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Abstract

Importance of visual context in scene understanding

tasks is well recognized in the computer vision community.

However, to what extent the computer vision models are de-

pendent on the context to make their predictions is unclear.

A model overly relying on context will fail when encounter-

ing objects in different contexts than in training data and

hence it is important to identify these dependencies before

we can deploy the models in the real-world. We propose a

method to quantify the sensitivity of black-box vision mod-

els to visual context by editing images to remove selected

objects and measuring the response of the target models.

We apply this methodology on two tasks, image classifica-

tion and semantic segmentation, and discover undesirable

dependency between objects and context, for example that

“sidewalk” segmentation is very sensitive to the presence of

“cars” in the image. We propose an object removal based

data augmentation solution to mitigate this dependency and

increase the robustness of classification and segmentation

models to contextual variations. Our experiments show

that the proposed data augmentation helps these models

improve the performance in out-of-context scenarios, while

preserving the performance on regular data.

1. Introduction

Visual context of an object in an image is an important

source of information for scene understanding tasks in both

human and computer vision [22, 15]. Contextual cues such

as presence of frequently co-occurring objects can help re-

solve ambiguities between visually similar classes and im-

prove performance in various vision tasks including object

detection [13, 3] and segmentation [25]. However, objects

can also appear in previously unseen context or be absent

from a very typical context. For example, we might find

a keyboard on a desk without a monitor (object-without-

context), or find a monitor without a keyboard (context-

without-object). While humans can handle both these atyp-

ical scenarios gracefully, computer vision models often fail

by ignoring the visual evidence for the object in object-

Original(I) Upernet [23] Ours

I − car Upernet [23] Ours

Figure 1: An example of the sensitivity of road and side-

walk segmentation to the context object car. Removing car

from the image (second row) causes segmentation errors in

the baseline model which hallucinates a sidewalk (yellow)

when there is none. Our model trained with proposed data-

augmentation is more robust to these context changes.

without-context case or hallucinating objects which are not

actually present in the image in context-without-object case.

For example, in our experiments we find that keyboard is of-

ten not recognized without a nearby monitor, and semantic

segmentation of roads suffers without cars (see Figure 1).

While context can be an important cue, this kind of too

heavy or even pathological dependency on contextual sig-

nals is undesirable, and it is important to systematically

identify and ideally fix such cases. In this work, we ana-

lyze and quantify the effect contextual information on two

tasks, multi-label classification and semantic segmentation.

Context generally refers to different kinds of informa-

tion including co-occurring objects, scene type and light-

ing. For our analysis, we limit context to only the set of

co-occurring objects in the image. While this might seem

restrictive, we find in our analysis that image classifica-

tion and segmentation models learn many interesting and

undesirable dependencies between an object and other co-

occurring objects (context) in the image. We use object re-
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moval as the main methodology to understand and quantify

the role of context in downstream vision models. Specif-

ically, we compare the output of the target models on the

original input image and an edited version of this image

with one object removed from it. If the model heavily uses

the contextual relationship between removed object and the

objects present in the image, removal will have an adverse

effect on the model output. Measuring this helps us quantify

the contextual dependencies learnt by the target model.

Ideally we want models which can utilize contextual

cues when available, but are robust to variations in context

and can detect and segment objects even when they appear

out of context. However, machine learning based vision

models are biased to the data seen frequently in training and

tend to perform poorly on less frequent situations, for exam-

ple the object-without-context and context-without-object

scenarios. We address this by proposing a data augmenta-

tion scheme to expose the image classification and segmen-

tation models to different contexts during training, and thus

improving the robustness of the models to context. This is

done by removing selected objects from images and training

the models on the edited images to recognize and segment

other objects in the image, even with contextual objects re-

moved. Our experiments show that the classification and

segmentation models trained with this data augmentation

scheme are less sensitive to context changes and perform

better on real out-of-context datasets, while preserving the

baseline performance on the regular data splits.

To summarize, the main contributions of this paper are as

follows: a) We propose an object removal based method to

understand and quantify sensitivity of vision models to con-

text, b) We apply this to analyze image classification and

segmentation models and find some interesting and unde-

sirable dependencies learnt by the models between classes

and contextual objects and c) We propose a data augmen-

tation scheme based on object removal to make the models

more robust to contextual variation and show that it helps

improve performance in out-of-context scenarios.

2. Related work

The importance of semantic context in visual recognition

is a well established with studies showing context can help

humans recognize objects faster e.g. when dealing with dif-

ficult low resolution images [15, 1]. In computer vision,

incorporating context information has been shown to im-

prove performance in various tasks including object recog-

nition [12, 22, 18] and action recognition [9], object detec-

tion [3] and segmentation [25]. Early approaches built ex-

plicit context models by incorporating co-occurrences [18]

and spatial location statistics [6]. Recently, explicit context

modeling has been replaced by deep convolutional neural

network (CNN) encoders which summarize the whole im-

age into compact features. Classification and segmentation

models, built on top of these deep features, can exploit in-

formation about object and context to achieve good perfor-

mance [11, 7, 14]. Approaches to improve the use of con-

text in CNNs have been explored including using spatial

pyramids [26], atrous convolutions [4] and learning context

encoding with a separate neural network [25]. While this

implicit context encoding with deep CNNs improves per-

formance, it is less interpretable and is hard to know if the

model decisions are based on object or contextual evidence.

Methods have been proposed to inspect neural net-

works by visualizing salient regions for classification de-

cisions [19, 24], and quantifying interpretability of individ-

ual units [2]. While these works focus on interpreting the

internal representations of the network, we look at quanti-

fying the context sensitivity of black-box models from the

input data perspective. By manipulating the input image to

remove objects and observing the network output, we quan-

tify the sensitivity of classification and segmentation mod-

els to context and discover some interesting and undesirable

dependency between classes. Related work [16] proposes

erasing randomly sampled pixels to visualize important re-

gions for a black-box models decision. Despite some simi-

larities in the methodology, we focus on measuring the ef-

fect of entire context objects on model predictions. Data

augmentation by adding objects into new contexts was pro-

posed in [8], to improve the performance of object detection

models. By adding out-of-context objects into images [20]

shows that object detection networks are brittle to the pres-

ence of out-of-context objects. In contrast, we quantify the

contextual dependencies between object classes in segmen-

tation and classification models and improve their context

robustness with removal based data augmentation.

3. Quantifying the role of context

We use object removal to quantify the contextual depen-

dence of image classification and segmentation models, by

designing metrics which measure the change in the model

output between the original and the edited images with con-

text objects removed. Now, we will discuss our removal

model, present the robustness metrics and the data augmen-

tation strategies to reduce the contextual dependence and

improve performance in out-of-context setting.

3.1. Object removal

To create edited images with context objects removed,

we need a fully automatic object removal model. For this,

we utilize ground-truth object masks to remove the desired

object and use an in-painting network to fill in the removed

region. We base our in-painting network on the model pro-

posed in [21], since this inpainter is directly optimized for

removal, and can better handle irregular masks used in re-

moval [21]. More details about the network architecture can

be found in the supplementary material. The above removal

method works well for medium sized objects, but struggles
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for large objects since then the in-painter needs to synthe-

size most of the image. Hence, we impose size restrictions

on the objects we choose to remove to be less than 30%

of the image. In the classification scenario on the COCO

dataset, we consider all 80 object categories for removal. In

the segmentation setting on the ADE20k dataset, we con-

sider only the non-stuff categories (90 categories) for re-

moval and measure the effects of removing these objects

on the segmentation of all 140 categories. The stuff cat-

egories include objects like road, sky and field which are

typically very large and hard to inpaint and hence are ex-

cluded from removal. An important point to note here is

that the in-painter is not aware of the downstream models

and is not optimized to fool/change their decisions. The ef-

fects of the in-painter are local and only around the removed

object. Qualitative examples in Figures 2 and 3 show that

the in-painting works well in the object removal setting.

3.2. Measuring context dependency

To understand the effect of contextual cues on image-

classification and segmentation models, we test them on

edited images where a context object has been removed.

Precisely, given an original image I containing a set of ob-

jects C = {c1, · · · cn}, we create a set of edited images

Ie = {I− ci|ci ∈ C and removable(ci)}. Then, we test the

target model on I and Ie and check if its output is consistent

with the performed removal as described below.

Image-level classification. Given a trained classifier Sci

for class ci, we will now characterize how robust it is to

changes in context of ci. We first obtain classifier scores

for the original image I , edited image I − ci with object ci
removed and for the edited set Iowc = {I − cj : cj ∈ I, j 6=
i}, all of which contain the object ci but have one context

object removed. Ideally, if the classifier Sci is robust to

context changes it should score all the images in Iowc higher

than the image I−ci, since I−ci does not contain the object

ci and the images in Iowc do. Precisely, a classifier robust to

context should satisfy the below in-equality:

Sci(Iowc) ≥ Sci(I − ci), ∀Iowc ∈ Iowc (1)

We can count the number of times this condition is violated

to quantitatively measure the robustness of the classifier.

V min(ci)=

∑

I ✶ [(minIowc
Sci(Iowc))<Sci(I − ci)]

∑

I ✶[ci∈I]
(2)

V mean(ci)=

∑

I ✶ [EIowc
[Sci(Iowc)]<Sci(I − ci)]
∑

I ✶[ci∈I]
(3)

where ✶ is the indicator variable. V min(ci) is a strict metric

counting instances classifier scores I − ci higher than any

of the edited images, whereas V min(ci) is a softer metric

counting instances where I − ci is scored higher than the

average score assigned to the edited images.

Semantic segmentation. To understand the role context

plays in this pixel-level labeling task, we analyze the be-

haviour of a trained segmentation model by removing one

object at a time from the original image. Specifically, we

measure how the segmentation correctness of the rest of the

image changes (as compared to segmentation of the orig-

inal image) when we remove an object from the original

image. Given a segmentation model P , we compute the

intersection-over-union (IoU) for a class ci (w.r.t. ground-

truth) on the original image I and edited image I − cj . If

the IoU value changes more than threshold α, we consider

the segmentation prediction for class ci to be affected by

removal of cj . Counting these violations we get,

AR(ci, cj) =

∑

I ✶
[
∣

∣∆IoUcicj

∣

∣ ≥ α
]

∑

I ✶ [ci, cj ∈ I]
(4)

where ∆IoUcicj is the change in IoU of class ci with re-

moval of object cj and α is the change threshold. The ma-

trix AR(ci, cj) represents the fraction of images where re-

moving the object cj , affects the segmentation of the ob-

ject ci with high values of AR(ci, cj) indicating that the

segmentation model depends heavily on the presence of the

context object cj to segment ci.

3.3. Data augmentation with object removal

We now present our data augmentation solution to re-

duce the sensitivity of classification and segmentation mod-

els to context distribution. The main idea is to expose these

models to training images of object-without-context and

context-without-object scenarios. This will help the models

deal with the lack of contextual information and hence get

more robust to context changes. For this, we perform object

removal to create edited images with some objects removed

and add these edited images to the training batch. Specific

details of how to pick objects for removal and how to use

them in training for the two tasks are discussed below.

Classification. We experiment with two strategies to use

the edited images in the classifier training. In the first ap-

proach Data-aug-rand, a uniformly randomly sampled with

uniform probability and the classifier is trained with simple

binary cross-entropy loss using both original and edited im-

ages. Edited image is assigned the same labels as the same

as the original image excluding the removed object class.

In the second approach Data-aug-const, we explicitly op-

timize for robustness by including the in-equality in (1) in

the loss function. To do this, for randomly selected images

in the training batch, we create the full edited image set

{I − ci : ci ∈ I}. Then we can incorporate the robust-

ness constraint as a hinge loss Lh with final loss being a

weighted sum of the cross-entropy and the hinge losses.

Lh(I) =
∑

ci∈I

max

[

0, Sci(I − ci)− min
cj ,j 6=i

Sci(I − cj)

]

(5)
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Object without Context Context without Object

Original

Regular S(keyboard) = 1.99E ≥ S(keyboard) = 4.67E
Ours S(keyboard) = 3.40 S(keyboard) = 1.39

Original

Regular S(skate) = 0.39E ≥ S(skate) = 2.97E
Ours S(skate) = 2.33 S(skate) = −0.13

Original

Regular S(frisbee) = 0.39E ≥ S(frisbee) = 2.06E
Ours S(frisbee) = 3.32 S(frisbee) = 0.23

Original

Regular S(person) = 2.15E ≥ S(person) = 2.79E
Ours S(person) = 2.83 S(person) = −2.20

Figure 2: Context violations by image-level classifier. The

primary object is marked with blue box and the context ob-

ject is marked with magenta. The first column shows the

original image, middle shows the image with only object

and the third with only the context. We see that the baseline

classifier depends heavily on the context and always scores

the context only images (last column) higher than the im-

age with only the primary object (middle column). The data

augmented model does better and gets the ordering right.

Segmentation. We also perform data augmentation on the

segmentation task by creating edited images with selected

objects removed. The edited images can be used in training

the segmentation model in two ways. First we can ignore

the removed pixels and train the model to predict the orig-

inal ground-truth labels on the rest of the image (Ignore).

This helps the model learn that the labeling of a pixel should

not be affected by the removal of a context object. Alter-

natively, we can explicitly tell the model that the removed

object is not present by minimizing the likelihood assigned

to the removed class at the edited pixels (Negative loss).

We explore three strategies to select objects to remove.

The first strategy, Random, selects one random object to

remove from the objects present in the image with uni-

form probability. However, sometimes the Random strategy

can select very large object for removal, which can harm

the quality of the edited image. To address this the Size-

based strategy selects objects based on their relative sizes

in the image, assigning higher probability to smaller ob-

jects. The probability for picking an object is computed as

p(ci, I) ∝
[

∑
ci∈I

a(I,ci)

a(I,ci)

]

where a(I, ci) is the area of the

class ci in image I .We also explore a hard negative mining

based strategy, where we create harder training examples

for the segmentation model by removing easy classes. This

allows the model to focus on segmenting the harder classes

while also becoming robust to context. Concretely, in Hard-

Negative strategy we monitor the average cross-entropy loss

lavg(ci) for an object class ci and calculate the probability of

removal of ci as inversely proportional to lavg(ci).

4. Experiments and Results

This section presents the results of our analysis of

how much the contextual information influences the per-

formance of image classification and segmentation mod-

els. Using the robustness metrics defined in Section 3.2,

we discover that the classification predictions on many

well-performing classes are sensitive to context, and per-

form poorly on object-without-context and context-without-

object images. Similar results are also found in the seg-

mentation setting with the model depending heavily on con-

text objects to correctly segment classes like road, sidewalk,

grass. We also present results from our data-augmentation

strategies, which help reduce this context dependence and

improve robustness, without sacrificing performance.

4.1. Image level classification

4.1.1 Experimental setup for classification

Training data. We run our classification experiments on

the COCO dataset [10], which contains 80 labeled object

classes in their natural contexts. The dataset also has bound-

ing box and segmentation annotation for each object. We

use image-level labels to train the classifiers and use the ob-

ject segmentation masks to test them with object removal.

Out-of-context testing. Apart from testing the classifier

models on regular COCO data we conduct additional exper-

iments to quantify the performance in out-of-context sce-

narios with natural images. We divide the COCO images

into two splits: the first split Co-occur with images hav-

ing at least two objects in them and the second split Single

with images containing a single object. The Full split is

all images combining Co-occur and Single. The idea be-

hind this splitting of the dataset is to separate out images
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original (I) Upernet Ours original (I) Upernet Ours

I − sign Upernet Ours I − car Upernet Ours

original (I) Upernet Ours original (I) Upernet Ours

I − tree Upernet Ours I − tree Upernet Ours

Figure 3: Examples of segmentation failures due to removal of a single context object. We see the segmentation of road,

sidewalk and grass affected significantly when context objects like signboard, car and tree is removed (comparing odd and

even rows). Model trained with proposed data-augmentation is more robust to these changes.

where objects occur in their context (Co-occur) and images

where object occur alone without the usual co-occurring

context objects Single. Now we can train our models on

the Co-occur split and test it on the Single split to measure,

using only real images, how a classifier trained with only

co-occurring objects performs when objects appear with-

out the context seen in training. Additionally we also test

our COCO trained models on the UnRel dataset [17] which

contains natural images with objects occurring in unusual

contexts and relationships. We keep the classes which map

to one of the 80 object classes in COCO, leaving 29 classes

and 1071 images in the UnRel dataset.

Baseline classifier. The image-level classification model

we test is based on the architecture proposed in [14]. It con-

sists of a Imagenet [5] pre-trained VGG-19 network for fea-

ture extraction network followed by two convolution layers,

global max-pooling layer and a linear classification layer

with sigmoid activations. The model is trained with binary

cross-entropy loss. We train and test the model at single

scale at 256x256 resolution, to simplify the analysis. Our

classifier achieves similar mAP on real COCO data as re-

ported in [14], with our mAP slightly lower (0.600 vs 0.628

in [14]) due to single scale training and testing.

4.1.2 Analyzing classifier robustness to context

To measure the robustness of the trained classifier to con-

text, we test it on real images and edited images and com-

pute the robustness scores V min and V mean as described in

Section 3.2. Table 1 shows the robustness scores averaged

over all classes computed on the COCO test along with

the standard performance metric mean average precision

(mAP) for the baseline classifier (first row). We can see

that, despite achieving good mAP (0.6), the baseline clas-

sifier trained on full data performs poorly in-terms of ro-

bustness metrics. In about 34% of cases the model violates

the context consistency requirement of (1). This means in

34% cases, the classifier scores images without the target

object higher than an image where object is present but a

context object has been removed. Comparing the per-class

robustness score, V min(ci) and the per-class average pre-

cision (AP) (see supplementary for visualization), we see

that good performance in AP does not mean the classifier

is robust to context. Many classes like mouse, keyboard,

sink, tennis racket etc, which are performing well in AP

(≥ 0.8), but have poor robustness to changes in context

(V min
o ≥ 50%). In extreme case, the mouse classifier vi-

olates the consistency in more than 90% of cases, despite

having very good AP (0.88). This indicates that the classi-

fiers are relying too much on contextual evidence to detect

the objects but perform poorly when tested on images where

the context distribution is different from training.

We visualize the violations in Figure 2. In the first row

we can see that the keyboard classifier scores the image with
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Model Training Data
COCO test set Robustness Metrics UnRel

Full ↑Co-occur ↑Single ↑V min ↓ V
mean ↓ dataset ↑

Baseline Full (39k) 0.60 0.57 0.62 34% 24% 0.50

Data-aug-rand Full (39k) 0.61 0.58 0.65 32% 22% 0.54

Data-aug-const Full (39k) 0.60 0.58 0.63 25% 14% 0.52

Baseline Co-occur (30k) 0.56 0.55 0.58 34% 24% 0.46

Data-aug-rand Co-occur (30k) 0.58 0.57 0.60 31% 21% 0.49

Data-aug-const Co-occur (30k) 0.58 0.57 0.60 27% 15% 0.51

Table 1: Effect of data augmentation on classification model

Model
all (407 images) with car (258) without car (149)

Road Sidewalk Road Sidewalk Road Sidewalk

Upernet 0.81 0.59 0.86 0.67 0.68 0.40

DataAug 0.82 0.60 0.86 0.65 0.72 0.46

Table 2: Comparing the performance of road and sidewalk

segmentation on natural images with and without cars.
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Figure 4: Comparing the % of violations in dif-

ferent classes with and without data augmentation.

Points below the diagonal line show improvement

with data-augmentation and the ones above degrade.

The colors denote the average precision.

the keyboard removed higher (4.67) than the image with

the keyboard but with the monitors removed (1.99). Sim-

ilarly, we see the skateboard and the frisbee classifiers re-

lying on person to hallucinate the respective objects. The

violations shown in the first three rows of Figure 2 occur

in objects with high co-occurrence dependence with other

classes. However, context violations also occur in classes

like person which appear in diverse contexts as seen in the

last row of Figure 2. Here, the violation occurs in a difficult

image where the person is small, but a more distinct class

with co-occurrence dependence on person is clearly visible

(kite). The classifier uses the kite context to hallucinate that

there is a person, even when the person has been removed.

4.1.3 Data augmentation to improve robustness

We train two variants of the data-augmented image clas-

sification models as described in Section 3.3. The first

Data-aug-rand learns with standard cross-entropy loss on

the edited images with a random object removed and the

second Data-aug-const which is optimized directly for ro-

bustness using a set of edited images and hinge loss.

Quantitative results. We present the evaluation of the data-

augmented and the baseline models in Table 1. On models

trained with Full training data, the data-augmented model

Data-aug-rand provides a small improvement in overall

mAP on the COCO test set (0.61 vs 0.60). However mea-

suring the performance on the two splits Co-occur and Sin-

gle reveals that the improvement is significant on the Single

split (0.65 vs 0.62), indicating that the data augmentation

helps the classifier better deal with out of context objects.

This is also seen when comparing the performance of the

two models on the UnRel dataset, where data-aug-rand sig-

nificantly improves over the baseline model (0.54 vs 0.50).

This improved robustness of the data augmented classifier

to context changes is also measured by our robustness met-

rics V min and V mean. Data-aug-rand classifier makes over-

all 2% less violations under both worst-case (V min) and

average-case (V mean) context changes. Directly optimizing

the robustness constraints allows the model Data-aug-const

to significantly improve upon the baseline model in robust-

ness metrics, while still obtaining improvement in the per-

formance metrics. It exhibits much less worst-case (25% vs

34% for baseline) and average-case violations (14% vs 24%

for baseline), while improving the performance in the Un-

Rel dataset (0.52 mAP vs 0.50 for baseline). The benefit of

optimizing for robustness is clearly seen when we constrain

the training data to the Co-occur set, where the classifier

never sees objects alone. Baseline model trained on the Co-

occur set drops in performance on the Single (0.58 from

0.62 on when trained on Full) and the UnRel test sets (0.46

vs 0.50 with Full) . However, with data augmentation and

enforcing robustness constraints, we can recover some of

this performance. On the Single test set Data-aug-const

model trained on Co-occur set gets 0.58 mAP compared to

0.60 by baseline model trained on full data and even surpass

it on the UnRel test set with 0.51 mAP. This shows that the

data augmented model is able to overcome the contextual

bias in the training set and perform well in unseen contexts.

When we compare the per-class robustness metrics be-

tween regular and data augmented models (data-aug-const),

as shown in the Figure 4, we see that data-augmentation sig-

nificantly reduces the worst case violations (V min) on well-

performing classes. For example, V min drops from 95% to

less 36% for the mouse class and from 58% to 28% for the

keyboard class. The effect of this increased robustness is

seen in qualitative examples in Figure 2. In the first row, the

baseline keyboard classifier gives too much weight to evi-

dence from monitor and scores the image with only moni-

tor higher than the image with only keyboard. However, the

data augmented model correctly orders the two images.
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4.2. Semantic segmentation

So far, we have seen that multi-label classification mod-

els suffer from sensitivity to context, with classifiers often

mixing up contextual and visual evidence. Next we will

measure the context sensitivity of models in a more local

and strongly supervised task of semantic segmentation.

4.2.1 Experimental setup for segmentation

Training and test data. We conduct our semantic segmen-

tation experiments primarily on the ADE20k dataset [27]

containing 140 categories of labeled objects, in different

settings. Some of the 140 classes are typical background

classes like sky, sea and wall and are large and difficult to

in-paint and are hence excluded from removal.

Out-of-context testing. Following the process in image-

level classification, we also measure the performance of the

segmentation models on real out-of-context data. This in

done in two ways. First, we train the segmentation model

in a restricted setting with only three classes car, road and

sidewalk. Now, we can again make two splits of the train-

ing and testing images into the Co-occur split of images

with at-least two objects (3317 images) and the single split

with only a single object (1693 images). Then we train the

segmentation models on co-occur split and test on single

split to see how well it can perform segmentation without

context. Additionally we also test the models trained with

ADE20k data on the Pascal-context dataset [13] in order

to measure the performance under a different context dis-

tribution. This is done by manually mapping the 59 labels

in the pascal-context to ADE20k labels and restricting the

segmentation model to produce only the mapped labels.

Baseline segmentation model. We use the recent Uper-

Net [23] model, with good results on the ADE20k, as our

baseline segmentation model. We train the variant with the

Resnet-50 encoder and a Upernet decoder with batch size

of 6 images (maximum that fit in GPU) and with the default

hyper-parameters suggested by the authors. This model

achieves mean intersection-over-union (mIoU) of 0.377 and

accuracy of 78.19% with single scale testing.

4.2.2 Context in semantic segmentation

We analyze robustness of the segmentation models to

context by removing objects and computing the matrix

AR(ci, cj) presented in Section 3.2, which measures the %

of images where removal of object cj significantly affects

segmentation of object ci. The matrix AR(ci, cj) we obtain

for the Upernet model in ADE20k dataset is a sparse matrix

with sharp peaks (see supplementary for a visualization).

This indicates that the classes depend on specific context

objects and are significantly affected by their removal. The

sparsity also indicates that the effects on the segmentation

are due the class being removed and not in-painting arti-

facts (otherwise the segmentation would be affected by all

Model Removed pixels mIoU Acc

Upernet[23] - 0.377 78.31

DA (random) Ignore 0.320 75.2

DA (sizebased) Ignore 0.379 78.31

DA (hard negative) Ignore 0.375 77.8

DA (sizebased) Negative 0.377 78.25

DA (hard negative) Negative 0.385 78.47

Table 3: Data augmentation results on ADE20k dataset

removal). Some of dependencies we discover in AR(ci, cj)
are reasonable and harmless, for example between pot and

plant (AR = 50%). Once you remove the plant, pot looks

more like a trash can and the segmentation model often flips

the label to trash can. However other dependencies are spu-

rious and not desirable. For example, we notice that often

the segmentation model uses presence of car to differentiate

between road and sidewalk. Removing car affects the IoU

of the road and sidewalk in 21% and 22% of cases respec-

tively. This dependence is undesirable, and can be catas-

trophic in applications like self-driving cars.

We show qualitative examples where removal affects

segmentation of Upernet model in Figure 3. The first two

rows show the cases where removal of an object negatively

impacts the segmentation of other objects. This include

cases where removal of street sign and car severely affects

segmentation of road and sidewalk, and a case where re-

moval of trees affects segmentation of grass. We can see

from these examples that while edit on the image is small

and local, the effects of this removal on segmentation pre-

diction is not local. Removal of a small objects can have

drastic effects on segmentation in a far-away region.

4.2.3 Data augmentation for segmentation

Next we will look at the results of using data-augmentation

for segmentation models. For this purpose we train the

Upernet [23] based data-augmented models on the ADE-

20k dataset with on three different strategies for selecting

the object to remove as discussed in Section 3.3.

Quantitative results. Table 3, shows the results compar-

ing the data-augmented models with the baseline Upernet

model. We can see that random sampling strategy, which

worked well in image classification, fails here leading to

drop in performance. This is because, many object cate-

gories in ADE20k dataset are large and difficult to remove

like bed, sofa and mountain and random strategy suffers by

picking these. Instead when we switch to size-based and

hard-negative based sampling, we see that the performance

improves and the the size-based sampling model achieves

the best mIoU of the three models (0.379). Applying neg-

ative likelihood loss on the removed object class gets fur-

ther improvement when combined with hard negative sam-

pling. This model also improves upon the Upernet base-

line (achieving 0.385 IoU vs 0.377 by Upernet), despite the

8224



fact that the removal based data-augmentation is designed

to make the model more robust to contextual variations.

To understand how data-augmentation impacts sensitiv-

ity to context, Figure 5 visualizes the maximum sensitivity

of a class to removal of other classes, maxcj AR(ci, cj) for

different classes with and without data-augmentation. We

see that for majority of classes robustness to context im-

proves with data augmentation. For example pillow class is

only affected 32% of the time with context changes, com-

pared to 53% before data augmentaion. Similary, road and

sidewalk classes are only affected 9% and 14% of the time

respectively, compared to 21% and 22% before. This im-

proved robustness translates into better generalization to

real out-of-context data. We can see this in Table 2 where

the performance of the road and sidewalk segmentation is

measured on the validation set on images with and without

cars. On the full set and on the split with cars, we see that

the performance of the baseline Upernet and our augmented

model (DA hard negative with negative loss) is equivalent.

However, when we look at only images without car, the

Upernet model performs significantly worse in both road

(0.68 vs 0.72 for ours) and sidewalk (0.40 vs 0.46 for ours)

segmentation. This quantitatively shows that the baseline

model struggles to distinguish between road and sidewalk

without car in the image, whereas our data augmentation is

more robust and performs well even without context (car).

We also see the benefit of data augmentation in experi-

ments on restricted Co-occur training set and on the Pascal-

context dataset. Our data augmented model outperforms

the Upernet model (both trained on the ADE20k dataset)

when tested on the Pascal-context dataset in both mIoU

and pixel accuracy. While the Upernet model achieves

mIoU of 0.284 and pixel accuracy of 61.3% our data aug-

mented model achieves 0.293 and 62.10% respectively, in-

dicating that it is able to generalize better when tested on

a dataset with different context distribution than one seen

during training. Table 4 presents the experiments with the

Co-occur training set in the three class setting. First we

can see that when we switch from training on Full training

data to Co-occur split (containing only images with atleast

two objects), the performance of the Upernet greatly drops

on the Single test split (from 0.67 to 0.52). This is indi-

cates that the model overfits to the context it sees, and is

not able to segment objects when it seeing them out of con-

text. However, with data-augmentation we generate images

of objects without context, and can recover most of this per-

formance loss (0.646). Surprisingly, data-augmented model

trained on smaller co-occur data also outperforms the base-

line trained with Full data when tested on the co-occur split.

Further quantification of robustness for different network

architectures are included in the supplementary material.

Qualitative examples in Figure 3 also show the effect of

increased robustness to context. While the baseline Upernet
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Figure 5: Comparing the context sensitivity of differ-

ent classes with and without data augmentation with

maxcj AR(ci, cj) metric. Points below the diagonal im-

prove with data-augmentation. The color denotes the mIoU.

Model Training Data Full Only Cooccur Only Single

Upernet Full (5k) 0.774 0.797 0.670

Data Aug Full (5k) 0.742 0.754 0.675

Upernet Co-occur (3.3k) 0.680 0.713 0.520

Data Aug Co-occur (3.3k) 0.82 0.86 0.646

Table 4: Experiments in three class setting on ADE20k

model is affected by context object removal causing drastic

changes in predictions of other regions, our data augmented

model is more stable. For example the removal of sign-

board, car or tree does not effect the segmentation of the

road or sidewalk by our model.

5. Conclusions

We have presented a methodology to analyze and quan-

tify the context sensitivity of image classification and seg-

mentation models, based on editing images to remove ob-

jects and measuring the effect on the target model output.

Our analysis shows that despite good performance in-terms

on mAP, classifiers for certain classes like keyboard, mouse,

skateboard are very sensitive to context objects and per-

form poorly when seen out of context. In semantic seg-

mentation setting, our analysis shows similar dependency

between classes. For example we discover that the model

depends on the presence of car to segment roads and side-

walk and fails drastically when the car is not present in the

image. We present a data augmentation scheme based on

object removal to mitigate this and make the classification

and segmentation models more robust to context changes.

Our experiments show that the proposed data augmentation

scheme can help models generalize to out of context scenar-

ios without losing performance in standard setting, indicat-

ing that the data augmented models better balance contex-

tual and visual information.
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