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Abstract

Reconstructing the high-resolution volumetric 3D shape

from images is challenging due to the cubic growth of com-

putational cost. In this paper, we propose a Fourier-based

method that reconstructs a 3D shape from images in a 2D

space by predicting slices in the frequency domain. Accord-

ing to the Fourier slice projection theorem, we introduce

a thickness map to bridge the domain gap between images

in the spatial domain and slices in the frequency domain.

The thickness map is the 2D spatial projection of the 3D

shape, which is easily predicted from the input image by a

general convolutional neural network. Each slice in the fre-

quency domain is the Fourier transform of the correspond-

ing thickness map. All slices constitute a 3D descriptor and

the 3D shape is the inverse Fourier transform of the de-

scriptor. Using slices in the frequency domain, our method

can transfer the 3D shape reconstruction from the 3D space

into the 2D space, which significantly reduces the computa-

tional cost. The experiment results on the ShapeNet dataset

demonstrate that our method achieves competitive recon-

struction accuracy and computational efficiency compared

with the state-of-the-art reconstruction methods.

1. Introduction

Deep neural networks have made good progress in 3D

shape reconstruction owing to their powerful ability to ex-

tract priors from big data [18, 15, 21, 9, 6, 27, 12]. However,

high-resolution 3D shape reconstruction is still challenging

due to the cubic growth of computational cost. The high

computational requirements may be reduced by using effi-

cient data structures, such as prob [11] and Octree [22] in

the spatial domain, but these methods often require more

complicated training procedures and customized network

architectures [19]. In this paper, we analyze the 3D shape

in the frequency domain and propose a simple method to

reconstruct the 3D shape in the 2D space with a general 2D
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convolutional neural network.

3D reconstruction in the frequency domain has been

proven to be effective in medical and cryo-microscopy im-

age processing [26, 25]. Much work [25, 24] shows that a

3D shape can be reconstructed from a series of 2D slices

in the frequency domain. Considering that the surface of a

3D shape is always sparse, we assume that a volumetric 3D

shape is reconstructed well with a compact set of the slices.

Given the Fourier transform of a 3D shape at 32× 32× 32
resolution, we select 2D slices along the coordinate axis di-

rection, i.e., from the low-frequency to the high-frequency.

Figure 1 shows the inverse Fourier transform results. We

found that the reconstruction error is reduced below 10%

with only three slices selected along each axis direction.

This observation motivates us to design a 3D shape recon-

struction method in the 2D space by predicting slices in the

frequency domain.

Different from the 3D shape reconstruction from medi-

cal images, in which each slice is calculated directly from a

CT or MR image, we aim to train a model to predict slices

from ordinary RGB or gray image. Due to the information

gap between the spatial domain (images) and the frequency

domain (slices), it is difficult to learn a projection function

from an ordinary image to a slice using deep neural net-

works directly. To deal with this problem, we introduce an

intermediate representation, thickness map. Our idea comes

from the Fourier slice theorem (or Fourier projection-slice

theorem), a famous theorem in medical image processing

[1]. This theorem presents that a slice going through the

origin of a 3D shape in the frequency space at an angle θ is

equal to the Fourier transform of the 2D projection, which

is the Radon transform of the 3D shape at the same angle θ.

For the 2D slice without going through the origin, we extend

the Fourier slice theorem and show that they are the Fourier

transform of a weighted 2D projection, which is the Radon

transform of the 3D shape after a sine-weighted preprocess-

ing. Both the 2D projection and weighted 2D projection

reflect the thickness of a 3D shape or weight 3D shape, so

we name it the thickness map. A diagrammatic sketch can

be found in Figure 2. The Radon transform projects a 3D
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IoU= 0.625 IoU = 0.829 IoU = 0.93 IoU =1.00

Figure 1. The reconstruction results of the 3D shape with the different number of 2D slices in the frequency domain. The bottom cubes

are the Fourier transformation of 32× 32× 32 3D shape. One, two, and three red slices are selected along each axis, and the other pixels

in gray are zero. The last one is the ground truth. The top shows the corresponding inverse Fourier transform results. The reconstruction

accuracy reaches to 93% only with three selected slices along each axis direction.

shape into a 2D space in the spatial domain via line inte-

gral. Considering that the image is also a projection of the

3D shape in the spatial domain, the domain gap between

the image and the thickness map is much smaller than that

between the image and the slice, which benefits to learn a

projection function with simple network architecture.

We leverage a deep neural network to predict thickness

maps from images based on the auto-encoder architecture

using simple 2D convolutional operation. Our network pre-

dicts the silhouette of the thickness map to learn the global

information and predicts the edge of the thickness map to

exploit the local details. The thickness map is generated
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Figure 2. Example of thickness maps. We show three thickness

maps of the 3D airplane model. The projection view is shown at

the top. Each projection view is along a different axis of the Carte-

sian coordinate. The corresponding thickness map is shown at the

bottom. The more lighten pixel means a more volumetric grid of

the 3D shape belongs to the ray paralleling to the corresponding

projection view.

by fusing the silhouette and edge using a sub-network. We

apply the Fourier transform to thickness maps and embed

them into the 3D space to get the Fourier transform of the

3D shape. The final voxel 3D shape is generated using the

inverse Fourier transform. Our network requires a few com-

putational resources as it only predicts a limited number of

thickness maps with simple 2D convolutional layers. We

evaluate our method on the ShapeNet dataset, and the ex-

periment results show the effectiveness of our method.

In summary, the contributions of this work include:

• We propose a Fourier-based method for 3D shape re-

construction to reconstruct the 3D shape in the 2D

space by predicting slices in the frequency domain,

which can significantly reduce the computational cost.

• We introduce the thickness map to bridge the domain

gap between the image in the spatial domain and the

slice in the frequency domain. A deep neural network

is built to generate the thickness map from the input

images. Our network separately learns the global and

local information by predicting the silhouette and edge

of the thickness map, which can improve the recon-

struction accuracy.

2. Related Work

High-resolution 3D volumetric grid reconstruction has

been extensively studied for many years. Memory require-

ment of the high-resolution volumetric grid reconstruction

approaches has been addressed with different data-adaptive

discretization techniques, including Delaunay tetrameriza-

tion [10], voxel block hashing [14], and Octree [3, 20, 17,

28]. To further get accurate reconstruction results, many re-

cent high-resolution reconstruction methods were proposed
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based on the deep neural networks. Tatarchenko et al. [22]

proposed an Octree-based deep network for high-resolution

3D reconstruction. They designed new operations on the

Octree, and the whole network can reconstruct the 3D shape

in the efficient Octree space. Johnston et al. [7] reduced the

complexity of the network by using a simple inverse dis-

crete cosine transform layer replacing the original convo-

lutional decoder. Hane et al. [5] designed a hierarchical

surface prediction framework which reconstructs the high-

resolution 3D shape via a coarse-to-fine strategy. Perform-

ing super-resolution on several orthographic depth projec-

tions, Smith et al. [19] reconstructed the 3D shape in the

2D space by up-sampling a low-resolution 3D shape. How-

ever, these methods reconstruct the 3D shape in the spatial

space. In this paper, we propose to reconstruct a 3D shape

by a compact set of 2D slices in the frequency domain. As a

3D shape can be represented using a few numbers of slices,

our method can significantly reduce the computational cost.

The existing 3D reconstruction methods in Fourier do-

main were designed for special inputs, such as electron

microscopy image [26], computed tomograph images [25],

and striped lighting image [29]. Wang et al. [26] proposed

a fast and accurate Fourier-based iterative reconstruction

method that exploits the Toeplitz structure of the operator.

Voropaev et al. [25] derived a Fourier-based reconstruction

equation for computing laminography. Wu et al. [29] de-

signed a two-variable 3D Fourier descriptors directly from a

striped lighting system and proposed an iterative algorithm

to compute the Fourier descriptors for both axisymmetric

and nonaxisymmetric objects. All these methods in the fre-

quency domain require specific image (CT and MRI) while

our method can reconstruct a 3D shape just from ordinary

RGB or gray images.

3. 3D Shape Reconstruction in the Frequency

Domain

In this section, we provide the rigorous mathematical

background of the thickness map and introduce the pipeline

of the 3D shape reconstruction in the frequency domain.

3.1. Reconstruction Pipeline in the Frequency Do­
main

A 3D shape in the frequency domain is the Fourier trans-

form of its spatial representation:

F (O)(ω1, ω2, ω3) =

∫

x1,x2,x3

O(x1, x2, x3)

exp
[

− 2πi(ω1x1 + ω2x2 + ω3x3)/N
]

dx1x2x3,

(1)

where O is a volumetric 3D shape in the spatial space and
F (O) is the representation in the frequency space. N is
the resolution of the 3D shape. xl|l=1,2,3 and wj |j=1,2,3 are
the indices of the coordinate system in the spatial and the

frequency space, respectively. Given F (O), we get the 3D
shape in the spatial space by the inverse Fourier transform:

O(x1, x2, x3) =

∫

ω1,ω2,ω3

F (O)(ω1, ω2, ω3)

exp
[

2πi(ω1x1 + ω2x2 + ω3x3)/N
]

dω1ω2ω3.

(2)

As stated in the introduction, a volumetric 3D shape O

can be reconstructed with a compact set of the slices of

F (O). Referring to the attributes of the image in the

frequency space, the reconstructed image with the low-

frequency information maintains the global shape, and the

high-frequency information adds local details [23]. Extend-

ing to 3D shape, we select a certain number of slices along

the three axis orientations from the low-frequency to the

high-frequency. Then, the 3D shape O can be reconstructed

by
O = F

−1
(

E[s0ω1
, s0ω2

, s0ω3
; skωj

; . . . ; snωj
]
)

, (3)

where skωj
is the k-th slice along the axis ωj (j ∈ {1, 2, 3}),

F−1 is the inverse Fourier transform, and E is the artifi-

cial function to embed 2D slices into a 3D space. The total

number of the slice selected along each axis is n+ 1.

3.2. Thickness Map

We will predict 2D slices skωj
from images. Predicting

slices from the RGB image is difficult due to the domain gap

between the image in the spatial domain and the slice in the

frequency domain. To deal with this problem, we introduce

a thickness map as the intermediate representation between

an image and a slice. This representation is inspired by the

Fourier slice projection theorem.

Theorem 1 (Fourier slice projection theorem [1]). A slice

going through the origin the Fourier transform of the 3D

object at the orientation ~r equals to the Fourier transform

of the corresponding projection image with the same orien-

tation ~r.

The projection image Pr of the O at an orientation ~r is

given by the Radon transform,

Pr =

∫

∞

−∞

O(x1, x2, x3)dr. (4)

We have three slices going through the origin of 3D
shape, i.e., (s0ωj

, j ∈ 1, 2, 3). According to the Fourier slice

projection theorem, these slices are the Fourier transform of
the corresponding projection images.

s0ω3
= F (O)(ω1, ω2, 0) = F (P 0

ω3
),

s0ω2
= F (O)(ω1, 0, ω3) = F (P 0

ω2
),

s0ω1
= F (O)(0, ω1, ω2) = F (P 0

ω1
),

(5)

where

P 0

ωj
=

∫

O(x1, x2, x3)dxj . (6)
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Figure 3. The pipeline of 3D reconstruction from images in the frequency domain. Taking an image as the input, we predict a series of

thickness maps at different but specific projection views with a deep neural network. Each thickness map generates a 2D Fourier slice

using the Fourier transform. All the 2D slices are inserted into a 3D Fourier space to constitute the Fourier transform of the 3D object. The

3D shape is reconstructed using the 3D inverse Fourier transform.

The Radon transform can be regarded as calculating the

thickness of the 3D shape along a certain orientation, so

that we name the projection image P as the thickness map.

Considering that the Radon transform is the integral trans-

form in the spatial domain, the gap between the thickness

map and image is smaller than that between the slice and

image. As a result, we propose to predict the thickness map

from the image using deep neural networks and compute

the slice from the predicted thickness map with the Fourier

transform.

However, the Fourier slice projection theorem only pro-

vides the relationship between the thickness map P 0

ωj
and

the slices s0ωj
through the origin of the 3D shape. We still

need the other slices {skωj
, k 6= 0} to achieve a more accu-

racy reconstruction results. To deal with this problem, we

extend the Fourier slice projection theorem and provide a

way to calculate any slice skωj
from the corresponding thick-

ness map.

Theorem 2. The k-th slice skωj
along the axis ωj is given by

skωj
= F (P k

ωj
) = F

(

R(P k
ωj
)
)

− iF
(

I(P k
ωj
)
)

, (7)

where R(P k
ωj
) and I(P k

ωj
) are the Radon transform of the

3D shape O weighted by a cosine or sine function. i is the
imaginary unit.

R(P k
ωj
) =

∫

x3

O(x1, x2, x3)cos(−2πkxj/N)dxj ,

I(P k
ωj
) =

∫

x3

O(x1, x2, x3)sin(−2πkxj/N)dxj .

(8)

Proof. When j = 3,

skω3
= F (O)(ω1, ω2, k) =

∫

x1,x2,x3

O(x1, x2, x3)

exp[−2πi(ω1x1 + ω2x2 + kx3)/N ]dx1x2x3

= F

{

∫

x3

O(x1, x2, x3)exp(−2πikx3/N)dx3)
}

= F

{

∫

x3

O(x1, x2, x3)cos(−2πkx3/N)dx3

}

− iF
{

∫

x3

O(x1, x2, x3)sin(−2πkx3/N)dx3

}

= F (R(P k
ω3

))− iF (I(P k
ω3

)).

(9)

Similarly, we can obtain Eq. (7) using the same way when j = 1
and j = 2.

As shown in Eq. (8), the R(P k
ωj
) or I(P k

ωj
) is the Radon

transform of the 3D shape O, so that predicting P k
ωj

from

the image has a smaller gap compared with predicting the

slice. We still call P k
ωj

as the thickness map. Referring to

the Theorem 2, all the slices skωj
can be computed from the

corresponding thickness map P k
ωj

. Now, our task is con-

verted to determine the number of slices required for the

accurate 3D reconstruction and predict the thickness maps

from the input image with a deep neural network. The de-

tails can be found in Section 4 and Section 5.

Assuming that there is a trained network N that predicts

the thickness maps from the image, a 3D shape is recon-

structed from an input image I with Algorithm 1.

4. Sampling of the Thickness Map

Predicting more slices leads to a higher accuracy but a

heavier computational burden. To make our model more

efficient, we introduce a method to compute the high-

frequency slices from the corresponding low-frequency

slices.
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Algorithm 1: 3D Reconstruction in the Frequency Do-

main
Input: Img: The input image.

N : A trained thickness map prediction network.

Output: O: A reconstructed 3D shape.

1 Step 1: Put the image Img into the network N to predict a

series of R(P k
ωj
) and I(P k

ωj
).

2 Step 2: Calculate the thickness map P k
ωj

with R(P k
ωj
) and

I(P k
ωj
) using Eq. (7).

3 Step 3: Calculate the slice skωj
using Eq. (5) and Eq. (7).

4 Step 4: Insert all slices skωj
into a 3D space at wj = k to

generate the 3D shape F (O) in the frequency space.

5 Step 5: Apply the inverse Fourier transform on the F (O) to

get the final 3D shape O using Eq. (3).

6 Return the reconstructed 3D shape O.

Theorem 3. Given the k-th slice along the axis ωj , where

j ∈ {1, 2, 3} and k 6= 0, the corresponding thickness map

P k
ωj

is writted as P k
ωj

= R(P k
ωj
) + i × I(P k

ωj
). Then the

slice at the high-frequency ωj = N − k can be calculated

by PN−k
ωj

= R(P k
ωj
)− i×I(P k

ωj
). i is the imagary unit and

N is the resolution of the 3D shape.

Proof. When j = 3, the thickness map P k
ω3

can be noted as

P k
ω3

= R(P k
ω3

) + i× I(P k
ω3

)

=

∫

x3

O(x1, x2, x3)cos(−2πkx3/N)dx3

+ i

∫

x3

O(x1, x2, x3)sin(−2πkx3/N)dx3.

(10)

For the PN−k
ω3

,

PN−k
ω3

= R(PN−k
ω3

) + i× I(PN−k
ω3

)

=

∫

x3

O(x1, x2, x3)cos(2πkx3/N − 2πx3)dx3

+ i

∫

x3

O(x1, x2, x3)sin(2πkx3/N + 2πx3)dx3

= R(P k
ωj
)− i× I(P k

ωj
).

(11)

Similarly, we can achieve the same conclusion when j = 1 and

j = 2.

Based on Theorem 3, we predict n+ 1 slices at the low-

frequency and calculate n + 1 slices at the high-frequency,

which can reduce half of the computational cost. Using this

setting, we test the reconstruction accuracy of the 3D shape

at a different resolution with a different number of slices,

as shown in Table 1. The high-resolution 3D shape more

slices to achieve a high accuracy. We select 3 slices for

323, 643, 1283 and 2563 shape reconstruction.

Table 1. The reconstruction accuracy of the 3D shape at the dif-

ferent resolution with a different number of slices. “-” means that

it is unnecessary to exam the reconstruction accuracy with more

slices.
Number of slices

Resolution 1 2 3 4 5

32 0.721 0.942 0.987 - -

64 0.783 0.932 0.972 0.983 -

128 0.841 0.941 0.969 0.980 -

256 0.787 0.913 0.955 0.968 0.973

5. Predicting the Thickness Map from Images

In this section, we build a deep neural network to predict

the thickness maps from the input image.

5.1. Network Architecture

A thickness map should be bimodal. The global struc-

ture continuities create the shape of the 3D object, and lo-

cal discontinuities describe the texture and details. Directly

predicting the thickness map from the input image will out-

put a good shape but lack the fine details, as minimizing the

mean squared error results in blurry images without sharp

edges [19]. To address this issue, we attempt to reconstruct

a thickness map by predicting its silhouette and edge sepa-

rately. The silhouette presents the global shape structure of

the 3D shape, and the edge presents the fine local details.

Separately predicting the global shape and fine details with

different networks can reduce the complexity of the original

learning problem, leading to an accurate result and avoiding

the overfitting problem.

The silhouette Sp of the thickness map is predicted by a

deep auto-encoder fsil, i.e., Sp = fsil(I). The encoder is a

2D convolution network, and the decoder is a 2D deconvo-

lution network. The encoder consists of five convolutional

layers with the group-normalization [30] and ReLU [13] ac-

tivation. A fully connected layer converts the feature map

into the vector with size 512. The decoder consists of h

deconvolutional layers with stride size 2, where h changes

with the resolution of 3D shape. A sigmoid activation func-

tion is applied to guarantee the network outputting the oc-

cupancy probability of each pixel.

The other deep neural network fedge takes the image as

input and predicts the edge map Ep of the thickness map,

which presents the probability of each pixel of the thick-

ness map belonging to an edge, i.e., Ep = fedge(I). The

architecture of the fedge is similar to the fsil, except that

the kernel size of both the convolutional filter and deconvo-

lutional filter is smaller to exploit the local information.

The outputs of the edge and silhouette network are com-

bined together to generate the R(P̄ ) and I(P̄ ) for the thick-

ness map P̄ using a fully convolutional deep network fcomb,
[

R(P̄ ), I(P̄ )
]

= fcomb(I, Sp, Ep). All the inputs are com-
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Figure 4. The architecture of the thickness map prediction network. Given an image, we predict a series of silhouettes and edges of the

thickness map. All these silhouettes and edges are combined together to predict the thickness map.

bined together at channel dimension. fcomb is a bottle-

neck network with 7 blocks as the encoder and h blocks

as the decoder, where h changes with the resolution of 3D

shape. Each block in the encoder (or decoder) is composed

of a convolutional (or deconvolutional) layer with group-

normalization and ReLU activation. The activation of the

last layer is a sigmoid function to guarantee that the output

is the occupancy probability. At the end of fcomb, we can

mask the output with the silhouette to avoid the noise out of

the 3D shape.
P = P̄ ⊙ Sp, (12)

where ⊙ is the Hadamard product and P is the final pre-

dicted thickness map. However, this is not a necessary op-

eration in our network. The whole architecture can be found

in Figure 4.

5.2. Loss Functions

Three loss functions are introduced to train fsil, fedge
and fcomb. The fsil is trained by minimizing the cross-
entropy between the predicted and truth silhouette of the
thickness map,

Lsil =
L
∑

i=1

Psillog(P̂sil) + (1− Psil)log(1− P̂sil), (13)

where P̂sil is the ground truth silhouette which can be cal-

culated from the 3D ground truth.
The loss function for fedge is the square mean error be-

tween the predicted edge of thickness map and the ground
truth,

Ledge = ||P̂edge − Pedge||
2

2 + |P̂edge − Pedge|. (14)

We add the ℓ1 constraint into the loss function to release the

loss of the fine details caused by the ℓ2 constraint.

The last loss function for the whole network is the square

mean error between the predicted thickness map and the

ground truth,

Lthickness = ||P̂ − P ||2
2
. (15)

P̂ is the ground truth which is computed from the 3D shape

using Eq. (6) and Eq. (8).
There is no consistency between different predicted

thickness maps, so that the reconstructed 3D shape may
have a low accuracy while each thickness map achieves a
small reconstruction error. To deal with this problem, we
use the 3D reconstruction loss LO which is defined as

LO =
∣

∣

∣

∣

∣

∣
Ô − F

−1

(

E
(

F (P )
)

)
∣

∣

∣

∣

∣

∣

2

2

. (16)

Ô is the ground truth. F−1

(

E
(

F (P )
)

)

is the recon-

structed 3D shape using the predicted thickness maps P .
This loss keeps the global geometry smooth of the recon-
structed 3D shape. Furthermore, considering that the sur-
face is sparse, the number of the voxel with a value 1
is much smaller than voxel with 0, so that Eq.(16) easily
makes the network pay more attention to the blank regions
of the 3D shape. Therefore, we separately calculate the er-
rors on 3D shape surface and blank region. The new loss is
designed as

LO =
∣

∣

∣

∣

∣

∣
Ô − Ô · F−1

(

E
(

F (P )
)

)
∣

∣

∣

∣

∣

∣

2

2

/

∑

Ô

+
∣

∣

∣

∣

∣

∣
(1− Ô) · F−1

(

E
(

F (P )
)

)
∣

∣

∣

∣

∣

∣

2

2

/

∑

(1− Ô).

(17)
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The final loss function is the simple linear combination of
all items

Lfinal = Lsil + Ledge + Lthickness + LO. (18)

6. Experiments

In this section, we evaluate our reconstruction method

from both the computational efficiency and reconstruction

accuracy. Both the memory cost and iterate time of the net-

work are presented and compared with the popular high-

resolution 3D reconstruction methods in Section 6.3. We

show the reconstruction results on both the high-resolution

and low-resolution 3D shape reconstruction in Section 6.4.

6.1. Dataset

We use the synthetic dataset ShapeNet [2] to evaluate

our method. ShapeNet is a large 3D dataset with manu-

ally verified category and alignment annotations. Among

all the 55 categories, we select a subset for our evaluation,

i.e., ShapeNet-all. ShapeNet-all is introduced by Choy et

al. [4], which contains approximately 50, 000 CAD models

from 13 main categories of the ShapeNet dataset. All data

was voxelized in multiple resolutions using the binvox tool

[16].

6.2. Experimental Setup

The network is trained using adaptive moment estima-

tion [8] (Adam) with initial learning rate 0.001, β1 = 0.9,

β2 = 0.999. We decrease the learning rate by a factor of

0.5 after every 5K iterations. The training process is di-

vided into two stages. We train fsil and fedge in the first

15 epochs. Then the whole network is trained with the final

loss.

For the quantitative evaluation, we compute the Inter-

section over Union (IoU) measure between the ground truth

and the predicted value. In general, a high IoU value means

an accurate reconstruction result.

6.3. Computational Efficiency

In this section, we show the computational efficiency of

our method and compare it with the OGN and the dense

auto-encoder introduced in [22]. We compare the runtime

and memory cost of all the methods at different resolutions.

Our method is performed on an NVidia 1080 Maxwell

GPU, with 12GB of memory. The batch size is set to 1
so that all networks can run at the largest possible resolu-

tion. Table 2 and Table 3 show the final results. Both of our

method with and without LO loss are reported.

At the low-resolution scenario, all the models have sim-

ilar low computational cost, both in memory cost and iter-

ate time. However, as the resolution grows, the OGN and

our method is drastically faster and consumes far less mem-

ory cost. The memory cost of the dense network increases

Table 2. Memory cost of our method, OGN and a dense network

at different output resolutions. Batch size is set to 1. (Ours + LO)

is our method with LO loss and (Ours - LO) is without LO .

Memory,GB

Resolution Dense OGN [22] Ours - LO Ours + LO

643 0.51 0.36 0.38 0.45

1283 1.60 0.45 0.54 1.1

2563 9.7 0.54 0.86 1.93

5123 (74.28) 0.88 1.20 2.51

Table 3. Iteration time of our method, OGN and a dense network

at different output resolutions. Batch size is set to 1. (Ours + LO)

is our method with LO loss function and (Ours - LO) is without

LO .

Iteration time, s

Resolution Dense OGN [22] Ours - LO Ours + LO

643 0.21 0.06 0.034 0.04

1283 0.63 0.18 0.13 0.15

2563 3.22 0.64 0.23 0.47

5123 (41.3) 2.06 0.86 1.21

cubically due to the number of the dense voxel grid is de-

termined by its cube resolution. As all the feature maps

are 2D, the memory cost of our method without LO in-

creases squarely following the rise of the resolution, so that

it achieves a comparable memory cost compared with OGN.

Our method with LO has a large memory because calculat-

ing the LO requires the 3D high-resolution ground truth.

Both of our network with LO and without LO achieve a

faster iteration time compared with OGN.

6.4. Reconstruction Accuracy

In this section, we test our method on 3D reconstruction

from a single image at the high-resolution 256×256×256.

Three categories in the ShapeNet-All (i.e., “Cars”, “Air-

plane” and “Chair”) are selected considering that these cat-

egories contain enough training samples and have more

shape variations. For each category, 80% of the data is used

for training and 20% for testing. We compare our method

with the popular high-resolution 3D reconstruction meth-

ods including Octree generation network (OGN) [10] and

multi-view decomposition network (MVD) [19]. The ex-

periment results are shown in Table 4. Our method achieves

a comparable reconstruction accuracy compared with the

state-of-the-art method MVD. Compared with the MVD,

our method is more simple which do not need a complex

space caving process. The output 3D shape can be easily

generated with the inverse Fourier transform.

Our method utilizes partial information of the Fourier

transform to achieve a balance between reconstruction ac-

curacy and computational efficiency. To examine how this
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Figure 5. 3D shape reconstruction results (middle) of three classes in ShapeNet, Car, Plane, and Chair from the input image (top). The

bottom is the ground truth.

Table 4. Single-image 3D reconstruction results on car, airplane

and chair at resolution 2563. “-” indicates that no result is reported

in the original paper.

Category OGN [22] MVD [19] Ours

Car 0.782 0.807 0.791

Airplane - 0.589 0.581

Chair - 0.433 0.425

Table 5. Single-view 3D reconstruction results on the 323 version

of ShapeNet-all dataset. Our method achieves the best reconstruc-

tion result on most categories.

Category R2N2 [4] OGN [22] Dense Ours

Plane 0.513 0.587 0.570 0.597

Bench 0.421 0.481 0.481 0.503

Cabinet 0.716 0.729 0.747 0.726

Car 0.798 0.816 0.828 0.841

Chair 0.466 0.483 0.481 0.521

Monitor 0.468 0.502 0.509 0.530

Lamp 0.381 0.398 0.371 0.421

Speaker 0.662 0.637 0.650 0.709

Firearm 0.544 0.593 0.571 0.487

Couch 0.528 0.646 0.668 0.665

table 0.513 0.536 0.545 0.543

Cellphone 0.661 0.702 0.698 0.713

Watercraft 0.513 0.632 0.550 0.612

Mean 0.560 0.596 0.590 0.605

strategy influence the reconstruction accuracy, we intro-

duced the low-resolution reconstruction experiment to com-

pare our method with the baseline, a dense network in-

troduced in [4]. We present the reconsturction results on

all 13 classes of the ShapeNet-all dataset at the resolution

32×32×32. We also compare our method with the other 3D

reconstruction networks, including an auto-encoder LSTM

based network (R2N2) [4] and OGN [10]. Table 5 shows

the IoU result of all models. Our method achieves the best

reconstruction results on most of the categories. The satis-

factory performance on all classes presents the good gener-

alization of our method.

To qualitatively evaluate the performance of our method,

we show some reconstruction samples from the “Cars”,

“Airplane” and “Chiar” class at resolution 256×256×256.

Figure 5 presents the reconstruction results.

7. Conclusion

In this paper, we have proposed a 3D shape reconstruc-

tion method from images in the frequency domain. We

shown that a 3D shape can be reconstructed by a compact

2D slice set at a high reconstruction accuracy. We have ex-

ploited the Fourier projection slice theorem and introduced

the 2D thickness map which can reduce the domain gap

between the input image and 2D slices. A deep network

was built to predict the thickness map from the input im-

age by exploiting the edge and silhouette constraints. This

network allows us to predict fine details (edges) and global

shape (silhouettes) of thickness map separately from the in-

put image, which allows a more accuracy reconstruction

result. Using slices in the frequency domain, our method

transferred the 3D shape reconstruction from the 3D space

into the 2D space, which significantly reduces the compu-

tational cost. The experimental results on ShapeNet dataset

validated that the proposed method can achieve satisfactory

results in an efficient way.
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