outer loop, and hence the total number of iterations is

much more than that of our method which involves one op-

timization formula. As discussed in Section 3.4, the domi-

nant time in our method is SVD decomposition for frontal

slices, which are independent from each other, and so can

be solved in parallel on a GPU to speed up the computation.

Therefore, the total time of our method is at least compa-

rable with ILISD and can be even faster due to the fewer

number of iterations.

5. Conclusions

In this paper, we have proposed a novel method based

on tensor low-rank and invariant sparse decomposition to

detect moving objects under discontinuous changes in il-

lumination, which frequently happen in video surveillance

applications. In our proposed method, first we compute a

set of illumination invariant representations for each image

as prior maps, which provide us with cues for extracting

moving objects. Then we model illumination changes in

an image sequence using a k-support norm and derive a

new formulation to effectively capture illumination changes

and separate them from detected foregrounds. Currently,

many surveillance systems, especially security and wildlife

monitoring cameras, use motion triggered sensors and cap-

ture image sequences with significant illumination changes.

Our proposed method can solve the problem with a perfor-

mance that is superior to the state-of-the-art solutions. Our

method is also able to extract natural outdoor illumination

as labeled data for learning-based methods, which can be an

effective alternative to optimization based methods such as

ours, but with a sequential formulation, to detect illumina-

tion changes and moving objects from image sequences.
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Sequence Backdoor Lobby Cubicle Wildlife1 Wildlife2 Wildlife3 MovingSunlight

ILISD 0.49 0.53 0.74 1.24 1.33 1.18 2.2

TLISD 0.98 2.38 1.79 2.52 4.26 4.08 5.16

Table 3: Comparison of execution time (in sec.) per image
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Figure 10: Number of iterations to converge ILISD and

TLISD methods on twelve sequences

7228



References

[1] Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse

prediction with the k-support norm. In Advances in Neural

Information Processing Systems, pages 1457–1465, 2012.

[2] Thierry Bouwmans and El Hadi Zahzah. Robust pca via prin-

cipal component pursuit: A review for a comparative eval-

uation in video surveillance. Computer Vision and Image

Understanding, 122:22–34, 2014.

[3] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright.

Robust principal component analysis? Journal of the ACM

(JACM), 58(3):11, 2011.

[4] Wenfei Cao, Yao Wang, Jian Sun, Deyu Meng, Can Yang,

Andrzej Cichocki, and Zongben Xu. Total variation regular-

ized tensor rpca for background subtraction from compres-

sive measurements. IEEE Transactions on Image Process-

ing, 25(9):4075–4090, 2016.

[5] Bo-Hao Chen and Shih-Chia Huang. An advanced moving

object detection algorithm for automatic traffic monitoring in

real-world limited bandwidth networks. IEEE Transactions

on Multimedia, 16(3):837–847, 2014.

[6] Xinyi Cui, Junzhou Huang, Shaoting Zhang, and Dimitris N

Metaxas. Background subtraction using low rank and group

sparsity constraints. In European Conference on Computer

Vision (ECCV), pages 612–625. Springer, 2012.

[7] Graham D Finlayson, Mark S Drew, and Cheng Lu. Entropy

minimization for shadow removal. International Journal of

Computer Vision (IJCV), 85(1):35–57, 2009.

[8] Donald Goldfarb and Zhiwei Qin. Robust low-rank tensor

recovery: Models and algorithms. SIAM Journal on Matrix

Analysis and Applications, 35(1):225–253, 2014.

[9] Nil Goyette, Pierre-Marc Jodoin, Fatih Porikli, Janusz Kon-

rad, and Prakash Ishwar. Changedetection. net: A new

change detection benchmark dataset. In Computer Vision

and Pattern Recognition Workshops (CVPRW), IEEE Com-

puter Society Conference on, pages 1–8. IEEE, 2012.

[10] Charles Guyon, Thierry Bouwmans, and El-Hadi Zahzah.

Foreground detection based on low-rank and block-sparse

matrix decomposition. In Image Processing (ICIP), 2012

19th IEEE International Conference on, pages 1225–1228.

IEEE, 2012.

[11] Jun He, Laura Balzano, and Arthur Szlam. Incremental gra-

dient on the grassmannian for online foreground and back-

ground separation in subsampled video. In 2012 IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1568–1575. IEEE, 2012.

[12] Wenrui Hu, Yehui Yang, Wensheng Zhang, and Yuan Xie.

Moving object detection using tensor-based low-rank and

saliently fused-sparse decomposition. IEEE Transactions on

Image Processing (TIP), 26(2):724–737, 2017.

[13] Sajid Javed, Thierry Bouwmans, and Soon Ki Jung. Sbmi-

ltd: stationary background model initialization based on low-

rank tensor decomposition. In Proceedings of the Symposium

on Applied Computing, pages 195–200. ACM, 2017.

[14] Hanjiang Lai, Yan Pan, Canyi Lu, Yong Tang, and Shuicheng

Yan. Efficient k-support matrix pursuit. In European Confer-

ence on Computer Vision (ECCV), pages 617–631. Springer,

2014.

[15] Liyuan Li, Weimin Huang, Irene Yu-Hua Gu, and Qi Tian.

Statistical modeling of complex backgrounds for foreground

object detection. IEEE Transactions on Image Processing

(TIP), 13(11):1459–1472, 2004.

[16] Ping Li, Jiashi Feng, Xiaojie Jin, Luming Zhang, Xianghua

Xu, and Shuicheng Yan. Online robust low-rank tensor mod-

eling for streaming data analysis. IEEE transactions on neu-

ral networks and learning systems, (99):1–15, 2018.

[17] Xin Liu, Guoying Zhao, Jiawen Yao, and Chun Qi. Back-

ground subtraction based on low-rank and structured sparse

decomposition. IEEE Transactions on Image Processing

(TIP), 24(8):2502–2514, 2015.

[18] Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen

Lin, and Shuicheng Yan. Tensor robust principal component

analysis: Exact recovery of corrupted low-rank tensors via

convex optimization. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

5249–5257, 2016.

[19] Julien Mairal, Rodolphe Jenatton, Francis R Bach, and Guil-

laume R Obozinski. Network flow algorithms for structured

sparsity. In Advances in Neural Information Processing Sys-

tems (NIPS), pages 1558–1566, 2010.

[20] Nuria M Oliver, Barbara Rosario, and Alex P Pentland. A

bayesian computer vision system for modeling human inter-

actions. IEEE transactions on pattern analysis and machine

intelligence (PAMI), 22(8):831–843, 2000.

[21] Moein Shakeri and Hong Zhang. Corola: a sequential solu-

tion to moving object detection using low-rank approxima-

tion. Computer Vision and Image Understanding, 146:27–

39, 2016.

[22] Moein Shakeri and Hong Zhang. Illumination invariant rep-

resentation of natural images for visual place recognition.

In 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 466–472. IEEE, 2016.

[23] Moein Shakeri and Hong Zhang. Moving object detection in

time-lapse or motion trigger image sequences using low-rank

and invariant sparse decomposition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (ICCV), pages 5123–5131, 2017.

[24] Andrews Sobral, Christopher Baker, Thierry Bouwmans, and

El-hadi Zahzah. Incremental and multi-feature tensor sub-

space learning applied for background modeling and sub-

traction. In International Conference Image Analysis and

Recognition, pages 94–103. Springer, 2014.

[25] Andrews Sobral, Thierry Bouwmans, and El-hadi Zahzah.

Lrslibrary: Low-rank and sparse tools for background mod-

eling and subtraction in videos. In Robust Low-Rank and

Sparse Matrix Decomposition: Applications in Image and

Video Processing. CRC Press.

[26] YingLi Tian, Andrew Senior, and Max Lu. Robust and ef-

ficient foreground analysis in complex surveillance videos.

Machine vision and applications, 23(5):967–983, 2012.

[27] Kentaro Toyama, John Krumm, Barry Brumitt, and Brian

Meyers. Wallflower: Principles and practice of background

maintenance. In Computer Vision, 1999. The Proceedings of

the Seventh IEEE International Conference on (ICCV), vol-

ume 1, pages 255–261. IEEE, 1999.

7229



[28] Alessandro Vinciarelli, Maja Pantic, and Hervé Bourlard.
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