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Abstract

Face presentation attacks have become an increasing-

ly critical issue in the face recognition community. Many

face anti-spoofing methods have been proposed, but they

cannot generalize well on ”unseen” attacks. This work fo-

cuses on improving the generalization ability of face anti-

spoofing methods from the perspective of the domain gen-

eralization. We propose to learn a generalized feature s-

pace via a novel multi-adversarial discriminative deep do-

main generalization framework. In this framework, a multi-

adversarial deep domain generalization is performed under

a dual-force triplet-mining constraint. This ensures that the

learned feature space is discriminative and shared by mul-

tiple source domains, and thus is more generalized to new

face presentation attacks. An auxiliary face depth supervi-

sion is incorporated to further enhance the generalization

ability. Extensive experiments on four public datasets vali-

date the effectiveness of the proposed method.

1. Introduction

Face recognition technique has been successfully applied

in a variety of applications in the real life, such as automat-

ed teller machines (ATMs), mobile phones, and entrance

guard systems. The easy-access to the human face brings

the convenience of face recognition, but also the presenta-

tion attacks (PA). As simple as a printed photo paper (i.e.,

print attack) or a digital image/video (i.e., video replay at-

tack) could easily hack a face recognition system deployed

in a mobile phone or a laptop when those spoofs are visual-

ly close to the genuine faces. Thus, how to cope with these

presentation attacks prior to the step of face recognition has

become an increasingly critical concern in the face recogni-

tion community.

Various face anti-spoofing methods have been proposed.

Appearance-based methods aim to differentiate real and

fake faces based on various appearance cues, such as col-

or textures [5], image distortion cues [31] or deep fea-
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Figure 1. This paper aims to learn a feature space that is discrimi-

native and shared by multiple source domains, and thus more gen-

eralized to new face presentation attacks.

tures [32]. Temporal-based methods are proposed to extract

various temporal cues, such as facial motions [23, 28, 26]

or rPPG [16, 18]. Although these methods obtain promis-

ing performance in intra-dataset experiments where train-

ing and testing data are from the same dataset, the perfor-

mance dramatically degrades in cross-dataset experiments

where training and testing data are from different datasets.

This is because existing face anti-spoofing methods capture

the differentiation cues that are dataset biased [1], and thus

cannot generalize well to testing data with different feature

distribution compared to training data (caused by different

materials of attacks or recording environments).

The straightforward way to solve this problem is to ex-

ploit the domain adaptation technique [27, 12, 25, 20, 34,

7, 24, 29, 6, 30, 33, 3] to align the feature distribution be-

tween training and testing data so that the trained model

with source data can be adapted on the target data. How-

ever, in the scenario of face anti-spoofing, we have no clue

on test data (target domain) when we train our model. It is

also difficult or impossible to collect attacks with all possi-

ble materials and in all possible environments to train and
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adapt our model. To improve the generalization ability of

face anti-spoofing methods without using the target domain

information, this paper exploits the domain generalization

approach. Domain generalization assumes that there exist-

s a generalized feature space underlying the seen multiple

source domains and the unseen but related target domain,

on which a prediction model learned with training data from

the seen source domains can generalize well on the unseen

target domain.

The generalized feature space learned by the domain

generalization approach should be shared by multiple

source domains and discriminative [15, 22]. In this way, the

space can exploit the common differentiation cues for face

anti-spoofing across multiple source domains, which are

less likely to be domain biased and thus more generalized.

For example, instead of focusing on some domain-specific

differentiation cues such as the screen bezel of the attack

sample in CASIA dataset in Fig. 1, models learned in this

generalized feature space are able to extract more general-

ized cues shared by all source domains. For this purpose,

a multi-adversarial deep domain generalization method is

proposed to automatically and adaptively learn this gen-

eralized feature space shared by multiple source domain-

s. Specifically, under the adversarial learning scheme, the

generator which is trained for producing the domain-shared

features, competes with multiple domain discriminators si-

multaneously during the learning process, which gradually

guides the learned features to be indistinguishable for mul-

tiple domain discriminators. Therefore, the feature space

shared by all source domains can be automatically discov-

ered after the feature generator fools all domain discrimi-

nators successfully. To enhance the discriminability of the

learned generalized feature space during the adversarial do-

main generalization, we further impose a dual-force triplet-

mining constraint in the learning process, which ensures the

distance of each sample to its positive smaller than its neg-

ative in both intra and cross domains. Moreover, to further

strengthen the generalization ability of the learned features,

we incorporate face depth information as auxiliary super-

vision in the learning process. All of them consist of the

proposed framework.

Note that a similar deep domain generalization method

based on adversarial learning has been proposed in [15],

which learns the generalized feature space by aligning mul-

tiple source domains to an arbitrary prior distribution vi-

a adversarial feature learning. However, simply aligning

multiple source domains to a pre-defined distribution may

be sub-optimal. The generalized feature space exists un-

derlying the seen multiple source domains and the unseen

target domain. This means that this generalized feature s-

pace could be learned based on the information provided by

multiple source domains. To this end, we exploit the shared

and discriminative information among multiple source do-

mains to automatically and adaptively search and learn this

generalized feature space without aligning any prior distri-

bution.

2. Related Work

Face Anti-spoofing methods. Current face anti-

spoofing methods can be roughly categorized into

appearance-based methods and temporal-based methods.

Appearance-based methods aim to detect attacks based on

various appearance cues. Multi-scale LBP [19] and color

textures [5] methods are proposed to extract various LBP

descriptors in grayscale, RGB, HSV or YCbCr color s-

paces to differentiate real/fake faces. Image distortion anal-

ysis [31] detects the surface distortions caused by the low-

er appearance quality of images or videos compared to real

face skin. Yang et al. [32] use CNN to extract different deep

features between real and fake faces. On the other hand,

temporal-based methods aim to differentiate real/fake via

extracting various temporal cues through multiple frames.

Dynamic textures are proposed in [23, 28, 26] to extrac-

t different facial motions. Liu et al. [17, 16] propose to

estimate rPPG signals from RGB face videos to detect at-

tacks. Moreover, the work proposed in [18] captures both

appearance and temporal cues, which learns a CNN-RNN

model to estimate the different face depth and rPPG signals

between real and fake faces. However, the performance of

both appearance and temporal-based methods are prone to

being degraded in cross-datasets test where test data comes

from different datasets (domains), and thus the feature dis-

tribution is different with that in train domain. This is due

to that the above methods are likely to extract some differ-

entiation cues that are biased to specific materials of attack-

s or recording environments in training datasests. There-

fore, from the perspective of the domain generalization, this

paper proposes to capture more generalized differentiation

cues to solve both print and video replay attacks.

Deep Domain Generalization methods. Several deep

domain generalization methods have been proposed. Moti-

ian et al. [21] propose to jointly minimize the semantic

alignment loss and the separation loss on deep learning

models. Li et al. [14] design a low-rank parameterized C-

NN model for end-to-end domain generalization learning.

The most related work is proposed in [15], which learns a

generalized feature space by aligning multiple source do-

mains to a pre-defined distribution via adversarial learning.

However, it can not be guaranteed that the pre-defined dis-

tribution is the optimal one for the feature space. Therefore,

simply aligning multiple source domains to a pre-defined

distribution may be sub-optimal. Instead, in our proposed

deep domain generalization framework, the generalized fea-

ture space is automatically and adaptively learned based on

the knowledge provided by multiple source domains.
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Figure 2. Overview of the proposed method. The multi-adversarial deep domain generalization is firstly proposed to learn a generalized

feature space that is shared by multiple discriminative source domains. Moreover, the constraint of dual-force triplet mining is imposed on

the learning process, which improves the discriminability of the learned feature space. The auxiliary face depth is further incorporated to

learn more generalized differentiation cues in this feature space. The module with solid lines means it is being trained while the one with

dashed lines indicates that its parameters are fixed.

3. Proposed Method

3.1. Overview

The focus of this paper is to learn a generalized feature

space to cope with various unseen face presentation attacks.

Although testing samples are from an unseen domain, they

still share some common properties with multiple source

domains in face presentation attacks. For example, the print

or video replay attacks from unseen domains may be pre-

sented in different materials or under different environments

compared to source domains, but they are all based on pa-

pers or video screens intrinsically. The common properties

can be exploited from some shared and discriminative infor-

mation across multiple source domains. That is, a feature

space that is discriminative and shared by multiple source

domains is more likely to be generalized well to unseen do-

mains. Based on this idea, as illustrated in Fig. 2, this pa-

per proposes a novel multi-adversarial discriminative deep

domain generalization framework to learn this generalized

feature space. Specifically, a feature generator is trained

to compete against multiple domain discriminators so as

to gradually learn the shared and discriminative feature s-

pace. Meanwhile, a dual-force triplet-mining constraint is

imposed to improve the discrimination ability of the feature

space during the adversarial learning process. Moreover, as

the guidance to learn more generalized differentiation cues

in the feature space, the auxiliary supervision of face depth

is further incorporated in the learning process.

3.2. Multi­adversarial Deep Domain Generalization

Suppose that there are images with N source domain-

s, denoted as X = {X1,X2, ...,XN}, and corresponding

labels are denoted as Y = {Y1,Y2, ...,YN} with K cate-

gories (K = 2 in the face anti-spoofing task where Y = 0/1

is the label of attack/real). Given the labeled data in each

source domain, we may begin by exploiting the discrimina-

tive information in each source domain.

Pretrain Multiple Source Feature Extractors. For N

source domains, we pre-train multiple feature extractors

(M1,M2, ...,MN ) respectively based on K-way classifica-

tion with a cross-entropy loss. We take the pretraining of the

feature extractor of source domain 1 as an example, which

is shown as follows:

Lcls(X1,Y1;M1, C1) =

− E(x1,y1)∼(X1,Y1)

K
∑

k=1

1l[k = y1]logC1(M1(x1))
(1)
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Figure 3. The details of Multi-adversarial Deep Domain General-

ization. Suppose that we have three source domains for simplici-

ty. We train one feature generator to compete with three domain

discriminators simultaneously, and a shared feature space will be

adaptively learned after this feature generator successfully fools

all domain discriminators.

We thus obtain multiple discriminative feature spaces of

source domains encoded by multiple trained feature extrac-

tors (M1,M2, ...,MN ). However, these discriminative fea-

ture spaces contain a large portion of differentiation cues

that are biased to each source domain, which disables them

to be generalized well to unseen attacks.

Multi-adversarial Deep Domain Generalization. To

learn a more generalized feature space for face anti-

spoofing, we want to exploit the common discriminative in-

formation encoded by multiple feature extractors of source

domains. More generalized differentiation cues for face

anti-spoofing will thus be exploited from the common dis-

criminative information, which are less likely to be biased

to any source domain, and thus have better generalization

ability.

To this end, we introduce a multi-adversarial deep do-

main generalization method. Because the generalized fea-

ture space contains the common discriminative information,

this space can be discovered by finding the shared space of

multiple discriminative source feature spaces. This mean-

s this feature space is simultaneously as similar to every

discriminative feature space of source domains as possible.

Suppose that we have N source domains. Accordingly, we

have N discriminative feature spaces encoded by N pre-

trained feature extractors respectively. N domain discrim-

inators are introduced for N discriminative feature spaces

respectively, and we train one feature generator to compete

with all the N domain discriminators simultaneously. A

shared feature space will thus be automatically and adap-

tively learned after this feature generator successfully fools

all the N domain discriminators. Figure 3 shows the illus-

tration of this multi-adversarial domain generalization pro-

cess when we have three source domains. We formulate

above multi-adversarial deep domain generalization as fol-

lows:

LDG(X,X1,X2, ...,XN ;G,D1, D2, ..., DN ) =

N
∑

i=1

(

Ex∼X[log(Di(G(x)))]

+ Exi∼Xi
[log(1−Di(Mi(xi)))]

)

(2)

where G denotes the feature generator, which tries to learn

the generalized feature space that is indistinguishable to

every discriminative source feature spaces simultaneous-

ly. Di denotes the i-th domain discriminator that tries to

distinguish the learned feature space with the discrimina-

tive feature space of source domain i. Through this multi-

adversarial learning process in the feature space, the gener-

alized feature space can be automatically learned and gen-

erated by the feature generator G.

3.3. Dual­force Triplet­mining Constraint

In print and video relay attacks, the intra-class distances

are prone to being larger than the inter-class distances. Fig.

4 shows the typical condition in video replay attacks illus-

trating this problem. In Fig. 4, for each real subject, the fake

face with the same identity has similar facial characteristics,

while the real face with the different identity has different

facial characteristics. This makes the negative more simi-

lar than the positive for each subject in each domain. Due

to different materials of attacks or recording environments

between different domains, this problem may also be severe

under the cross-domain scenario. Therefore, the discrimina-

tion ability of learned generalized feature space is prone to

being degraded. We thus aim to improve the discrimination

ability via mining the triplet relationship among samples.

Specifically, when learning the feature space, we force that:

1) the distance of each subject to its intra-domain positive

smaller than to its intra-domain negative, 2) and simultane-

ously the distance of each subject to its cross-domain posi-

tive smaller than to its cross-domain negative. We call this

as dual-force triplet-mining constraint. In this way, the dis-

crimination ability of generalized feature space can be im-

proved via this constraint during the domain generalization

process. Therefore, we can obtain:

LTrip(X,Y;G,E) =
∑

∀ya=yp,ya 6=yn,i=j

[‖E(G(xa
i ))− E(G(xp

j ))‖
2
2

− ‖E(G(xa
i ))− E(G(xn

j ))‖
2
2 + α1]+

+ γ
∑

∀ya=yp,ya 6=yn,i 6=k

[‖E(G(xa
i ))− E(G(xp

k))‖
2
2

− ‖E(G(xa
i ))− E(G(xn

k ))‖
2
2 + α2]+

(3)
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Figure 4. The illustration of Dual-force Triplet-mining Constraint.

In print and video relay attacks, the negative is likely to be more

similar than the positive for each subject in both intra and cross

domains. This constraint attempts to solve this problem by mini-

mizing intra-class distance while maximizing inter-class distance

in both intra and cross domains.

where E denotes the feature embedder, and the superscript-

s a and p represent the same class, while a and n are d-

ifferent classes. The subscripts i and j represent the same

domain, while i and k are different domains. α1 and α2 rep-

resent pre-defined intra-domain and cross-domain margins,

respectively.

3.4. Auxiliary Face Depth Information

To exploit more generalized differentiation cues in the

generalized feature space, we further incorporate the face

depth cues as the auxiliary information for training our fea-

ture generator. Through the comparison on the spatial in-

formation, it can be observed that live faces have face-like

depth, while faces of attacks presented in the flat and planar

papers or video screens have no face depth. Therefore, the

face depth information can be exploited as more generalized

differentiation cues for face presentation attacks detection.

We utilize the state-of-the-art dense face alignment network

named PRNet [10] to estimate the depth map of real faces,

which serves as the supervision for the real faces. The depth

map of all zeros is set as the supervision for the fake faces.

The estimated face depth information may also be domain

biased. Therefore, different from the method in [18] which

uses the estimated face depth to directly do classification,

we incorporate the face depth as the auxiliary information

into the training process of domain generalization. In this

way, the feature space is guided to exploit more generalized

differentiation cues related to the face depth in the learning

process. This auxiliary depth information is incorporated as

follows:

LDep(X;Dep) = ‖Dep(G(X))− I‖22 (4)

where Dep is the depth estimator and I is the face depth

map for supervision.

3.5. Multi­adversarial Discriminative Deep Domain
Generalization

As shown in Fig. 2, a classifier C is incorporat-

ed to calculated the classification loss LCls. We for-

mulate the objectives as mentioned above into a unified

multi-adversarial discriminative deep domain generaliza-

tion framework (MADDG) as follows:

min
G,E,C,Dep

max
D1,D2,...,DN

LMADDG =

LDG + LTrip + LDep + LCls

(5)

Note that due to the limited training data in face anti-

spoofing datasets and the complex structure of the de-

signed network, we decompose the training process into two

phases for tractable optimization: 1) Training the G,E,C

and D1, D2, ..., DN together, with multi-adversarial do-

main generalization loss, dual-force triplet-mining loss and

classification loss. 2) Training the G and Dep with the aux-

iliary face depth information loss. The above two phases

are iteratively repeated in the training process until conver-

gence. The overall objective is to enable the feature gener-

ator G to generate the generalized feature space.

4. Experiments

4.1. Datasets

Table 1. Comparison of four experimental datasets.

Dataset
Extra
light

Complex
background

Attack
type

Display
devices

C No Yes
Printed photo

Cut photo
Replayed video

iPad

I Yes Yes
Printed photo
Display photo

Replayed video

iPhone 3GS
iPad

M No Yes
Printed photo

Replayed video
iPad Air

iPhone 5S

O Yes No
Printed photo
Display photo

Replayed video

Dell 1905FP
Macbook Retina

We evaluate our work on four public face anti-spoofing

datasets, which contain both print and video replay attack-

s: Oulu-NPU [4] (O for short), CASIA-MFSD [35] (C for

short), Idiap Replay-Attack [8] (I for short), and MSU-

MFSD [31] (M for short). Table 1 shows the variations in

these four datasets. Some samples of the genuine faces and

attacks are shown in Fig. 5. From Table 1 and Fig. 5, we

can see that many kinds of variations, due to the differences

on materials, illumination, background, resolution and so
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(a) CASIA (b) Idiap (c) MSU (d) Oulu

Figure 5. Sample frames from CASIA-MFSD [35], Idiap Replay-Attack [8], MSU-MFSD [31], and Oulu-NPU [4] datasets. The figures

with green border represent the real faces, while the ones with red border represent the video replay attacks. From these examples, it can be

seen that large cross-dataset variations due to the differences on materials, illumination, background, resolution and so on, cause significant

domain shift among these datasets.

Table 2. The structure details of all components of the proposed network.

Feature Generator
Layer Chan./Stri. Out.Size

Discriminator
Layer Chan./Stri. Outp.Size

Feature Embedder & Classifier
Layer Chan./Stri. Outp.Size

Depth Estimator
Layer Chan./Stri. Outp.Size

Input
image

Input
pool1-3

Input
pool1-3

Input
pool1-1+pool1-2+pool1-3

conv1-1 64/1 256 conv2-1 128/2 16 conv3-1 128/1 32 conv4-1 128/1 32
conv1-2 128/1 256 conv2-2 256/2 8 pool2-1 -/2 16 conv4-2 64/1 32
conv1-3 196/1 256 conv2-3 512/2 4 conv3-2 256/1 16 conv4-3 1/1 32
conv1-4 128/1 256 conv2-4 1/1 3 pool2-2 -/2 8
pool1-1 -/2 128 conv3-2 512/1 8
conv1-5 128/1 128 Average pooling
conv1-6 196/1 128 fc3-1 1/1 128
conv1-7 128/1 128 fc3-2 1/1 1
pool1-2 -/2 64
conv1-8 128/1 64
conv1-9 196/1 64

conv1-10 128/1 64
pool1-3 -/2 32

on, exist across these four datasets. Therefore, significant

domain shift exists among these datasets.

4.2. Experimental Setting

We regard one dataset as one domain in our experiment.

For simplicity, three datasets in four are randomly select-

ed as source domains where we conduct the domain gener-

alization, and the remaining one is the unseen domain for

testing, which cannot be accessed in the training process.

Half Total Error Rate (HTER) [2] (half of the summation of

false acceptance rate and false rejection rate) and Area Un-

der Curve (AUC) are used as the evaluation metrics in our

experiments.

4.3. Implementation Details

Network Structure. Our deep network is implement-

ed on the platform of PyTorch. The detailed structure of

the proposed network is illustrated in Table 2. To be spe-

cific, each convolutional layer in the feature generator, fea-

ture embedder and depth estimator is followed by a batch

normalization layer and a rectified linear unit (ReLU) ac-

tivation function, and all convolutional kernel size is 3×3.

Following the standard setting in [14], each convolutional

layer in the discriminator is followed by a batch normaliza-

tion layer and a LeakyReLU activation function, and all k-

ernel size is 4×4. The size of input image is 256× 256× 6,

where we extract the RGB and HSV channels of each in-

put image. Inspired by the residual network [11], we use

a short-cut connection, which is concatenating the respons-

es of pool1-1, pool1-2 and pool1-3, and sending them to

conv4-1 for depth estimation. This operation helps to ease

the training procedure, and enables the auxiliary informa-

tion of face depth simultaneously to affect different layers

of the feature generator in the learning process.

Training Details. The Adam optimizer [13] is used for

the optimization. As described in section 3.5, we train the

whole network with two iterative phases. Due to differen-

t model complexity between the two training phases, we

use the learning rate 1e-5 in the first phase, which trains

the G,E,C and D1, D2, ..., DN together. G and Dep are

trained in the second phase with the learning rate 1e-4. The

batch size is 20 per domain, and thus 60 for 3 training do-

mains totally. The hyperparameters γ, α1, and α2 are set to

0.1, 0.1, and 0.5, respectively.

Testing. For a new testing sample x, its classification s-

core l is calculated for testing as follows: l = C(E(G(x)))
where G,E,C are the trained feature generator, feature em-

bedder, and classifier, respectively.

4.4. Experimental Comparison

4.4.1 Baseline Methods

We compare several state-of-the-art face anti-spoofing

methods as follows: Multi-Scale LBP (MS LBP) [19] ;

Binary CNN [32]; Image Distortion Analysis (IDA) [31];

Color Texture (CT) [5]; LBPTOP [23]; and Auxil-

iary [18]: This method learns a CNN-RNN model to es-

timate the face depth from one frame and rPPG signals

through multiple frames. To fairly compare our method on-

ly using one frame information, we implement its face depth
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Table 3. Comparison to face anti-spoofing methods on four testing sets for domain generalization on face anti-spoofing.

Method
O&C&I to M O&M&I to C O&C&M to I I&C&M to O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

MS LBP 29.76 78.50 54.28 44.98 50.30 51.64 50.29 49.31

Binary CNN 29.25 82.87 34.88 71.94 34.47 65.88 29.61 77.54

IDA 66.67 27.86 55.17 39.05 28.35 78.25 54.20 44.59

Color Texture 28.09 78.47 30.58 76.89 40.40 62.78 63.59 32.71

LBPTOP 36.90 70.80 42.60 61.05 49.45 49.54 53.15 44.09

Auxiliary(Depth Only) 22.72 85.88 33.52 73.15 29.14 71.69 30.17 77.61

Auxiliary(All) – – 28.4 – 27.6 – – –

Ours (MADDG) 17.69 88.06 24.5 84.51 22.19 84.99 27.98 80.02

Table 4. Comparison to adversarial domain generalization method on four testing sets for domain generalization on face anti-spoofing.

Method
O&C&I to M O&M&I to C O&C&M to I I&C&M to O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

MMD-AAE 27.08 83.19 44.59 58.29 31.58 75.18 40.98 63.08

Ours (MADDG) 17.69 88.06 24.5 84.51 22.19 84.99 27.98 80.02

estimation component(denoted as Auxiliary(Depth Only)).

We also compare its reported results (denoted as Auxil-

iary(All)). Moreover, we also compare the related state-of-

the-art method in domain generalization for the face anti-

spoofing task: MMD-AAE [15].

4.4.2 Comparison Results

From the comparison results in Table 3 and Fig. 6, it can

be seen that the proposed method performs better than all

the state-of-the-art face anti-spoofing methods [19, 32, 31,

5, 18]. This is due to that all existing face anti-spoofing

methods focus on learning a feature space from multiple

source domains that only fits to data in the source domain-

s. Comparatively, the proposed multi-adversarial discrim-

inative deep domain generalization explicitly exploits the

domain relationship of multiple source feature spaces, and

learns the shared and discriminative information between

them. This learns a generalized feature space that is more

likely to be shared between source domains and unseen tar-

get domain, and thus it is more able to extract more gener-

alized differentiation cues for face anti-spoofing.

Moreover, in Table 4 and Fig. 6, compared to the state-

of-the-art domain generalization method [15], we also out-

perform it for the face anti-spoofing task. This illustrates

that comparing to the feature space learned by aligning mul-

tiple source domains to a pre-defined distribution, the fea-

ture space that is automatically and adaptively learned by

our proposed domain generalization framework is more fea-

sible for the task of face anti-spoofing.

4.5. Discussion

4.5.1 Ablation Study

The experimental results of ablation study for all testing set-

s are shown in Table 5. MADDG denotes the proposed

framework. MADDG wo/mgan denotes that the proposed

network without the multi-adversarial domain generaliza-

tion component. In this setting, we remove the multiple

domain discriminators (D1, ..., DN ) in our network in the

training process. MADDG wo/trip denotes that the pro-

posed network without the dual-force triplet-mining con-

straint component. In this setting, we do not calculate

and backpropagate the dual-force triplet-mining loss in the

training process. MADDG wo/dep denotes that the pro-

posed network without incorporating auxiliary face depth

information. In this setting, we remove the depth estimator

Dep in the training process.

Table 5 shows that the performance of the proposed net-

work degrade if any component is excluded. This verifies

the contribution of each component to the whole network,

and shows that the proposed network optimizing all com-

ponents simultaneously in a unified framework can obtain

much better performance.

4.5.2 Fusion strategies comparison

Fusion strategies are usually utilized when we have multi-

ple domains data. Thus, we added two more baselines for

comparison, namely score-level fusion and feature-level fu-

sion in Table 6. In score-level fusion, we train multiple

AlexNets for all source domains respectively, and use av-

erage fusion on the testing scores of all trained CNNs on

the target domain. In feature-level fusion, like [9], we train

multiple AlexNets and fuse the features from FC7 layers by

concatenation. One more fully connected layer is integrat-

ed to classify the fused feature. Table 6 shows our method

outperforms the above two kinds of fusion strategies. Sim-

ple fusion strategies cannot cope with various cross-domain

scenarios so that in some scenarios such as O&M&I to C,

the performance of both baseline methods drop significant-

ly. Comparatively, our method is robust in all scenarios.
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Figure 6. ROC curves of four testing sets for domain generalization on face anti-spoofing.

Table 5. Evaluation of different components of the proposed framework on four testing sets for domain generalization on face

anti-spoofing.

Method
O&C&I to M O&M&I to C O&C&M to I I&C&M to O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

MADDG wo/mgan 21.55 85.83 28.67 82.27 36.50 63.15 29.63 77.40

MADDG wo/trip 20.84 85.95 30.46 77.99 34.99 71.37 29.75 75.93

MADDG wo/dep 34.29 69.92 39.95 62.42 37.44 62.82 39.39 64.19

Ours(MADDG) 17.69 88.06 24.5 84.51 22.19 84.99 27.98 80.02

Table 6. Comparison to fusion strategies on four testing sets for domain generalization on face anti-spoofing.

Method
O&C&I to M O&M&I to C O&C&M to I I&C&M to O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

Score Fusion 21.00 86.18 46.62 57.05 34.17 71.53 31.12 76.42

Feature Fusion 25.62 74.57 52.32 48.23 46.29 52.71 32.56 76.01

Ours (MADDG) 17.69 88.06 24.5 84.51 22.19 84.99 27.98 80.02

4.5.3 Limited source domains

We evaluate the domain generalization ability of the pro-

posed method when extremely limited source domain

datasets are available (i.e. only two source datasets). Since

significant domain variation exists between MSU and Idiap

datasets, we choose these two datasets as source domains.

As such, the remaining ones (Oulu and CASIA) are cho-

sen for testing. The results in Table 7 show the proposed

method performs better than other methods. This verifies

our method is more effective even in the challenging case.

Table 7. Comparison of domain generalization with limited source

domains for face anti-spoofing.

Method
M&I to C M&I to O

HTER(%) AUC(%) HTER(%) AUC(%)

MS LBP 51.16 52.09 43.63 58.07

IDA 45.16 58.8 54.52 42.17

CT 55.17 46.89 53.31 45.16

LBPTOP 45.27 54.88 47.26 50.21

Ours 41.02 64.33 39.35 65.10

Moreover, compared to the results in Table 7, when we

have more source domains such as the normal setting of do-

main generalization in Table 3, the other methods cannot get

much improvement and the proposed method outperforms

them in a larger gap. This means our method is more able

to exploit domain shared and discriminative properties to

learn more generalized cues when more source domains are

available, and thus the advantage of domain generalization

can be better exploited by our method.

5. Conclusion

To improve the generalization ability for face anti-

spoofing, this paper exploits the technique of domain gener-

alization to learn a generalized feature space without using

target domain data. Specifically, a novel multi-adversarial

deep domain generalization method is proposed to train one

feature generator to compete with multiple domain discrim-

inators simultaneously, so that the generalized feature space

can be automatically and adaptively learned. The discrim-

inability of the generalized feature space is improved by a

dual-force triplet-mining constraint in the feature learning

process. Meanwhile, the face depth supervision is incor-

porated to further enhance the generalization ability of this

feature space. Extensive experiments among four public

datasets validate the effectiveness of the proposed method.
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